Search results for: satellite thermal images
5313 Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques
Authors: Bum-Soo Kim, Jin-Uk Kim
Abstract:
In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result.Keywords: boundary image matching, indexing, partial denoising, time-series matching
Procedia PDF Downloads 1385312 Assisting Dating of Greek Papyri Images with Deep Learning
Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou
Abstract:
Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.Keywords: image classification, papyri images, dating
Procedia PDF Downloads 785311 Improved Mechanical and Electrical Properties and Thermal Stability of Post-Consumer Polyethylene Terephthalate Glycol Containing Hybrid System of Nanofillers
Authors: Iman Taraghi, Sandra Paszkiewicz, Daria Pawlikowska, Anna Szymczyk, Izabela Irska, Rafal Stanik, Amelia Linares, Tiberio A. Ezquerra, Elżbieta Piesowicz
Abstract:
Currently, the massive use of thermoplastic materials in industrial applications causes huge amounts of polymer waste. The poly (ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PET-G) has been widely used in food packaging and polymer foils. In this research, the PET-G foils have been recycled and reused as a matrix to combine with different types of nanofillers such as carbon nanotubes, graphene nanoplatelets, and nanosized carbon black. The mechanical and electrical properties, as well as thermal stability and thermal conductivity of the PET-G, improved along with the addition of the aforementioned nanofillers and hybrid system of them.Keywords: polymer hybrid nanocomposites, carbon nanofillers, recycling, physical performance
Procedia PDF Downloads 1365310 Development of Membrane Reactor for Auto Thermal Reforming of Dimethyl Ether for Hydrogen Production
Authors: Tie-Qing Zhang, Seunghun Jung, Young-Bae Kim
Abstract:
This research is devoted to developing a membrane reactor to flexibly meet the hydrogen demand of onboard fuel cells, which is an important part of green energy development. Among many renewable chemical products, dimethyl ether (DME) has the advantages of low reaction temperature (400 °C in this study), high hydrogen atom content, low toxicity, and easy preparation. Autothermal reforming, on the other hand, has a high hydrogen recovery rate and exhibits thermal neutrality during the reaction process, so the additional heat source in the hydrogen production process can be omitted. Therefore, the DME auto thermal reforming process was adopted in this study. To control the temperature of the reaction catalyst bed and hydrogen production rate, a Model Predictive Control (MPC) scheme was designed. Taking the above two variables as the control objectives, stable operation of the reformer can be achieved by controlling the flow rates of DME, steam, and high-purity air in real-time. To prevent catalyst poisoning in the fuel cell, the hydrogen needs to be purified to reduce the carbon monoxide content to below 50 ppm. Therefore, a Pd-Ag hydrogen semi-permeable membrane with a thickness of 3-5 μm was inserted into the auto thermal reactor, and the permeation efficiency of hydrogen was improved by steam purging on the permeation side. Finally, hydrogen with a purity of 99.99 was obtained.Keywords: hydrogen production, auto thermal reforming, membrane, fuel cell
Procedia PDF Downloads 1055309 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario
Authors: Sarita Agarwal, Deepika Delsa Dean
Abstract:
Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation
Procedia PDF Downloads 1315308 Effective Thermal Retrofitting Methods to Improve Energy Efficiency of Existing Dwellings in Sydney
Authors: Claire Far, Sara Wilkinson, Deborah Ascher Barnstone
Abstract:
Energy issues have been a growing concern in current decades. Limited energy resources and increasing energy consumption from one side and environmental pollution and waste of resources from the other side have substantially affected the future of human life. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Therefore, employing sustainable design principles and effective use of construction materials for building envelope can play crucial role in the improvement of energy efficiency of existing dwellings and enhancement of thermal comfort of the occupants. The energy consumption for heating and cooling normally is determined by the quality of the building envelope. Building envelope is the part of building which separates the habitable areas from exterior environment. Building envelope consists of external walls, external doors, windows, roof, ground and the internal walls that separate conditioned spaces from non-condition spaces. The energy loss from the building envelope is the key factor. Heat loss through conduction, convection and radiation from building envelope. Thermal performance of the building envelope can be improved by using different methods of retrofitting depending on the climate