Search results for: soap film
290 Amino Acid Derivatives as Green Corrosion Inhibitors for Mild Steel in 1M HCl: Electrochemical, Surface and Density Functional Theory Studies
Authors: Jiyaul Haque, Vandana Srivastava, M. A. Quraishi
Abstract:
The amino acids based corrosion inhibitors 2-(3-(carboxymethyl)-1H-imidazol-3-ium-1-yl) acetate (Z-1),2-(3-(1-carboxyethyl)-1H-imidazol-3-ium-1-yl) propanoate (Z-2) and 2-(3-(1-carboxy-2-phenylethyl)-1H-imidazol-3-ium-1-yl)-3- phenylpropanoate (Z-3) were synthesized by the reaction of amino acids, glyoxal and formaldehyde, and characterized by the FTIR and NMR spectroscopy. The corrosion inhibition performance of synthesized inhibitors was studied by electrochemical (EIS and PDP), surface and DFT methods. The results show, the studied Z-1, Z-2 and Z-3 are effective inhibitors, showed the maximum inhibition efficiency of 88.52 %, 89.48 and 96.08% at concentration 200ppm, respectively. The results of potentiodynamic polarization (PDP) study showed that Z-1 act as a cathodic inhibitor, while Z-2 and Z-3 act as mixed type inhibitors. The results of electrochemical impedance spectroscopy (EIS) studies showed that zwitterions inhibit the corrosion through adsorption mechanism. The adsorption of synthesized zwitterions on the mild steel surface was followed the Langmuir adsorption isotherm. The formation of zwitterions film on mild steel surface was confirmed by the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The quantum chemical parameters were used to study the reactivity of inhibitors and supported the experimental results. An inhibitor adsorption model is proposed.Keywords: electrochemical impedance spectroscopy, green corrosion inhibitors, mild steel, SEM, quantum chemical calculation, zwitterions
Procedia PDF Downloads 196289 The Influence of Temperature on the Corrosion and Corrosion Inhibition of Steel in Hydrochloric Acid Solution: Thermodynamic Study
Authors: Fatimah Al-Hayazi, Ehteram. A. Noor, Aisha H. Moubaraki
Abstract:
The inhibitive effect of Securigera securidaca seed extract (SSE) on mild steel corrosion in 1 M HCl solution has been studied by weight loss and electrochemical techniques at four different temperatures. All techniques studied provided data that the studied extract does well at all temperatures, and its inhibitory action increases with increasing its concentration. SEM images indicate thin-film formation on mild steel when corroded in solutions containing 1 g L-1 of inhibitor either at low or high temperatures. The polarization studies showed that SSE acts as an anodic inhibitor. Both polarization and impedance techniques show an acceleration behaviour for SSE at concentrations ≤ 0.1 g L-1 at all temperatures. At concentrations ≥ 0.1 g L-1, the efficiency of SSE is dramatically increased with increasing concentration, and its value does not change appreciably with increasing temperature. It was found that all adsorption data obeyed Temkin adsorption isotherm. Kinetic activation and thermodynamic adsorption parameters are evaluated and discussed. The results revealed an endothermic corrosion process with an associative activation mechanism, while a comprehensive adsorption mechanism for SSE on mild steel surfaces is suggested, in which both physical and chemical adsorption are involved in the adsorption process. A good correlation between inhibitor constituents and their inhibitory action was obtained.Keywords: corrosion, inhibition of steel, hydrochloric acid, thermodynamic study
Procedia PDF Downloads 100288 Incorporation of Copper for Performance Enhancement in Metal-Oxides Resistive Switching Device and Its Potential Electronic Application
Authors: B. Pavan Kumar Reddy, P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu
Abstract:
In this work, the fabrication and characterization of copper-doped zinc oxide (Cu:ZnO) based memristor devices with aluminum (Al) and indium tin oxide (ITO) metal electrodes are reported. The thin films of Cu:ZnO was synthesized using low-cost and low-temperature chemical process. The Cu:ZnO was then deposited onto ITO bottom electrodes using spin-coater technique, whereas the top electrode Al was deposited utilizing physical vapor evaporation technique. Ellipsometer was employed in order to measure the Cu:ZnO thickness and it was found to be 50 nm. Several surface and materials characterization techniques were used to study the thin-film properties of Cu:ZnO. To ascertain the efficacy of Cu:ZnO for memristor applications, electrical characterizations such as current-voltage (I-V), data retention and endurance were obtained, all being the critical parameters for next-generation memory. The I-V characteristic exhibits switching behavior with asymmetrical hysteresis loops. This work imputes the resistance switching to the positional drift of oxygen vacancies associated with respect to the Al/Cu:ZnO junction. Further, a non-linear curve fitting regression techniques were utilized to determine the equivalent circuit for the fabricated Cu:ZnO memristors. Efforts were also devoted in order to establish its potentiality for different electronic applications.Keywords: copper doped, metal-oxides, oxygen vacancies, resistive switching
Procedia PDF Downloads 162287 Effect of Annealing Temperature on Microstructural Evolution of Nanoindented Cu/Si Thin Films
Authors: Woei-Shyan Lee, Yu-Liang Chuang
Abstract:
