Search results for: prediction interval
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3048

Search results for: prediction interval

2058 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 87
2057 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 242
2056 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section

Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert

Abstract:

Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.

Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics

Procedia PDF Downloads 261
2055 Indoor Temperature, Relative Humidity and CO₂ Level Assessment in a Publically Managed Hospital Building

Authors: Ayesha Asif, Muhammad Zeeshan

Abstract:

The sensitivity of hospital-microenvironments for all types of pollutants, due to the presence of patients with immune deficiencies, makes them complex indoor spaces. Keeping in view, this study investigated indoor air quality (IAQ) of two most sensitive places, i.e., operation theater (OT) and intensive care unit (ICU), of a publically managed hospital. Taking CO₂ concentration as air quality indicator and temperature (T) and relative humidity (RH) as thermal comfort parameters, continuous monitoring of the three variables was carried out. Measurements were recorded at an interval of 1 min for weekdays and weekends, including occupational and non-occupational hours. Outdoor T and RH measurements were also used in the analysis. Results show significant variation (p < 0.05) in CO₂, T and RH values over the day during weekdays while no significant variation (p > 0.05) have been observed during weekends of both the monitored sites. Maximum observed values of CO₂ in OT and ICU were found to be 2430 and 624 ppm, T as 24.7ºC and 28.9ºC and RH as 29.6% and 32.2% respectively.

Keywords: indoor air quality, CO₂ concentration, hospital building, comfort assessment

Procedia PDF Downloads 136
2054 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries

Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand

Abstract:

Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.

Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.

Procedia PDF Downloads 77
2053 Clinical and Analytical Performance of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase L1 Biomarkers for Traumatic Brain Injury in the Alinity Traumatic Brain Injury Test

Authors: Raj Chandran, Saul Datwyler, Jaime Marino, Daniel West, Karla Grasso, Adam Buss, Hina Syed, Zina Al Sahouri, Jennifer Yen, Krista Caudle, Beth McQuiston

Abstract:

The Alinity i TBI test is Therapeutic Goods Administration (TGA) registered and is a panel of in vitro diagnostic chemiluminescent microparticle immunoassays for the measurement of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) in plasma and serum. The Alinity i TBI performance was evaluated in a multi-center pivotal study to demonstrate the capability to assist in determining the need for a CT scan of the head in adult subjects (age 18+) presenting with suspected mild TBI (traumatic brain injury) with a Glasgow Coma Scale score of 13 to 15. TBI has been recognized as an important cause of death and disability and is a growing public health problem. An estimated 69 million people globally experience a TBI annually1. Blood-based biomarkers such as glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) have shown utility to predict acute traumatic intracranial injury on head CT scans after TBI. A pivotal study using prospectively collected archived (frozen) plasma specimens was conducted to establish the clinical performance of the TBI test on the Alinity i system. The specimens were originally collected in a prospective, multi-center clinical study. Testing of the specimens was performed at three clinical sites in the United States. Performance characteristics such as detection limits, imprecision, linearity, measuring interval, expected values, and interferences were established following Clinical and Laboratory Standards Institute (CLSI) guidance. Of the 1899 mild TBI subjects, 120 had positive head CT scan results; 116 of the 120 specimens had a positive TBI interpretation (Sensitivity 96.7%; 95% CI: 91.7%, 98.7%). Of the 1779 subjects with negative CT scan results, 713 had a negative TBI interpretation (Specificity 40.1%; 95% CI: 37.8, 42.4). The negative predictive value (NPV) of the test was 99.4% (713/717, 95% CI: 98.6%, 99.8%). The analytical measuring interval (AMI) extends from the limit of quantitation (LoQ) to the upper LoQ and is determined by the range that demonstrates acceptable performance for linearity, imprecision, and bias. The AMI is 6.1 to 42,000 pg/mL for GFAP and 26.3 to 25,000 pg/mL for UCH-L1. Overall, within-laboratory imprecision (20 day) ranged from 3.7 to 5.9% CV for GFAP and 3.0 to 6.0% CV for UCH-L1, when including lot and instrument variances. The Alinity i TBI clinical performance results demonstrated high sensitivity and high NPV, supporting the utility to assist in determining the need for a head CT scan in subjects presenting to the emergency department with suspected mild TBI. The GFAP and UCH-L1 assays show robust analytical performance across a broad concentration range of GFAP and UCH-L1 and may serve as a valuable tool to help evaluate TBI patients across the spectrum of mild to severe injury.