conditions and construction materials. Based on the available studies, the importance of employing sustainable design principles has been highlighted among the Australian building professionals. However, the residential building sector still suffers from a lack of having the best practice examples and experience for effective use of construction materials for building envelope. As a result, this study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing dwellings in Sydney, the most populated city in Australia. Based on the research findings, the best thermal retrofitting methods for increasing thermal comfort and energy efficiency of existing residential dwellings as well as reducing their environmental impact and footprint have been identified and proposed.Keywords: thermal comfort, energy consumption, residential dwellings, sustainable design principles, thermal retrofit
Procedia PDF Downloads 2685307 Dynamic Compensation for Environmental Temperature Variation in the Coolant Refrigeration Cycle as a Means of Increasing Machine-Tool Precision
Authors: Robbie C. Murchison, Ibrahim Küçükdemiral, Andrew Cowell
Abstract:
Thermal effects are the largest source of dimensional error in precision machining, and a major proportion is caused by ambient temperature variation. The use of coolant is a primary means of mitigating these effects, but there has been limited work on coolant temperature control. This research critically explored whether CNC-machine coolant refrigeration systems adapted to actively compensate for ambient temperature variation could increase machining accuracy. Accuracy data were collected from operators’ checklists for a CNC 5-axis mill and statistically reduced to bias and precision metrics for observations of one day over a sample period of 27 days. Temperature data were collected using three USB dataloggers in ambient air, the chiller inflow, and the chiller outflow. The accuracy and temperature data were analysed using Pearson correlation, then the thermodynamics of the system were described using system identification with MATLAB. It was found that 75% of thermal error is reflected in the hot coolant temperature but that this is negligibly dependent on ambient temperature. The effect of the coolant refrigeration process on hot coolant outflow temperature was also found to be negligible. Therefore, the evidence indicated that it would not be beneficial to adapt coolant chillers to compensate for ambient temperature variation. However, it is concluded that hot coolant outflow temperature is a robust and accessible source of thermal error data which could be used for prevention strategy evaluation or as the basis of other thermal error strategies.Keywords: CNC manufacturing, machine-tool, precision machining, thermal error
Procedia PDF Downloads 895306 Thermal Behaviour of a Low-Cost Passive Solar House in Somerset East, South Africa
Authors: Ochuko K. Overen, Golden Makaka, Edson L. Meyer, Sampson Mamphweli
Abstract:
Low-cost housing provided for people with small incomes in South Africa are characterized by poor thermal performance. This is due to inferior craftsmanship with no regard to energy efficient design during the building process. On average, South African households spend 14% of their total monthly income on energy needs, in particular space heating; which is higher than the international benchmark of 10% for energy poverty. Adopting energy efficient passive solar design strategies and superior thermal building materials can create a stable thermal comfort environment indoors. Thereby, reducing energy consumption for space heating. The aim of this study is to analyse the thermal behaviour of a low-cost house integrated with passive solar design features. A low-cost passive solar house with superstructure fly ash brick walls was designed and constructed in Somerset East, South Africa. Indoor and outdoor meteorological parameters of the house were monitored for a period of one year. The ASTM E741-11 Standard was adopted to perform ventilation test in the house. In summer, the house was found to be thermally comfortable for 66% of the period monitored, while for winter it was about 79%. The ventilation heat flow rate of the windows and doors were found to be 140 J/s and 68 J/s, respectively. Air leakage through cracks and openings in the building envelope was 0.16 m3/m2h with a corresponding ventilation heat flow rate of 24 J/s. The indoor carbon dioxide concentration monitored overnight was found to be 0.248%, which is less than the maximum range limit of 0.500%. The prediction percentage dissatisfaction of the house shows that 86% of the occupants will express the thermal satisfaction of the indoor environment. With a good operation of the house, it can create a well-ventilated, thermal comfortable and nature luminous indoor environment for the occupants. Incorporating passive solar design in low-cost housing can be one of the long and immediate solutions to the energy crisis facing South Africa.Keywords: energy efficiency, low-cost housing, passive solar design, rural development, thermal comfort