The nano-mechanical properties of as-deposited Cu/Si thin films indented to a depth of 2000 nm are investigated using a nanoindentation technique. The nanoindented specimens are annealed at a temperature of either 160 °C or 210°C, respectively. The microstructures of the as-deposited and annealed samples are then examined via transmission electron microscopy (TEM). The results show that both the loading and the unloading regions of the load-displacement curve are smooth and continuous, which suggests that no debonding or cracking occurs during nanoindentation. In addition, the hardness and Young’s modulus of the Cu/Si thin films are found to vary with the nanoindentation depth, and have maximum values of 2.8 GPa and 143 GPa, respectively, at the maximum indentation depth of 2000 nm. The TEM observations show that the region of the Cu/Si film beneath the indenter undergoes a phase transformation during the indentation process. In the case of the as-deposited specimens, the indentation pressure induces a completely amorphous phase within the indentation zone. For the specimens annealed at a temperature of 160°C, the amorphous nature of the microstructure within the indented zone is maintained. However, for the specimens annealed at a higher temperature of 210°C, the indentation affected zone consists of a mixture of amorphous phase and nanocrystalline phase. Copper silicide (η-Cu3Si) precipitates are observed in all of the annealed specimens. The density of the η-Cu3Si precipitates is found to increase with an increasing annealing temperature.Keywords: nanoindentation, Cu/Si thin films, microstructural evolution, annealing temperature
Procedia PDF Downloads 392286 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms
Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna
Abstract:
In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove
Procedia PDF Downloads 303285 Highly Sensitive Nanostructured Chromium Oxide Sensor for Analysis of Diabetic Patient’s Breath
Authors: Nipin Kohli, Ravi Chand Singh
Abstract:
Diabetes mellitus is a serious illness and can be life-threatening if left untreated. Acetone present in the exhaled breath of a diabetic person is a biomarker of patients suffering from diabetes mellitus and is higher than its usual concentration present in the breath of healthy people. In the present work, a portable gas sensor system based on chromium oxide (Cr₂O₃) nanoparticles has been developed that can analyze diabetic patient’s breath. Undoped and indium (In) doped Cr₂O₃ nanoparticles were synthesized by a chemical route and characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, UV-visible spectroscopy, and photoluminescence spectroscopy for their structural, morphological and optical properties. Thick film gas sensors were fabricated out of synthesized samples. To diagnose diabetes, the sensors’ response to low concentrations of acetone was measured, and it was found that the addition of indium dramatically enhances the acetone gas sensing response. Moreover, the fabricated sensors were highly stable, reproducible and resistant to humidity. Enhancement of sensor response of doped sensors towards acetone can be ascribed to increase in defects due to addition of a dopant, and it was found that in-doped Cr₂O₃ sensors are more useful for analysis of breath of diabetic patients.Keywords: Diabetes mellitus, nanoparticles, raman spectroscopy, sensor
Procedia PDF Downloads 143284 Formulation and Evaluation of Lisinopril Microspheres for Nasal Delivery
Authors: S. S. Patil, R. M. Mhetre, S. V. Patil
Abstract:
Lisinopril is an angiotensin converting enzyme inhibitor used in the treatment of hypertension and heart failure in prophylactic treatment after myocardial infarction and in diabetic nephropathy. However, it is very poorly absorbed from gastro-intestinal tract. Intranasal administration is an ideal alternative to the parenteral route for systemic drug delivery. Formulating multiparticulate system with mucoadhesive polymers provide a significant increase in the nasal residence time. The aim of the present approach was to overcome the drawbacks of the conventional dosage forms of lisinopril by formulating intranasal microspheres with Carbopol 974P NF and HPMC K4 M along with film forming polymer ethyl cellulose.The microspheres were prepared by emulsion solvent evaporation method. The prepared microspheres were characterized for encapsulation efficiency, drug loading, particle size, and surface morphology, degree of swelling, ex vivo mucoadhesion, drug release, ex vivo diffusion studies. All formulations has shown entrapment efficiency between 80 to more than 95%, mucoadhesion was more than 80 % and drug release up to 90 %. Ex vivo studies revealed tht the improved bioavailability of drug compared to oral drug administration. Both in vitro and in vivo studies conclude that combination of Carbopol and HPMC based microspheres shown better results than single carbopol based microspheres for the delivery of lisinopril.Keywords: microspheres, lisinopril, nasal delivery, solvent evaporation method
Procedia PDF Downloads 528283 Use of Yeast-Chitosan Bio-Microcapsules with Ultrafiltration Membrane to Remove Ammonia Nitrogen and Organic Matter in Raw Water
Authors: Chao Ding, Jun Shi, Huiping Deng
Abstract:
This study reports the preparation of a new type yeast-chitosan bio-microcapsule coating sodium alginate and chitosan, with good biocompatibility and mechanical strength. Focusing on the optimum preparation conditions of bio-microcapsule, a dynamic test of yeast-chitosan bio-microcapsule combined with ultrafiltration membrane was established to evaluate both the removal efficiency of major pollutants from raw water and the applicability of this system. The results of orthogonal experiments showed that the optimum preparation procedure are as follows: mix sodium alginate solution (3%) with bacteria liquid in specific proportion, drop in calcium chloride solution (4%) and solidify for 30 min; put the plastic beads into chitosan liquid (1.8%) to overlay film for 10 min and then into glutaraldehyde solution (1%) to get cross-linked for 5 min. In dynamic test, the microcapsules were effective as soon as were added in the system, without any start-up time. The removal efficiency of turbidity, ammonia nitrogen and organic matter was 60%, 80%, and 40%. Besides, the bio-microcapsules were prospective adsorbent for heavy metal; they adsorb Pb and Cr⁶⁺ in water while maintaining high biological activity to degrade ammonia nitrogen and small molecular organics through assimilation. With the presence of bio-microcapsules, the internal yeast strains’ adaptability on the external environment and resistance ability on toxic pollutants will be increased.Keywords: ammonia nitrogen, bio-microcapsules, ultrafiltration membrane, yeast-chitosan
