Search results for: decorative patterns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2893

Search results for: decorative patterns

1903 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
1902 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 387
1901 Geotechnical Distress Evaluation of a Damaged Structure

Authors: Zulfiqar Ali, Umar Saleem, Muhammad Junaid, Rizwan Tahir

Abstract:

Gulzar Mahal is a heritage site located in the city of Bahawalpur, Pakistan. The site is under a process of degradation, as cracks are appearing on the walls, roofs, and floor around the building due to differential settlement. To preserve the integrity of the structure, a geotechnical distress evaluation was carried out to evaluate the causal factors and recommend remediation measures. The research involved the characterization of the problematic soil and analysis of the observed distress with respect to the geotechnical properties. Both conventional lab and field tests were used in conjunction with the unconventional techniques like; Electrical Resistivity Tomography (ERT) and FEA. The temporal, geophysical and geotechnical evaluations have concluded that the foundation soil over the past was subjected to variations in the land use, poor drainage patterns, overloading and fluctuations in groundwater table all contributing to the differential settlements manifesting in the form of the visible shear crack across the length and breadth of the building.

Keywords: differential settlement, distress evaluation, finite element analysis, Gulzar Mahal

Procedia PDF Downloads 127
1900 Research on Energy-Related Occupant Behavior of Residential Air Conditioning Based on Zigbee Intelligent Electronic Equipment

Authors: Dawei Xia, Benyan Jiang, Yong Li

Abstract:

Split-type air conditioners is widely used for indoor temperature regulation in urban residential buildings in summer in China. The energy-related occupant behavior has a great impact on building energy consumption. Obtaining the energy-related occupant behavior data of air conditioners is the research basis for the energy consumption prediction and simulation. Relying on the development of sensing and control technology, this paper selects Zigbee intelligent electronic equipment to monitor the energy-related occupant behavior of 20 households for 3 months in summer. Through analysis of data, it is found that people of different ages in the region have significant difference in the time, duration, frequency, and energy consumption of air conditioners, and form a data model of three basic energy-related occupant behavior patterns to provide an accurate simulation of energy.

Keywords: occupant behavior, Zigbee, split air conditioner, energy simulation

Procedia PDF Downloads 195
1899 Strategic Planning Practice in a Global Perspective:the Case of Guangzhou, China

Authors: Shuyi Xie

Abstract:

As the vital city in south China since the ancient time, Guangzhou has been losing its leading role among the rising neighboring cities, especially, Hong Kong and Shenzhen, since the late 1980s, with the overloaded infrastructure and deteriorating urban environment in its old inner city. Fortunately, with the new expansion of its administrative area in 2000, the local municipality considered it as a great opportunity to solve a series of alarming urban problems. Thus, for the first time, strategic planning was introduced to China for providing more convincing and scientific basis towards better urban future. Differed from traditional Chinese planning practices, which rigidly and dogmatically focused on future blueprints, the strategic planning of Guangzhou proceeded from analyzing practical challenges and opportunities towards establishing reasonable developing objectives and proposing corresponding strategies. Moreover, it was pioneering that the municipality invited five planning institutions for proposals, among which, the paper focuses on the one proposed by China Academy of Urban Planning & Design from its theoretical basis to problems’ defining and analyzing the process, as well as planning results. Since it was closer to the following municipal decisions and had a more far-reaching influence for other Chinese cities' following practices. In particular, it demonstrated an innovative exploration on the role played by urban developing rate on deciding urban growth patterns (‘Spillover-reverberation’ or ‘Leapfrog’). That ultimately established an unprecedented paradigm on deciding an appropriate urban spatial structure in future, including its specific location, function and scale. Besides the proposal itself, this article highlights the role of interactions, among actors, as well as proposals, subsequent discussions, summaries and municipal decisions, especially the establishment of the rolling dynamic evaluation system for periodical reviews on implementation situations, as the first attempt in China. Undoubtedly, strategic planning of Guangzhou has brought out considerable benefits, especially opening the strategic mind for plentiful Chinese cities in the following years through establishing a flexible and dynamic planning mechanism highlighted the interactions among multiple actors with innovative and effective tools, methodologies and perspectives on regional, objective-approach and comparative analysis. However, compared with some developed countries, the strategic planning in China just started and has been greatly relied on empirical studies rather than scientific analysis. Moreover, it still faced a bit of controversy, for instance, the certain gap among institutional proposals, final municipal decisions and implemented results, due to the lacking legal constraint. Also, how to improve the public involvement in China with an absolute up-down administrative system is another urgent task. In future, despite of irresistible and irretrievable weakness, some experiences and lessons from previous international practices, with the combination of specific Chinese situations and domestic practices, would enable to promote the further advance on strategic planning in China.

Keywords: evaluation system, global perspective, Guangzhou, interactions, strategic planning, urban growth patterns

Procedia PDF Downloads 389
1898 Visual Overloaded on User-Generated Content by the Net Generation: Participatory Cultural Viewpoint

Authors: Hasanah Md. Amin

Abstract:

The existence of cyberspace and its growing contents is real and overwhelming. Visual as one of the properties of cyber contents is increasingly becoming more significant and popular among creator and user. The visual and aesthetic of the content is consistent with many similarities. Aesthetic, although universal, has slight differences across the world. Aesthetic power could impress, influence, and cause bias among the users. The content creator who knows how to manipulate this visuals and aesthetic expression can dominate the scenario and the user who is ‘expressive literate’ will gain much from the scenes. User who understands aesthetic will be rewarded with competence, confidence, and certainly, a personality enhanced experience in carrying out a task when participating in this chaotic but promising cyberworld. The aim of this article is to gain knowledge from related literature and research regarding User-Generated Content (UGC), which focuses on aesthetic expression by the Net generation. The objective of this preliminary study is to analyze the aesthetic expression linked to visual from the participatory cultural viewpoint looking for meaning, value, patterns, and characteristics.