Procedia PDF Downloads 2615305 Structural, Elastic, Vibrational and Thermal Properties of Perovskites AHfO3 (a=Ba,Sr,Eu)
Authors: H. Krarcha
Abstract:
The structural, elastic, vibrational and thermal properties of AHfO3 compounds with the cubic perovskites structure have been investigated, by employing a first principles method, using the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA). The optimized lattice parameters, independent elastic constants (C11, C12 and C44), bulk modulus (B), compressibility (b), shear modulus (G), Young’s modulus (Y ), Poisson’s ratio (n), Lame´’s coefficients (m, l), as well as band structure, density of states and electron density distributions are obtained and analyzed in comparison with the available theoretical and experimental data. For the first time the numerical estimates of elastic parameters of the polycrystalline AHfO3 ceramics (in framework of the VoigteReusseHill approximation) are performed. The quasi-harmonic Debye model, by means of total energy versus volume calculations obtained with the FP-LAPW method, is applied to study the thermal and vibrational effects. Predicted temperature and pressure effects on the structural parameters, thermal expansions, heat capacities, and Debye temperatures are determined from the non-equilibrium Gibbs functions.Keywords: Hafnium, elastic propreties, first principles calculation, perovskite
Procedia PDF Downloads 3815304 Investigation of Glacier Activity Using Optical and Radar Data in Zardkooh
Authors: Mehrnoosh Ghadimi, Golnoush Ghadimi
Abstract:
Precise monitoring of glacier velocity is critical in determining glacier-related hazards. Zardkooh Mountain was studied in terms of glacial activity rate in Zagros Mountainous region in Iran. In this study, we assessed the ability of optical and radar imagery to derive glacier-surface velocities in mountainous terrain. We processed Landsat 8 for optical data and Sentinel-1a for radar data. We used methods that are commonly used to measure glacier surface movements, such as cross correlation of optical and radar satellite images, SAR tracking techniques, and multiple aperture InSAR (MAI). We also assessed time series glacier surface displacement using our modified method, Enhanced Small Baseline Subset (ESBAS). The ESBAS has been implemented in StaMPS software, with several aspects of the processing chain modified, including filtering prior to phase unwrapping, topographic correction within three-dimensional phase unwrapping, reducing atmospheric noise, and removing the ramp caused by ionosphere turbulence and/or orbit errors. Our findings indicate an average surface velocity rate of 32 mm/yr in the Zardkooh mountainous areas.Keywords: active rock glaciers, landsat 8, sentinel-1a, zagros mountainous region
Procedia PDF Downloads 775303 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres
Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee
Abstract:
Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity
Procedia PDF Downloads 2075302 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 2575301 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 1205300 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission
Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong
Abstract:
Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.Keywords: medical image watermarking, e-health system, error correction, Hamming code, GPU
Procedia PDF Downloads 2905299 Effect of Repellent Coatings, Aerosol Protective Liners, and Lamination on the Properties of Chemical/Biological Protective Textiles
Authors: Natalie Pomerantz, Nicholas Dugan, Molly Richards, Walter Zukas
Abstract:
The primary research question to be answered for Chemical/Biological (CB) protective clothing, is how to protect wearers from a range of chemical and biological threats in liquid, vapor, and aerosol form, while reducing the thermal burden. Currently, CB protective garments are hot, heavy, and wearers are limited by short work times in order to prevent heat injury. This study demonstrates how to incorporate different levels of protection on a material level and modify fabric composites such that the thermal burden is reduced to such an extent it approaches that of a standard duty uniform with no CB protection. CB protective materials are usually comprised of several fabric layers: a cover fabric with a liquid repellent coating, a protective layer which is comprised of a carbon-based sorptive material or semi-permeable membrane, and a comfort next-to-skin liner. In order to reduce thermal burden, all of these layers were laminated together to form one fabric composite which had no insulative air gap in between layers. However, the elimination of the air gap also reduced the CB protection of the fabric composite. In