Procedia PDF Downloads 346282 Development of an Indoor Drone Designed for the Needs of the Creative Industries
Authors: V. Santamarina Campos, M. de Miguel Molina, S. Kröner, B. de Miguel Molina
Abstract:
With this contribution, we want to show how the AiRT system could change the future way of working of a part of the creative industry and what new economic opportunities could arise for them. Remotely Piloted Aircraft Systems (RPAS), also more commonly known as drones, are now essential tools used by many different companies for their creative outdoor work. However, using this very flexible applicable tool indoor is almost impossible, since safe navigation cannot be guaranteed by the operator due to the lack of a reliable and affordable indoor positioning system which ensures a stable flight, among other issues. Here we present our first results of a European project, which consists of developing an indoor drone for professional footage especially designed for the creative industries. One of the main achievements of this project is the successful implication of the end-users in the overall design process from the very beginning. To ensure safe flight in confined spaces, our drone incorporates a positioning system based on ultra-wide band technology, an RGB-D (depth) camera for 3D environment reconstruction and the possibility to fully pre-program automatic flights. Since we also want to offer this tool for inexperienced pilots, we have always focused on user-friendly handling of the whole system throughout the entire process.Keywords: virtual reality, 3D reconstruction, indoor positioning system, RPAS, remotely piloted aircraft systems, aerial film, intelligent navigation, advanced safety measures, creative industries
Procedia PDF Downloads 198281 Sun Protection Factor (SPF) Determination of Sericin Cream and Niosomal Gel
Authors: Farzad Doostishoar, Abbas Pardakhty, Abdolreza Hassanzadeh, Sudeh salarpour, Elham Sharif
Abstract:
Background: Sericin is a protein extracted from silk and has antioxidant, antimicrobial, antineoplastic, wound healing and moisturizing properties. Different cosmetic formulation of sericin is available in different countries such as Japan and the other south-eastern Asian countries. We formulated and evaluated the sunscreen properties of topical formulations of sericin by an in vitro method. Method: Niosomes composed of sorbitan palmitate (Span 40), polysorbate 40 (Tween 40) and cholesterol (300 µmol, 3.5:3.5:3 molar ratio) were prepared by film hydration technique. Sericin was dissolved in normal saline and the lipid hydration was carried out at 60°C and the niosomes were incorporated in a Carbomer gel base. A W/O cream was also prepared and the release of sericin was evaluated by using Franz diffusion cell. Particle size analysis, sericin encapsulation efficiency measurement, morphological studies and stability evaluation were done in niosomal formulations. SPF was calculated by using Transpore tape in vitro method for both formulations. Results: Niosomes had high stability during 6 months storage at 4-8°C. The mean volume diameter of niosomes was less than 7 µm which is ideal for sustained release of drugs in topical formulations. The SPF of niosomal gel was 25 and higher than sericin cream with a diffusion based release pattern of active material. Conclusion: Sericin can be successfully entrapped in niosomes with sustained release pattern and relatively high SPF.Keywords: sericin, niosomes, sun protection factor, cream, gel
Procedia PDF Downloads 501280 Representation of Pashtuns in the Context of Terrorism: A Comparative Study of Bollywood and Lollywood Movies After 9/11
Authors: Aamir Ayub, Yasir Shehzad, Shakeel Ahmad
Abstract:
This research paper aims to understand how the Pashtuns have been represented in relationship to terrorism in post-9/11 Bollywood and Lollywood movies. It focuses particularly on ‘Torbaaz’ from Bollywood and ‘Waar’ from Lollywood in order to define the nature of Pashtun characterization, the functioning of intelligence agencies, as well as the socio-political side of the represented narratives. In this research, the analytical approach developed is applied to contemplate how these films represent or fail to represent Pashtun identity, taking into consideration the cultural, historical and social dimensions. The study also aims to examine the effects of the media, particularly on the different ethnic groups’ perceptions of terrorism. In this case, it covers how the movie relates actual events in society – specifically, socio-political – to the messages in the film regarding the Pashtun people and their portrayal. Such elements may constitute the portrayal of intelligence agencies and their fight against terrorism, state-security dynamics, and the Pashtun society. In conclusion, this research paper focuses on the representation of Pashtuns in films after 9/11 and addresses the issue concerning the representation of ethnic groups in the method of the theme of terrorism. It provides ideas about the role of media in influencing the mind of the society and their attitude towards certain communities after geopolitics upheavals.Keywords: pashtun representation, terrorism, 9/11 attacks, socio-political implications, ethnic representation in media