Keywords: biomarker, diagnostic, neurology, TBI

Procedia PDF Downloads 70
2052 Estimation of Stress-Strength Parameter for Burr Type XII Distribution Based on Progressive Type-II Censoring

Authors: A. M. Abd-Elfattah, M. H. Abu-Moussa

Abstract:

In this paper, the estimation of stress-strength parameter R = P(Y < X) is considered when X; Y the strength and stress respectively are two independent random variables of Burr Type XII distribution. The samples taken for X and Y are progressively censoring of type II. The maximum likelihood estimator (MLE) of R is obtained when the common parameter is unknown. But when the common parameter is known the MLE, uniformly minimum variance unbiased estimator (UMVUE) and the Bayes estimator of R = P(Y < X) are obtained. The exact con dence interval of R based on MLE is obtained. The performance of the proposed estimators is compared using the computer simulation.

Keywords: Burr Type XII distribution, progressive type-II censoring, stress-strength model, unbiased estimator, maximum-likelihood estimator, uniformly minimum variance unbiased estimator, confidence intervals, Bayes estimator

Procedia PDF Downloads 457
2051 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 137
2050 Measuring Enterprise Growth: Pitfalls and Implications

Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić

Abstract:

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises

Procedia PDF Downloads 253
2049 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 134
2048 The Use of Biofeedback to Increase Resilience and Mental Health of Supersonic Pilots

Authors: G. Kloudova, S. Kozlova, M. Stehlik

Abstract:

Pilots are operating in a high-risk environment rich in potential stressors, which negatively affect aviation safety and the mental health of pilots. In the research conducted, the pilots were offered mental training biofeedback therapy. Biofeedback is an objective tool to measure physiological responses to stress. After only six sessions, all of the pilots tested showed significant differences between their initial condition and their condition after therapy. The biggest improvement was found in decreased heart rate (in 83.3% of tested pilots) and respiration rate (66.7%), which are the best indicators of anxiety states and panic attacks. To incorporate all of the variables, we correlated the measured physiological state of the pilots with their personality traits. Surprisingly, we found a high correlation with peripheral temperature and confidence (0.98) and with heart rate and aggressiveness (0.97). A retest made after a one-year interval showed that in majority of the subjects tested their acquired self-regulation ability had been internalized.

Keywords: aviation, biofeedback, mental workload, performance psychology

Procedia PDF Downloads 251
2047 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 430
2046 Interval Functional Electrical Stimulation Cycling and Nutritional Counseling Improves Lean Mass to Fat Mass Ratio and Decreases Cardiometabolic Disease Risk in Individuals with Spinal Cord Injury

Authors: David Dolbow, Daniel Credeur, Mujtaba Rahimi, Dobrivoje Stokic, Jennifer Lemacks, Andrew Courtner

Abstract:

Introduction: Obesity is at epidemic proportions in the spinal cord injury (SCI) population (66-75%), as individuals who suffer from paralysis undergo a dramatic decrease in muscle mass and a dramatic increase in adipose deposition. Obesity is a major public health concern which includes a doubling of the risk of heart disease, stroke and type II diabetes mellitus. It has been demonstrated that physical activity, and especially HIIT, can promote a healthy body composition and decrease the risk cardiometabolic disease in the able-bodied population. However, SCI typically limits voluntary exercise to the arms, but a high prevalence of shoulder pain in persons with chronic SCI (60-90%) can cause increased arm exercise to be problematic. Functional electrical stimulation (FES) cycling has proven to be a safe and effective way to exercise paralyzed leg muscles in clinical and home settings, saving the often overworked arms. Yet, HIIT-FES cycling had not been investigated prior to the current study. The purpose of this study was to investigate the body composition changes with combined HIIT-FES cycling and nutritional counseling on individuals with SCI. Design: A matched (level of injury, time since injury, body mass index) and controlled trail. Setting: University exercise performance laboratory. Subjects: Ten individuals with chronic SCI (C5-T9) ASIA impairment classification (A & B) were divided into the treatment group (n=5) for 30 minutes of HIIT-FES cycling 3 times per week for 8 weeks and nutritional counseling over the phone for 30 minutes once per week for 8 weeks and the control group (n=5) who received nutritional counseling only. Results: There was a statistically significant difference between the HIIT-FES group and the control group in mean body fat percentage change (-1.14 to +0.24) respectively, p = .030). There was also a statistically significant difference between the HIIT-FES and control groups in mean change in legs lean mass (+0.78 kg to -1.5 kg) respectively, p = 0.004. There was a nominal decrease in weight, BMI, total fat mass and a nominal increase in total lean mass for the HIIT-FES group over the control group. However, these changes were not found to be statistically significant. Additionally, there was a nominal decrease in the mean blood glucose levels for both groups 101.8 to 97.8 mg/dl for the HIIT-FES group and 94.6 to 93 mg/dl for the Nutrition only group, however, neither were found to be statistically significant. Conclusion: HIIT-FES cycling combined with nutritional counseling can provide healthful body composition changes including decreased body fat percentage in just 8 weeks. Future study recommendations include a greater number of participants, a primer electrical stimulation exercise program to better ready participants for HIIT-FES cycling and a greater volume of training above 30 minutes, 3 times per week for 8 weeks.