order to increase protection in the laminated composite, different nonwoven aerosol protective liners were added, and a super repellent coating was applied to the cover fabric, prior to lamination. Different adhesive patterns were investigated to determine the durability of the laminate with the super repellent coating, and the effect on air permeation. After evaluating the thermal properties, textile properties and protective properties of the iterations of these fabric composites, it was found that the thermal burden of these materials was greatly reduced by decreasing the thermal resistance with the elimination of the air gap between layers. While the level of protection was reduced in laminate composites, the addition of a super repellent coating increased protection towards low volatility agents without impacting thermal burden. Similarly, the addition of aerosol protective liner increased protection without reducing water vapor transport, depending on the nonwoven used, however, the air permeability was significantly decreased. The balance of all these properties and exploration of the trade space between thermal burden and protection will be discussed.Keywords: aerosol protection, CBRNe protection, lamination, nonwovens, repellent coatings, thermal burden
Procedia PDF Downloads 3645298 Conical Spouted Bed Combustor for Combustion of Vine Shoots Wastes
Authors: M. J. San José, S. Alvarez, R. López
Abstract:
In order to prove the applicability of a conical spouted bed combustor for the thermal exploitation of vineyard pruning wastes, the flow regimes of beds consisting of vine shoot beds and an inert bed were established under different operating conditions. The effect of inlet air temperature on the minimum spouted velocity was evaluated. Batch combustion of vine shoots in a conical spouted bed combustor was conducted at temperatures in the range 425-550 ºC with an inert bed. The experimental values of combustion efficiency of vine shoot calculated from the concentration the exhaust gases were assessed. The high experimental combustion efficiency obtained evidenced the proper suitability of the conical spouted bed combustor for the thermal combustion of vine shoots.Keywords: biomass wastes, thermal combustion, conical spouted beds, vineyard wastes
Procedia PDF Downloads 1995297 Numerical Study of Heat Transfer in Silica Aerogel
Authors: Amal Maazoun, Abderrazak Mezghani, Ali Ben Moussa
Abstract:
Aerogel consists of a ramified and inter-connected solid skeleton enclosing a very important number of nano-sized pores filled with air that occupies most of the volume and makes very low density. The thermal conductivity of this material can reach lower values than those of any other material, and it changes with the type of the aerogel and its composition. So, in order to explain the causes of the super-insulation of our material and to determine the factors in which depends on its conductivity we used a numerical simulation. We have developed a numerical code that generates random fractal structure of silica aerogel with pre-defined concentration, properties of the backbone and the gas in the pores as well as the size of the particles. The calculation of the conductivity at any point of domain shows that it is not constant and that it depends on the pore size and the location in the pore. A numerical method based on resolution by inversion of block tridiagonal matrices is used to calculate the equivalent thermal conductivity of the whole fractal structure. The average conductivity calculated for each concentration is in good agreement with those of typical aerogels. And we found that the equivalent thermal conductivity of a silica aerogel depends strongly not only on the porosity but also on the tortuosity of the solid backbone.Keywords: aerogel, fractal structure, numerical study, porous media, thermal conductivity
Procedia PDF Downloads 2915296 Identifying the True Extend of Glioblastoma Based on Preoperative FLAIR Images
Authors: B. Shukir, L. Szivos, D. Kis, P. Barzo
Abstract:
Glioblastoma is the most malignant brain tumor. In general, the survival rate varies between (14-18) months. Glioblastoma consists a solid and infiltrative part. The standard therapeutic management of glioblastoma is maximum safe resection followed by chemo-radiotherapy. It’s hypothesized that the pretumoral hyperintense region in fluid attenuated inversion recovery (FLAIR) images includes both vasogenic edema and infiltrated tumor cells. In our study, we aimed to define the sensitivity and specificity of hyperintense FLAIR images preoperatively to examine how well it can define the true extent of glioblastoma. (16) glioblastoma patients included in this study. Hyperintense FLAIR region were delineated preoperatively as tumor mask. The infiltrative part of glioblastoma considered the regions where the tumor recurred on the follow up MRI. The recurrence on the CE-T1 images was marked as the recurrence masks. According to (AAL3) and (JHU white matter labels) atlas, the brain divided into cortical and subcortical regions respectively. For calculating specificity and sensitivity, the FLAIR and the recurrence masks overlapped counting how many regions affected by both . The average sensitivity and specificity was 83% and 85% respectively. Individually, the sensitivity and specificity varied between (31-100)%, and (100-58)% respectively. These results suggest that despite FLAIR being as an effective radiologic imaging tool its prognostic value remains controversial and probabilistic tractography remain more reliable available method for identifying the true extent of glioblastoma.Keywords: brain tumors, glioblastoma, MRI, FLAIR