Procedia PDF Downloads 25279 A Critical Examination of the Relationship between the Media and the Political Agenda in the Social Deviance Portrayal of Disabled People
Authors: Cara Williams
Abstract:
This paper considers the media’s role in formulating a dominant social deviance paradigm and medicalised portrayal of disabled people and examines how those representations of impairment reinforce the personal tragedy view that underpins the social value given to the category of disability. According to a materialist perspective, the personal tragedy medical model approach condemns disabled people to live an inferior 'life apart', socially excluded and prevented from living as fully participating citizens on an equal basis to non-disabled people. Commonly, disabled people are portrayed as a person who needs to be cured in order to achieve a better 'quality of life'; otherwise stories center on deviance, criminality or scrounger. Media representations have consistently used negative language and images that reinforce the personal tragedy 'deficient' view of disability. The systematic misrepresentation within film, literature, TV and other art forms have validated a process about what it means to be 'normal' and how 'difference' and 'identity' are interpreted. The impact of these stereotyped disabling images for disabled people is a barrier not experienced by many other oppressed minority groups. Applying a materialist analysis, this paper contends that the impact on audience’s perceptions of impaired bodies and minds, and the harmful effects on disabled people can be linked with agenda setting theory - the relationship between the media and the political agenda.Keywords: media, disabled people, political agenda, personal tragedy
Procedia PDF Downloads 147278 Investigation of the Self-Healing Sliding Wear Characteristics of Niti-Based PVD Coatings on Tool Steel
Authors: Soroush Momeni
Abstract:
Excellent damping capacity and superelasticity of the bulk NiTi shape memory alloy (SMA) makes it a suitable material of choice for tools in machining process as well as tribological systems. Although thin film of NiTi SMA has a same damping capacity as NiTi bulk alloys, it has a poor mechanical properties and undesirable tribological performance. This study aims at eliminating these application limitations for NiTi SMA thin films. In order to achieve this goal, NiTi thin films were magnetron sputtered as an interlayer between reactively sputtered hard TiCN coatings and hard work tool steel substrates. The microstructure, composition, crystallographic phases, mechanical and tribological properties of the deposited thin films were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, ball–on-disc, scratch test, and three dimensional (3D) optical microscopy. It was found that under a specific coating architecture, the superelasticity of NiTi inter-layer can be combined with high hardness and wear resistance of TiCN protective layers. The obtained results revealed that the thickness of NiTi interlayers is an important factor controlling mechanical and tribological performance of bi-layer composite coating systems.Keywords: PVD coatings, sliding wear, hardness, tool steel
Procedia PDF Downloads 285277 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications
Authors: Bryan D. Llenarizas, Maria Carla F. Manzano
Abstract:
The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole
Procedia PDF Downloads 84276 Fabrication and Characterization of Al2O3 Based Electrical Insulation Coatings Around SiC Fibers
Authors: S. Palaniyappan, P. K. Chennam, M. Trautmann, H. Ahmad, T. Mehner, T. Lampke, G. Wagner
Abstract:
In structural-health monitoring of fiber reinforced plastics (FRPs), every single inorganic fiber sensor that are integrated into the bulk material requires an electrical insulation around itself, when the surrounding reinforcing fibers are electrically conductive. This results in a more accurate data acquisition only from the sensor fiber without any electrical interventions. For this purpose, thin nano-films of aluminium oxide (Al2O3)-based electrical-insulation coatings have been fabricated around the Silicon Carbide (SiC) single fiber sensors through reactive DC magnetron sputtering technique. The sputtered coatings were amorphous in nature and the thickness of the coatings increased with an increase in the sputter time. Microstructural characterization of the coated fibers performed using scanning electron microscopy (SEM) confirmed a homogeneous circumferential coating with no detectable defects or cracks on the surface. X-ray diffraction (XRD) analyses of the as-sputtered and 2 hours annealed coatings (825 & 1125 ˚C) revealed the amorphous and crystalline phases of Al2O3 respectively. Raman spectroscopic analyses produced no characteristic bands of Al2O3, as the thickness of the films was in the nanometer (nm) range, which is too small to overcome the actual penetration depth of the laser used. In addition, the influence of the insulation coatings on the mechanical properties of the SiC sensor fibers has been analyzed.Keywords: Al₂O₃ thin film, electrical insulation coating, PVD process, SiC fibre, single fibre tensile test
Procedia PDF Downloads 124275 Experimental Modeling and Simulation of Zero-Surface Temperature of Controlled Water Jet Impingement Cooling System for Hot-Rolled Steel Plates
Authors: Thomas Okechukwu Onah, Onyekachi Marcel Egwuagu
Abstract:
Zero-surface temperature, which controlled the cooling profile, was modeled and used to investigate the effect of process parameters on the hot-rolled steel plates. The parameters include impingement gaps of 40mm to 70mm; pipe diameters of 20mm to 45mm feeding jet nozzle with 30 holes of 8mm diameters each; and flow rates within 2.896x10-⁶m³/s and 3.13x10-⁵m³/s. The developed simulation model of the Zero-Surface Temperature, upon validation, showed 99% prediction accuracy with dimensional homogeneity established. The evaluated Zero-Surface temperature of Controlled Water Jet Impingement Steel plates showed a high cooling rate of 36.31 Celsius degree/sec at an optimal cooling nozzle diameter of 20mm, impingement gap of 70mm and a flow rate of 1.77x10-⁵m³/s resulting in Reynold's number 2758.586, in the turbulent regime was obtained. It was also deduced that as the nozzle diameter was increasing, the impingement gap was reducing. This achieved a faster rate of cooling to an optimum temperature of 300oC irrespective of the starting surface cooling temperature. The results additionally showed that with a tested-plate initial temperature of 550oC, a controlled cooling temperature of about 160oC produced a film and nucleated boiling heat extraction that was particularly beneficial at the end of controlled cooling and influenced the microstructural properties of the test plates.Keywords: temperature, mechanistic-model, plates, impingements, dimensionless-numbers
Procedia PDF Downloads 50274 Modeling and Simulation of Pad Surface Topography by Diamond Dressing in Chemical-Mechanical Polishing Process
Authors: A.Chen Chao-Chang, Phong Pham-Quoc
Abstract:
Chemical-mechanical polishing (CMP) process has been widely applied on fabricating integrated circuits (IC) with a soft polishing pad combined with slurry composed of micron or nano-scaled abrasives for generating chemical reaction to remove substrate or film materials from wafer. During CMP process, pad uniformity usually works as a datum surface of wafer planarization and pad asperities can dominate the microscopic pad-slurry-wafer interaction. However, pad topography can be changed by related mechanism factors of CMP and it needs to be re-conditioned or dressed by a diamond dresser of well-distributed diamond grits on a disc surface. It is still very complicated to analyze and understand kinematic of diamond dressing process under the effects of input variables including oscillatory of diamond dresser and rotation speed ratio between the pad and the diamond dresser. This paper has developed a generic geometric model to clarify the kinematic modeling of diamond dressing processes such as dresser/pad motion, pad cutting locus, the relative velocity of the diamond abrasive grits on pad surface, and overlap of cutting for prediction of pad surface topography. Simulation results focus on comparing and analysis kinematics of the diamond dressing on certain CMP tools. Results have shown the significant parameters for diamond dressing process and also discussed. Future study can apply on diamond dresser design and experimental verification of pad dressing process.Keywords: kinematic modeling, diamond dresser, pad cutting locus, CMP
Procedia PDF Downloads 255273 The Politics of Cinema: Representation of Rising Nationalism in Indian Cinema in the Election Year of 2019
Authors: Paawani Tewari, Oishik Dasgupta
Abstract:
Cinema and politics have often intertwined in India. Movies have become a mainstream method of communication with audiences and voters subliminally and directly. Indian film industry on average produces over a thousand films in a year, and during the election year of 2019, India witnessed the release of several highly political movies. Movies such as Uri: The Surgical Strike, Accidental Prime Minister, and PM Modi, et cetera, which are the sample of this study have tried to depict an ideal character of political stalwart leaders with the plausibility to inspire and aiming to change ideological orientations of viewers and the potent voters. This study tries to understand the major links between nationalism, its representation, and its manifestation in Indian cinema and how it is instrumental in shaping the character and orientations of its citizens towards nation, nationalism, and nationhood. Our work aims to highlight how nationalistic assumptions that are swaddled in the Hindi movies released during January 2019 – May 2019 affect the political mood of the nation and, in totality, the democratic system. The authors also try to throw light on how films being a powerful tool, are now being used to shape ideas, brainwashing and swaying opinions for political mileage. Hence it becomes essential for us to explore the dynamics between the quintessential definitions of what nationalism is for a common man in India versus of what has been represented in cinema, especially during the time of the elections.Keywords: political governance and political analysis, political and public administration, election, public choice
Procedia PDF Downloads 166272 Bimetallic Silver-Platinum Core-Shell Nanoparticles Formation and Spectroscopic Analysis
Authors: Mangaka C. Matoetoe, Fredrick O. Okumu
Abstract:
Metal nanoparticles have attracted a great interest in scientific research and industrial applications, owing to their unique large surface area-to-volume ratios and quantum-size effects. Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage and as catalysts for the sustainable production of fuels and chemicals. Monometallics (Ag, Pt) and Silver-platinum (Ag-Pt) bimetallic (BM) nanoparticles (NPs) with a mole fraction (1:1) were prepared by reduction / co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. The kinetics of the nanoparticles formation was monitored using UV-visible spectrophotometry. Transmission electron microscopy (TEM) and Energy-dispersive X-ray (EDX) spectroscopy were used for size, film morphology as well as elemental composition study. Fast reduction processes was noted in Ag NPs (0.079 s-1) and Ag-Pt NPs 1:1 (0.082 s-1) with exception of Pt NPs (0.006 s-1) formation. The UV-visible spectra showed characteristic peaks in Ag NPs while the Pt NPs and Ag-Pt NPs 1:1 had no observable absorption peaks. UV visible spectra confirmed chemical reduction resulting to formation of NPs while TEM images depicted core-shell arrangement in the Ag-Pt NPs 1:1 with particle size of 20 nm. Monometallic Ag and Pt NPs reported particle sizes of 60 nm and 2.5 nm respectively. The particle size distribution in the BM NPs was found to directly depend on the concentration of Pt NPs around the Ag core. EDX elemental composition analysis of the nanoparticle suspensions confirmed presence of the Ag and Pt in the Ag-Pt NPs 1:1. All the spectroscopic analysis confirmed the successful formation of the nanoparticles.Keywords: kinetics, morphology, nanoparticles, platinum, silver