Keywords: body composition, functional electrical stimulation cycling, high-intensity interval training, spinal cord injury

Procedia PDF Downloads 118
2045 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 133
2044 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction

Authors: C. S. Subhashini, H. L. Premaratne

Abstract:

Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.

Keywords: landslides, influencing factors, neural network model, hidden markov model

Procedia PDF Downloads 385
2043 Bubbling in Gas Solids Fluidization at a Strouhal Number Tuned for Low Energy Dissipation

Authors: Chenxi Zhang, Weizhong Qian, Fei Wei

Abstract:

Gas solids multiphase flow is common in many engineering and environmental applications. Turbulence and multiphase flows are two of the most challenging topics in fluid mechanics, and when combined they pose a formidable challenge, even in the dilute dispersed regime. Dimensionless numbers are important in mechanics because their constancy can imply dynamic similarity between systems, despite possible differences in medium or scale. In the fluid mechanics literature, the Strouhal number is usually associated with the dimensionless shedding frequency of a von Karman wake; here we introduce this dimensionless number to investigate bubbling in gas solids fluidization. St=fA/U, which divides stroke frequency (f) and amplitude (A) by forward speed (U). The bubble behavior in a large two-dimensional bubbling fluidized bed (500mm×30mm×6000mm) is investigated. Our result indicates that propulsive efficiency is high and energy dissipation is low over a narrow range of St and usually within the interval 0.2Keywords: bubbles, Strouhal number, two-phase flow, energy dissipation

Procedia PDF Downloads 249
2042 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging

Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie

Abstract:

To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.

Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction

Procedia PDF Downloads 184
2041 Abridging Pharmaceutical Analysis and Drug Discovery via LC-MS-TOF, NMR, in-silico Toxicity-Bioactivity Profiling for Therapeutic Purposing Zileuton Impurities: Need of Hour

Authors: Saurabh B. Ganorkar, Atul A. Shirkhedkar

Abstract:

The need for investigations protecting against toxic impurities though seems to be a primary requirement; the impurities which may prove non - toxic can be explored for their therapeutic potential if any to assist advanced drug discovery. The essential role of pharmaceutical analysis can thus be extended effectively to achieve it. The present study successfully achieved these objectives with characterization of major degradation products as impurities for Zileuton which has been used for to treat asthma since years. The forced degradation studies were performed to identify the potential degradation products using Ultra-fine Liquid-chromatography. Liquid-chromatography-Mass spectrometry (Time of Flight) and Proton Nuclear Magnetic Resonance Studies were utilized effectively to characterize the drug along with five major oxidative and hydrolytic degradation products (DP’s). The mass fragments were identified for Zileuton and path for the degradation was investigated. The characterized DP’s were subjected to In-Silico studies as XP Molecular Docking to compare the gain or loss in binding affinity with 5-Lipooxygenase enzyme. One of the impurity of was found to have the binding affinity more than the drug itself indicating for its potential to be more bioactive as better Antiasthmatic. The close structural resemblance has the ability to potentiate or reduce bioactivity and or toxicity. The chances of being active biologically at other sites cannot be denied and the same is achieved to some extent by predictions for probability of being active with Prediction of Activity Spectrum for Substances (PASS) The impurities found to be bio-active as Antineoplastic, Antiallergic, and inhibitors of Complement Factor D. The toxicological abilities as Ames-Mutagenicity, Carcinogenicity, Developmental Toxicity and Skin Irritancy were evaluated using Toxicity Prediction by Komputer Assisted Technology (TOPKAT). Two of the impurities were found to be non-toxic as compared to original drug Zileuton. As the drugs are purposed and repurposed effectively the impurities can also be; as they can have more binding affinity; less toxicity and better ability to be bio-active at other biological targets.