Procedia PDF Downloads 535295 Visual Preferences of Elementary School Children with Autism Spectrum Disorder: An Experimental Study
Authors: Larissa Pliska, Isabel Neitzel, Michael Buschermöhle, Olga Kunina-Habenicht, Ute Ritterfeld
Abstract:
Visual preferences, which can be assessed using eye tracking technologies, are considered one of the defining hallmarks of Autism Spectrum Disorder (ASD). Specifically, children with ASD show a decreased preference for social images rather than geometric images compared to typically developed (TD) children. Such differences are already prevalent at a very early age and indicate the severity of the disorder: toddlers with ASD who preferred geometric images when confronted with social and geometric images showed higher ASD symptom severity than toddlers with ASD who showed higher social attention. Furthermore, the complexity of social pictures (one child playing vs. two children playing together) as well as the mode of stimulus presentation (video or image), are not decisive for the marker. The average age of diagnosis for ASD in Germany is 6.5 years, and visual preference data on this age group is missing. In the present study, we therefore investigated whether visual preferences persist into school age. We examined the visual preferences of 16 boys aged 6 to 11 with ASD and unimpaired cognition as well as TD children (1:1 matching based on children's age and the parent's level of education) within an experimental setting. Different stimulus presentation formats (images vs. videos) and different levels of stimulus complexity were included. Children with and without ASD received pairs of social and non-social images and video stimuli on a screen while eye movements (i.e., eye position and gaze direction) were recorded. For this specific use case, KIZMO GmbH developed a customized, native iOS app (KIZMO Face-Analyzer) for use on iPads. Neither the format of stimulus presentation nor the complexity of the social images had a significant effect on the visual preference of children with and without ASD in this study. Despite the tendency for a difference between the groups for the video stimuli, there were no significant differences. Overall, no statistical differences in visual preference occurred between boys with and without ASD, suggesting that gaze preference in these groups is similar at primary school age. One limitation is that the children with ASD were already receiving Autism-specific intervention. The potential of a visual preference task as an indicator of ASD can be emphasized. The article discusses the clinical relevance of this marker in elementary school children.Keywords: autism spectrum disorder, eye tracking, hallmark, visual preference
Procedia PDF Downloads 605294 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images
Authors: Khitem Amiri, Mohamed Farah
Abstract:
Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.Keywords: hyperspectral images, deep belief network, radiometric indices, image classification
Procedia PDF Downloads 2805293 Comparison Of Virtual Non-Contrast To True Non-Contrast Images Using Dual Layer Spectral Computed Tomography
Authors: O’Day Luke
Abstract:
Purpose: To validate virtual non-contrast reconstructions generated from dual-layer spectral computed tomography (DL-CT) data as an alternative for the acquisition of a dedicated true non-contrast dataset during multiphase contrast studies. Material and methods: Thirty-three patients underwent a routine multiphase clinical CT examination, using Dual-Layer Spectral CT, from March to August 2021. True non-contrast (TNC) and virtual non-contrast (VNC) datasets, generated from both portal venous and arterial phase imaging were evaluated. For every patient in both true and virtual non-contrast datasets, a region-of-interest (ROI) was defined in aorta, liver, fluid (i.e. gallbladder, urinary bladder), kidney, muscle, fat and spongious bone, resulting in 693 ROIs. Differences in attenuation for VNC and TNV images were compared, both separately and combined. Consistency between VNC reconstructions obtained from the arterial and portal venous phase was evaluated. Results: Comparison of CT density (HU) on the VNC and TNC