Procedia PDF Downloads 401271 Micro-Arc Oxidation Titanium and Post Treatment by Cold Plasma and Graft Polymerization of Acrylic Acid for Biomedical Application
Authors: Shu-Chuan Liao, Chia-Ti Chang, Ko-Shao Chen
Abstract:
Titanium and its alloy are widely used in many fields such as dentistry or orthopaedics. Due to their high strength low elastic modulus that chemical inertness and bio inert. The micro-arc oxidation used to formation a micro porous ceramic oxide layer film on Titanium surface and also to improve the resistance corrosion. For improving the biocompatibility, micro-arc oxidation surfaces bio-inert need to introduce reactive group. We introduced boundary layer by used plasma enhanced chemical vapor deposition of hexamethyldisilazane (HMDS) and organic active layer by UV light graft reactive monomer acrylic acid (AAc) therefore we can immobilize Chondroitin sulphate on surface easily by crosslinking EDC/NHS. The surface properties and composition of the modified layer were measured by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and water contact angle. Water contact angle of the plasma-treated Ti surface decreases from 60° to 38°, which is an indication of hydrophilicity. The results of electrochemical polarization analysis showed that the sample plasma treated at micro-arc oxidation after plasma treatment has the best corrosion resistance. The result showed that we can immobilize chondroitin sulfate successful by a series of modification and MTT assay indicated the biocompatibility has been improved in this study.Keywords: MAO, plasma, graft polymerization, biomedical application
Procedia PDF Downloads 259270 Enhanced Boiling Heat Transfer Using Wettability Patterned Surfaces
Authors: Dong Il Shim, Geehong Choi, Donghwi Lee, Namkyu Lee, Hyung Hee Cho
Abstract:
Effective cooling technology is required to secure thermal stability in extreme heat generated systems such as integrated electronic devices and power generated systems. Pool boiling heat transfer is one of the powerful cooling mechanisms using phase change phenomena. Critical heat flux (CHF) and heat transfer coefficient (HTC) are main factors to evaluate the performance of boiling heat transfer. CHF is the limitation of boiling heat transfer before film boiling which occurs thermal failure. Surface wettability is an important surface characteristic of boiling heat transfer. A hydrophilic surface has higher CHF through effective working fluid supply to local hot spots. A hydrophobic surface promotes the onset of nucleate boiling (ONB) to enhance HTC. In this study, superbiphilic surfaces, which is combined with superhydrophillic and superhydrophobic, are applied on boiling experiments to maximize boiling performance. We conducted pool boiling heat transfer using DI water at a saturated temperature and recorded bubble dynamics using a high-speed camera with 2000 fps. As a result, superbiphilic patterned surfaces promote ONB and enhance both CHF and HTC. This study demonstrates the enhanced boiling performance using superbiphilic surfaces by effective nucleation and separation of liquid/vapor pathway. We expect that further enhancement of heat transfer could be achieved in future work using optimized patterned surfaces.Keywords: boiling heat transfer, wettability, critical heat flux, heat transfer coefficient
Procedia PDF Downloads 337269 Synthesis and Characterization of Un-Doped and Velvet Tamarind Doped ZnS Crystals, Using Sol Gel Method
Authors: Uchechukwu Vincent Okpala
Abstract:
Under the Sun, energy is a key factor for the sustenance of life and its environment. The need to protect the environment as energy is generated and consumed has called for renewable and green energy sources. To be part of this green revolution, we synthesized and characterized undoped and velvet tamarind doped zinc sulfide (ZnS) crystals using sol-gel methods. Velvet tamarind was whittled down using the top-down approach of nanotechnology. Sodium silicate, tartaric acid, zinc nitrate, and thiourea were used as precursors. The grown samples were annealed at 105°C. Structural, optical, and compositional analyses of the grown samples revealed crystalline structures with varied crystallite sizes influenced by doping. Energy-dispersive X-ray spectroscopy confirmed elemental compositions of Zn, S, C and O in the films. Atomic percentages of the elements varied with VT doping. FT-IR analysis indicated the presence of functional groups like O-H stretching (alcohol), C=C=C stretching (alkene group), C=C bending, C-H stretching (alkane), N-H stretching (aliphatic primary amine) and N=C=S stretching (isothiocyanate) constituent in the film. The transmittance of the samples increased from the visible region to the infrared region making the samples good for poultry and solar energy applications. The bandgap energy of the films decreased as the number of VT drops increased, from 2.4 to 2.2. They were wide band gap materials and were good for optoelectronic, photo-thermal, high temperature, high power and solar cell applications.Keywords: doping, sol-gel, velvet tamarind, ZnS.