Keywords: UFLC, LC-MS-TOF, NMR, Zileuton, impurities, toxicity, bio-activity

Procedia PDF Downloads 196
2040 Advanced Real-Time Fluorescence Imaging System for Rat's Femoral Vein Thrombosis Monitoring

Authors: Sang Hun Park, Chul Gyu Song

Abstract:

Artery and vein occlusion changes observed in patients and experimental animals are unexplainable symptoms. As the fat accumulated in cardiovascular ruptures, it causes vascular blocking. Likewise, early detection of cardiovascular disease can be useful for treatment. In this study, we used the mouse femoral occlusion model to observe the arterial and venous occlusion changes without darkroom. We observed the femoral arterial flow pattern changes by proposed fluorescent imaging system using an animal model of thrombosis. We adjusted the near-infrared light source current in order to control the intensity of the fluorescent substance light. We got the clear fluorescent images and femoral artery flow pattern were measured by a 5-minute interval. The result showed that the fluorescent substance flowing in the femoral arteries were accumulated in thrombus as time passed, and the fluorescence of other vessels gradually decreased.

Keywords: thrombus, fluorescence, femoral, arteries

Procedia PDF Downloads 344
2039 On One New Solving Approach of the Plane Mixed Problem for an Elastic Semistrip

Authors: Natalia D. Vaysfel’d, Zinaida Y. Zhuravlova

Abstract:

The loaded plane elastic semistrip, the lateral boundaries of which are fixed, is considered. The integral transformations are applied directly to Lame’s equations. It leads to one dimensional boundary value problem in the transformations’ domain which is formulated as a vector one. With the help of the matrix differential calculation’s apparatus and apparatus of Green matrix function the exact solution of a vector problem is constructed. After the satisfying the boundary condition at the semi strip’s edge the problem is reduced to the solving of the integral singular equation with regard of the unknown stress at the semis trip’s edge. The equation is solved with the orthogonal polynomials method that takes into consideration the real singularities of the solution at the ends of integration interval. The normal stress at the edge of the semis trip were calculated and analyzed.

Keywords: semi strip, Green's Matrix, fourier transformation, orthogonal polynomials method

Procedia PDF Downloads 433
2038 Preparation and Characterization of Electrospun CdTe Quantum Dots / Nylon-6 Nanofiber Mat

Authors: Negar Mesgara, Laleh Maleknia

Abstract:

In this paper, electrospun CdTe quantum dot / nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by FE-SEM, XRD and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The phenomenon of ‘on ‘ and ‘off ‘ luminescence intermittency (blinking) of CdTe QDs in nylon-6 was investigated by single-molecule optical microscopy, and we identified that the intermittencies of single QDs were correlated with the interaction of water molecules absorbed on the QD surface. The ‘off’ times, the interval between adjacent ‘on’ states, remained essentially unaffected with an increase in excitation intensity. In the case of ‘on’ time distribution, power law behavior with an exponential cutoff tail is observed at longer time scales. These observations indicate that the luminescence blinking statistics of water-soluble single CdTe QDs is significantly dependent on the aqueous environment, which is interpreted in terms of passivation of the surface trap states of QDs.