images showed a high correlation. The mean difference between TNC and VNC images (excluding bone results) was 5.5 ± 9.1 HU and > 90% of all comparisons showed a difference of less than 15 HU. For all tissues but spongious bone, the mean absolute difference between TNC and VNC images was below 10 HU. VNC images derived from the arterial and the portal venous phase showed a good correlation in most tissue types. The aortic attenuation was somewhat dependent however on which dataset was used for reconstruction. Bone evaluation with VNC datasets continues to be a problem, as spectral CT algorithms are currently poor in differentiating bone and iodine. Conclusion: Given the increasing availability of DL-CT and proven accuracy of virtual non-contrast processing, VNC is a promising tool for generating additional data during routine contrast-enhanced studies. This study shows the utility of virtual non-contrast scans as an alternative for true non-contrast studies during multiphase CT, with potential for dose reduction, without loss of diagnostic information.Keywords: dual-layer spectral computed tomography, virtual non-contrast, true non-contrast, clinical comparison
Procedia PDF Downloads 1415292 The Influence of Microcapsulated Phase Change Materials on Thermal Performance of Geopolymer Concrete
Authors: Vinh Duy Cao, Shima Pilehvar, Anna M. Szczotok, Anna-Lena Kjøniksen
Abstract:
The total energy consumption is dramatically increasing on over the world, especially for building energy consumption where a significant proportion of energy is used for heating and cooling purposes. One of the solutions to reduce the energy consumption for the building is to improve construction techniques and enhance material technology. Recently, microcapsulated phase change materials (MPCM) with high energy storage capacity within the phase transition temperature of the materials is a potential method to conserve and save energy. A new composite materials with high energy storage capacity by mixing MPCM into concrete for passive building technology is the promising candidate to reduce the energy consumption. One of the most untilized building materials for mixing with MPCM is Portland cement concrete. However, the emission of carbon dioxide (CO2) due to producing cement which plays the important role in the global warming is the main drawback of PCC. Accordingly, an environmentally friendly building material, geopolymer, which is synthesized by the reaction between the industrial waste material (aluminosilicate) and a strong alkali activator, is a potential materials to mixing with MPCM. Especially, the effect of MPCM on the thermal and mechanical properties of geopolymer concrete (GPC) is very limited. In this study, high thermal energy storage capacity materials were fabricated by mixing MPCM into geopolymer concrete. This article would investigate the effect of MPCM concentration on thermal and mechanical properties of GPC. The target is to balance the effect of MPCM on improving the thermal performance and maintaining the compressive strength of the geopolymer concrete at an acceptable level for building application.Keywords: microencapsulated phase change materials, geopolymer concrete, energy storage capacity, thermal performance
Procedia PDF Downloads 3095291 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles
Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil
Abstract:
The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing
Procedia PDF Downloads 975290 Experimental and Computational Investigation of Flow Field and Thermal Behavior of a Mechanical Seal
Authors: Hossein Shokouhmand, Masoomeh Shadab, Rohallah Torabi
Abstract:
Turbulent flow inside the seal chamber of a pump operating at nearly high Reynolds number is investigated. A comparison of a 3-D computational model for flow and thermal analysis of a mechanical seal with experimental thermal results is presented. The computational model adequately predicts the flow field in the seal chamber and thermal characteristics with the rotating and stationary rings and the twister flow around the seal parts by solving N-S and energy equations in ANSYS-CFX software. The Reynolds stress model (RSM) is applied as a turbulence model for this purpose. Experimental work is discussed which quantifies the temperature of five different points of the working fluid in chamber, mass flow at inlet and the fluid pressure at inlet and outlet. Experimental measurements are combined with computational modeling to obtain local and average heat transfer characteristics. Numerical results of three cases including different flush rates are reported.Keywords: mechanical seal, CFD_CFX, reynolds stress model, flow field, heat transfer analysis, stream line, heat transfer coefficient, heat flux, nusselt
Procedia PDF Downloads 4405289 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue
Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni
Abstract:
Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM
Procedia PDF Downloads 3325288 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.Keywords: cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method
Procedia PDF Downloads 2005287 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 3135286 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 4165285 Designing and Costing the Concept of Servicer Satellites That Can Be Used to De-Orbit Space Debris
Authors: Paras Adlakha
Abstract:
Today the major threat to our existing and future satellites is space debris; the collision of bodies like defunct satellites with any other objects in space, including the new age ASAT (anti-satellite) weaponry system, are the main causes of the increasing amount of space debris every year. After analyzing the current situation of space debris, low earth orbit is found to be having a large density of debris as compared to any other orbit range; that's why it is selected as the target orbit for space debris removal mission. In this paper, the complete data of 24000 debris is studied based on size, altitude, inclination, mass, number of existing satellites threaten by each debris from which the rocket bodies are the type of wreckage found to be most suited for removal. The optimal method of active debris removal using a robotic arm for capturing the body to attach a de-orbit kit is used to move the debris from its orbit without making the actual contact of servicer with the debris to reduce the further the threat of collision with defunct material. The major factors which are brought into consideration while designing the concept of debris removal are tumbling, removal of debris under a low-cost mission and decreasing the factor of collisions during the mission.Keywords: de-orbit, debris, servicer, satellite, space junk
Procedia PDF Downloads 1395284 Dynamic Building Simulation Based Study to Understand Thermal Behavior of High-Rise Structural Timber Buildings
Authors: Timothy O. Adekunle, Sigridur Bjarnadottir
Abstract:
Several studies have investigated thermal behavior of buildings with limited studies focusing on high-rise buildings. Of the limited investigations that have considered thermal performance of high-rise buildings, only a few studies have considered thermal behavior of high-rise structural sustainable buildings. As a result, this study investigates the thermal behavior of a high-rise structural timber building. The study aims to understand the thermal environment of a high-rise structural timber block of apartments located in East London, UK by comparing the indoor environmental conditions at different floors (ground and upper floors) of the building. The environmental variables (temperature and relative humidity) were measured at 15-minute intervals for a few weeks in the summer of 2012 to generate data that was considered for calibration and validation of the simulated results. The study employed mainly dynamic thermal building simulation using DesignBuilder by EnergyPlus and supplemented with environmental monitoring as major techniques for data collection and analysis. The weather file (Test Reference Years- TRYs) for the 2000s from the weather generator carried out by the Prometheus Group was considered for the simulation since the study focuses on investigating thermal behavior of high-rise structural timber buildings in the summertime and not in extreme summertime. In this study, the simulated results (May-September of the 2000s) will be the focus of discussion, but the results will be briefly compared with the environmental monitoring results. The simulated results followed a similar trend with the findings obtained from the short period of the environmental monitoring at the building. The results revealed lower temperatures are often predicted (at least 1.1°C lower) at the ground floor than the predicted temperatures at the upper floors. The simulated results also showed that higher temperatures are predicted in spaces at southeast facing (at least 0.5°C higher) than spaces in other orientations across the floors considered. There is, however, a noticeable difference between the thermal environment of spaces when the results obtained from the environmental monitoring are compared with the simulated results. The field survey revealed higher temperatures were recorded in the living areas (at least 1.0°C higher) while higher temperatures are predicted in bedrooms (at least 0.9°C) than living areas for the simulation. In addition, the simulated results showed spaces on lower floors of high-rise structural timber buildings are predicted to provide more comfortable thermal environment than spaces on upper floors in summer, but this may not be the same in wintertime due to high upward movement of hot air to spaces on upper floors.Keywords: building simulation, high-rise, structural timber buildings, sustainable, temperatures, thermal behavior
Procedia PDF Downloads 177