Procedia PDF Downloads 47268 Nanosilver Containing Biodegradable Bionanocomposites for Antimicrobial Application: Design, Preparation and Study
Authors: Nino Kupatadze, Shorena Tskhadadze, Mzevinar Bedinashvili, David Tugushi, Ramaz Katsarava
Abstract:
Surgical device-associated infection and biofilm formation are some of the major problems in biomedicine for today. The losing protection ability of conventional antimicrobial-drugs leads to the challenges in the current antibiotic therapy, the most serious of which is antibiotic resistance. Our strategy to overcome the biofilm formation consists in coating devices with polymeric film containing nanosilver(AgNPs) as a bactericidal agent. Such bionanocomposites are also promising as wound dressing materials. For this purpose, we have developed a new generation of AgNPs containing polymeric composites in which amino acid based biodegradable poly(ester amide)s (PEAs) were served as both matrices and AgNPs stabilizers. The AgNPs were formed by photochemical (daylight) reduction of AgNO3 in ethanol solution. The formation of AgNPs was monitored by coloring the solution in brownish-red and appearance of the absorption maximum at 420-430 nm in UV spectrum. Comparative studies of PEAs with polyvinylpyrrolidone (PVP) as particle stabilizers were carried out. It was found that PVP is better stabilizer in terms of particles yield and stability. Therefore, in subsequent experiments blends of PEAs and PVP were used as stabilizers for fabricating AgNPs. As expected, PVP increased the stabilizing effect and this apparently observed in the UV spectrum of the samples after 7 h daylight irradiation: for pure PVP λmax = 430 nm, D = 2.03, for pure PEA λmax= 420 nm, D = 0.65, and for the blend of PVP and PEA λmax = 435 nm, D = 1.88. Further study of the obtained nanobiocomposites is in progress now.Keywords: biodegradation, bionanocompositions, polymer, nanosilver
Procedia PDF Downloads 343267 A Novel Hybrid Lubri-Coolant for Machining Difficult-to-Cut Ti-6Al-4V Alloy
Authors: Muhammad Jamil, Ning He, Wei Zhao
Abstract:
It is a rough estimation that the aerospace companies received orders of 37000 new aircraft, including the air ambulances, until 2037. And titanium alloys have a 15% contribution in modern aircraft's manufacturing owing to the high strength/weight ratio. Despite their application in the aerospace and medical equipment manufacturing industry, still, their high-speed machining puts a challenge in terms of tool wear, heat generation, and poor surface quality. Among titanium alloys, Ti-6Al-4V is the major contributor to aerospace application. However, its poor thermal conductivity (6.7W/mK) accumulates shear and friction heat at the tool-chip interface zone. To dissipate the heat generation and friction effect, cryogenic cooling, Minimum quantity lubrication (MQL), nanofluids, hybrid cryogenic-MQL, solid lubricants, etc., are applied frequently to underscore their significant effect on improving the machinability of Ti-6Al-4V. Nowadays, hybrid lubri-cooling is getting attention from researchers to explore their effect regarding the hard-to-cut Ti-6Al-4V. Therefore, this study is devoted to exploring the effect of hybrid ethanol-ester oil MQL regarding the cutting temperature, surface integrity, and tool life. As the ethanol provides -OH group and ester oil of long-chain molecules provide a tribo-film on the tool-workpiece interface. This could be a green manufacturing alternative for the manufacturing industry.Keywords: hybrid lubri-cooling, surface roughness, tool wear, MQL
Procedia PDF Downloads 85266 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform
Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr
Abstract:
Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing
Procedia PDF Downloads 85265 Structural and Optical Properties of RF-Sputtered ZnS and Zn(S,O) Thin Films
Authors: Ould Mohamed Cheikh, Mounir Chaik, Hind El Aakib, Mohamed Aggour, Abdelkader Outzourhit
Abstract:
Zinc sulfide [ZnS] and oxygenated zinc sulfide Zn(O,S) thin films were deposited on glass substrates, by reactive cathodic radio-frequency (RF) sputtering. The substrates power and percentage of oxygen were varied in the range of 100W to 250W and from 5% to 20% respectively. The structural, morphological and optical properties of these thin films were investigated. The optical properties (mainly the refractive index, absorption coefficient and optical band gap) were examined by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. XRD analysis indicated that all sputtered ZnS films were a single phase with a preferential orientation along the (111) plane of zinc blend (ZB). The crystallite size was in the range of 19.5 nm to 48.5 nm, the crystallite size varied with RF power reaching a maximum at 200 W. The Zn(O,S) films, on the other hand, were amorphous. UV-Visible, measurements showed that the ZnS film had more than 80% transmittance in the visible wavelength region while that of Zn(O,S is 85%. Moreover, it was observed that the band gap energy of the ZnS films increases slightly from 3.4 to 3.52 eV as the RF power was increased. The optical band gap of Zn(O,S), on the other hand, decreased from 4.2 to 3.89 eV as the oxygen partial pressure is increased in the sputtering atmosphere at a fixed RF-power. Scanning electron microscopy observations revealed smooth surfaces for both type of films. The X-ray reflectometry measurements on the ZnS films showed that the density of the films (3.9 g/cm3) is close that of bulk ZnS.Keywords: thin films Zn(O, S) properties, Zn(O, S) by Rf-sputtering, ZnS for solar cells, thin films for renewable energy