Keywords: electrospinning, CdTe quantum dots, Nylon-6, Nanocomposite

Procedia PDF Downloads 435
2037 Industrial Assessment of the Exposed Rocks on Peris Anticline Kurdistan Region of Iraq for Cement Industry

Authors: Faroojan Khajeek Sisak Siakian, Aayda Dikran Abdulahad

Abstract:

The Peris Mountain is one of the main mountains in the Iraqi Kurdistan Region, it forms one of the long anticlines trending almost East – West. The exposed formations on the top of the mountain are Bekhme, and Shiranish, with carbonate rocks of different types and thicknesses. We selected the site for sampling to be relevant for a quarry taking into consideration the thickness of the exposed rocks, no overburden, favorable quarrying faces, hardness of the rocks, bedding nature, good extension of the outcrops, and a favorable place for construction of a cement plant. We sampled the exposed rocks on the top of the mountain where a road crosses the mountain, and a total of 15 samples were collected. The distance between sampling intervals was 5 m, and each sample was collected to represent the sampling interval. The samples were subjected to X-ray fluorescence spectroscopy (XRF) to indicate the main oxides percentages in each sample. The acquired results showed the studied rocks can be used in the cement industry.

Keywords: limestone, quarry, CaO, MgO, overburden

Procedia PDF Downloads 93
2036 Comparison of Different Reanalysis Products for Predicting Extreme Precipitation in the Southern Coast of the Caspian Sea

Authors: Parvin Ghafarian, Mohammadreza Mohammadpur Panchah, Mehri Fallahi

Abstract:

Synoptic patterns from surface up to tropopause are very important for forecasting the weather and atmospheric conditions. There are many tools to prepare and analyze these maps. Reanalysis data and the outputs of numerical weather prediction models, satellite images, meteorological radar, and weather station data are used in world forecasting centers to predict the weather. The forecasting extreme precipitating on the southern coast of the Caspian Sea (CS) is the main issue due to complex topography. Also, there are different types of climate in these areas. In this research, we used two reanalysis data such as ECMWF Reanalysis 5th Generation Description (ERA5) and National Centers for Environmental Prediction /National Center for Atmospheric Research (NCEP/NCAR) for verification of the numerical model. ERA5 is the latest version of ECMWF. The temporal resolution of ERA5 is hourly, and the NCEP/NCAR is every six hours. Some atmospheric parameters such as mean sea level pressure, geopotential height, relative humidity, wind speed and direction, sea surface temperature, etc. were selected and analyzed. Some different type of precipitation (rain and snow) was selected. The results showed that the NCEP/NCAR has more ability to demonstrate the intensity of the atmospheric system. The ERA5 is suitable for extract the value of parameters for specific point. Also, ERA5 is appropriate to analyze the snowfall events over CS (snow cover and snow depth). Sea surface temperature has the main role to generate instability over CS, especially when the cold air pass from the CS. Sea surface temperature of NCEP/NCAR product has low resolution near coast. However, both data were able to detect meteorological synoptic patterns that led to heavy rainfall over CS. However, due to the time lag, they are not suitable for forecast centers. The application of these two data is for research and verification of meteorological models. Finally, ERA5 has a better resolution, respect to NCEP/NCAR reanalysis data, but NCEP/NCAR data is available from 1948 and appropriate for long term research.

Keywords: synoptic patterns, heavy precipitation, reanalysis data, snow

Procedia PDF Downloads 124
2035 A New Concept for Deriving the Expected Value of Fuzzy Random Variables

Authors: Liang-Hsuan Chen, Chia-Jung Chang

Abstract:

Fuzzy random variables have been introduced as an imprecise concept of numeric values for characterizing the imprecise knowledge. The descriptive parameters can be used to describe the primary features of a set of fuzzy random observations. In fuzzy environments, the expected values are usually represented as fuzzy-valued, interval-valued or numeric-valued descriptive parameters using various metrics. Instead of the concept of area metric that is usually adopted in the relevant studies, the numeric expected value is proposed by the concept of distance metric in this study based on two characters (fuzziness and randomness) of FRVs. Comparing with the existing measures, although the results show that the proposed numeric expected value is same with those using the different metric, if only triangular membership functions are used. However, the proposed approach has the advantages of intuitiveness and computational efficiency, when the membership functions are not triangular types. An example with three datasets is provided for verifying the proposed approach.

Keywords: fuzzy random variables, distance measure, expected value, descriptive parameters

Procedia PDF Downloads 345
2034 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction

Authors: Joy Cao, Min Zhou

Abstract:

Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.

Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.

Procedia PDF Downloads 91
2033 Synchronization of a Perturbed Satellite Attitude Motion

Authors: Sadaoui Djaouida

Abstract:

In this paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.