Procedia PDF Downloads 283264 Enhancing Fracture Toughness of CF/PAEK Laminates for High-Velocity Impact Applications: An Experimental Investigation
Authors: Johannes Keil, Eric Mischorr, Veit Würfel, Jan Condé-Wolter, Alexander Liebsch, Maik Gude
Abstract:
In the aviation sector wastewater pipes are subjected to many different mechanical and medial loads. Worst-case scenarios include high-velocity impacts resulting from the introduction of foreign objects into the system. The industry is seeking to reduce the weight of these pipes, which are currently manufactured from titanium. A promising alternative is the use of fiber-reinforced polymers (FRP), specifically carbon fiber (CF) reinforced polyaryletherketone (PAEK) laminates. This study employs an experimental methodology to investigate the impact resistance of CF/PAEK laminates, with a particular focus on three configurations: crimp, non-crimp, and interleaved matrix rich films in cross-ply laminates. High-velocity impacts were performed using a gas gun resulting in three-dimensional damage patterns. Afterwards the damage behavior was qualitatively and quantitatively analyzed using ultrasonic scans and computed tomography (CT). Samples with an interleaved matrix-rich film led to a reduction of the damage area by around 40% compared to the non-interleaved, non-crimp samples, while the crimp architecture resulted in a reduction of more than 60%. Therefore, these findings contribute to understanding the influence of laminate architecture on impact resistance, paving the way for more efficient materials in aviation applications.Keywords: fracture toughness, high-velocity-impact, textile architecture, thermoplastic composites
Procedia PDF Downloads 22263 Electrochemically Reduced Graphene Oxide Modified Boron-Doped Diamond Paste Electrode on Paper-Based Analytical Device for Simultaneous Determination of Norepinephrine and Serotonin
Authors: Siriwan Nantaphol, Robert B. Channon, Takeshi Kondo, Weena Siangproh, Orawon Chailapakul, Charles S. Henry
Abstract:
In this work, we demonstrate a novel electrochemically reduced graphene oxide (ERGO) modified boron-doped diamond paste (BDDP) electrode on paper-based analytical devices (PADs) for simultaneous determination of norepinephrine (NE) and serotonin (5-HT). The BDD paste electrode was easily constructed by filling BDD paste in small channels, which made in transparency film sheets using a CO₂ laser etching system. The counter and reference electrodes were fabricated on paper by in-house screen-printing and then combined with BDD paste microelectrode. The electrochemical characterization of the device was investigated by cyclic voltammetry (CV). Differential pulse voltammetry (DPV) was employed for the simultaneous determination of NE and 5-HT. The ERGO-modified BDDP electrode displayed excellent electrocatalytic activities toward the oxidation of NE and 5-HT and strong function for resolving the overlapping voltammetric responses of NE and 5-HT into two well-defined voltammetric peaks. This device was capable of simultaneously detecting NE and 5-HT in wide concentration ranges and with a low limit of detections. In addition, it has the advantages in terms of ease of use, low cost, and disposability.Keywords: boron-doped diamond paste electrode, electrochemically reduced graphene oxide, norepinephrine, paper-based analytical device, serotonin
Procedia PDF Downloads 259262 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition
Authors: D. Geringswald, B. Hintze
Abstract:
The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.Keywords: ALD, high aspect ratio, PE-MOCVD, TiN
Procedia PDF Downloads 300261 Inhibition of Streptococcus Mutans Biofilm Development of Dental Caries In Vitro and In Vivo by Trachyspermum ammi Seeds: An Approach of Alternative Medicine
Authors: Mohd Adil, Rosina Khan, Danishuddin, Asad U. Khan
Abstract:
The aim of this study was to evaluate the influence of the crude and active solvent fraction of Trachyspermum ammi on S. mutans cariogenicity, effect on expression of genes involved in biofilm formation and caries development in rats. GC–MS was carried out to identify the major components present in the crude and the active fraction of T. ammi. The crude extract and the solvent fraction exhibiting least MIC were selected for further experiments. Scanning electron microscopy was carried out to observe the effect of the extracts on S. mutans biofilm. Comparative gene expression analysis was carried out for nine selected genes. 2-Isopropyl-5-methyl-phenol was found as major compound in crude and the active fraction. Binding site of this compound within the proteins involved in biofilm formation was mapped with the help of docking studies. Real-time RT-PCR analyses revealed significant suppression of the genes involved in biofilm formation. All the test groups showed reduction in caries (smooth surface as well as sulcal surface caries) in rats. Moreover, it also provides new insight to understand the mechanism influencing biofilm formation in S. mutans. Furthermore, the data suggest the putative cariostatic properties of T. Ammi and hence can be used as an alternative medicine to prevent caries infection.Keywords: bio-film, Streptococcus mutans, dental caries, bio-informatic
Procedia PDF Downloads 477