Keywords: predictive control, synchronization, satellite attitude, control engineering

Procedia PDF Downloads 556
2032 Fractal Analysis of Polyacrylamide-Graphene Oxide Composite Gels

Authors: Gülşen Akın Evingür, Önder Pekcan

Abstract:

The fractal analysis is a bridge between the microstructure and macroscopic properties of gels. Fractal structure is usually provided to define the complexity of crosslinked molecules. The complexity in gel systems is described by the fractal dimension (Df). In this study, polyacrylamide- graphene oxide (GO) composite gels were prepared by free radical crosslinking copolymerization. The fractal analysis of polyacrylamide- graphene oxide (GO) composite gels were analyzed in various GO contents during gelation and were investigated by using Fluorescence Technique. The analysis was applied to estimate Df s of the composite gels. Fractal dimension of the polymer composite gels were estimated based on the power law exponent values using scaling models. In addition, here we aimed to present the geometrical distribution of GO during gelation. And we observed that as gelation proceeded GO plates first organized themselves into 3D percolation cluster with Df=2.52, then goes to diffusion limited clusters with Df =1.4 and then lines up to Von Koch curve with random interval with Df=1.14. Here, our goal is to try to interpret the low conductivity and/or broad forbidden gap of GO doped PAAm gels, by the distribution of GO in the final form of the produced gel.

Keywords: composite gels, fluorescence, fractal, scaling

Procedia PDF Downloads 309
2031 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China

Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li

Abstract:

Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.

Keywords: heterogeneity, homogeneous unit, multiscale, shale

Procedia PDF Downloads 455
2030 Thermal Degradation Kinetics of Field-Dried and Pelletized Switchgrass

Authors: Karen E. Supan

Abstract:

Thermal degradation kinetics of switchgrass (Panicum virgatum) from the field, as well as in a pellet form, are presented. Thermogravimetric analysis tests were performed at heating rates of 10-40 K min⁻¹ in an inert atmosphere. The activation energy and the pre-exponential factor were calculated using the Ozawa/Flynn/Wall method as suggested by the ASTM Standard Test Method for Decomposition Kinetics by Thermogravimetry. Four stages were seen in the degradation: dehydration, active pyrolysis of hemicellulose, active pyrolysis of cellulose, and passive pyrolysis. The derivative mass loss peak for active pyrolysis of cellulose in the field-dried sample was much higher than the pelletized. The range of activation energy in the 0.15 – 0.70 conversion interval was 191 – 242 kJ mol⁻¹ for the field-dried and 130-192 kJ mol⁻¹ for the pellets. The highest activation energies were achieved at 0.50 conversion and were 242 kJ mol⁻¹ and 192 kJ mol⁻¹ for the field-dried and pellets, respectively. The thermal degradation and activation energies were comparable to switchgrass and other biomass reported in the literature.

Keywords: biomass, switchgrass, thermal degradation, thermogravimetric analysis

Procedia PDF Downloads 119
2029 Extractive Desulfurization of Atmospheric Gasoil with N,N-Dimethylformamide

Authors: Kahina Bedda, Boudjema Hamada

Abstract:

Environmental regulations have been introduced in many countries around the world to reduce the sulfur content of diesel fuel to ultra low levels with the intention of lowering diesel engine’s harmful exhaust emissions and improving air quality. Removal of sulfur containing compounds from diesel feedstocks to produce ultra low sulfur diesel fuel by extraction with selective solvents has received increasing attention in recent years. This is because the sulfur extraction technologies compared to the hydrotreating processes could reduce the cost of desulfurization substantially since they do not demand hydrogen, and are carried out at atmospheric pressure. In this work, the desulfurization of distillate gasoil by liquid-liquid extraction with N, N-dimethylformamide was investigated. This fraction was recovered from a mixture of Hassi Messaoud crude oils and Hassi R'Mel gas-condensate in Algiers refinery. The sulfur content of this cut is 281 ppm. Experiments were performed in six-stage with a ratio of solvent:feed equal to 3:1. The effect of the extraction temperature was investigated in the interval 30 ÷ 110°C. At 110°C the yield of refined gas oil was 82% and its sulfur content was 69 ppm.

Keywords: desulfurization, gasoil, N, N-dimethylformamide, sulfur content

Procedia PDF Downloads 387