Keywords: visual overloaded, user-generated content, net generation, visual arts

Procedia PDF Downloads 438
1897 Uncertainty of the Brazilian Earth System Model for Solar Radiation

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data ​​of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.

Keywords: climate changes, projections, solar radiation, uncertainty

Procedia PDF Downloads 249
1896 Morphometric Relationships of Unfarmed Puntius sophore, Collected from Chenab River, Punjab, Pakistan

Authors: Alina Zafar

Abstract:

In this particular research, various morphometric characters such as total length (TL), wet weight (WW), standard length (SL), fork length (FL), head length (HL), head width (HW), body depth (BD), body girth (BG), dorsal fin length (DFL), pelvic fin length (PelFL), pectoral fin length (PecFL), anal fin length (AFL), dorsal fin base (DFB), anal fin base (AFB), caudal fin length (CFL) and caudal fin width (CFW) of wild collected Puntius sophore were studied, to know the types of growth patterns and correlations in reference to length and weight, however, high significant relationships were recorded between total length and wet weight, as the correlation coefficient (r) possessed value of 0.989. The growth pattern was observed to be positively allometric as the value of ‘b’ was 3.22 (slightly higher than the ideal value, 3) with 95% confidence intervals ranging from 3.076 to 3.372. Wet weight and total length parameters showed high significant correlations (p < 0.001) with all other morphometric characters.

Keywords: Puntius sophore, length and weight relation, morphometrics, small indigenous species

Procedia PDF Downloads 103
1895 Exploring Electroactive Polymers for Dynamic Data Physicalization

Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel

Abstract:

Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.

Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization

Procedia PDF Downloads 96
1894 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 128
1893 Reading in Multiple Arabic's: Effects of Diglossia and Orthography

Authors: Aula Khatteb Abu-Liel

Abstract:

The study investigated the effects of diglossia and orthography on reading in Arabic, manipulating reading in Spoken Arabic (SA), using Arabizi, in which it is written using Latin letters on computers/phones, and the two forms of the conventional written form Modern Standard Arabic (MSA): vowelled (shallow) and unvowelled (deep). 77 skilled readers in 8th grade performed oral reading of single words and narrative and expository texts, and silent reading comprehension of both genres of text. Oral reading and comprehension revealed different patterns. Single words and texts were read faster and more accurately in unvoweled MSA, slowest and least accurately in vowelled MSA, and in-between in Arabizi. Comprehension was highest for vowelled MSA. Narrative texts were better than expository texts in Arabizi with the opposite pattern in MSA. The results suggest that frequency of the type of texts and the way in which phonology is encoded affect skilled reading.

Keywords: Arabic, Arabize, computer mediated communication, diglossia, modern standard Arabic

Procedia PDF Downloads 162
1892 Finite Element Modeling Techniques of Concrete in Steel and Concrete Composite Members

Authors: J. Bartus, J. Odrobinak

Abstract:

The paper presents a nonlinear analysis 3D model of composite steel and concrete beams with web openings using the Finite Element Method (FEM). The core of the study is the introduction of basic modeling techniques comprehending the description of material behavior, appropriate elements selection, and recommendations for overcoming problems with convergence. Results from various finite element models are compared in the study. The main objective is to observe the concrete failure mechanism and its influence on the structural performance of numerical models of the beams at particular load stages. The bearing capacity of beams, corresponding deformations, stresses, strains, and fracture patterns were determined. The results show how load-bearing elements consisting of concrete parts can be analyzed using FEM software with various options to create the most suitable numerical model. The paper demonstrates the versatility of Ansys software usage for structural simulations.

Keywords: Ansys, concrete, modeling, steel

Procedia PDF Downloads 121
1891 Critical Pedagogy and Literacy Development

Authors: Rajendra Chetty

Abstract:

This paper analyses the experiences of teachers of literacy in underprivileged schools in the Western Cape, South Africa. The purpose is to provide teachers in poorly resourced schools within economically deprived areas an opportunity to voice their experiences of teaching literacy. The paper is based on an empirical study using interviews and classroom observation. A descriptive account of the observation data was followed by an interpretive analysis. The content analysis of the interview data led to the development of themes and patterns for the discussion. The study reveals key factors for literacy underachievement that include lack of critical and emancipatory pedagogies, resources, parental support, lack of teacher knowledge, absence of cognitive activities, and the social complexity of poverty. The paper recommends that a new model of literacy that is underpinned by critical pedagogy challenge inequality and provides strategic and sustained teacher support in disadvantaged schools is crucial in a society emerging from oppression and racism.

Keywords: critical pedagogy, disadvantaged schools, literacy, poverty

Procedia PDF Downloads 109
1890 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 57
1889 Dual Role of Microalgae: Carbon Dioxide Capture Nutrients Removal

Authors: Mohamad Shurair, Fares Almomani, Simon Judd, Rahul Bhosale, Anand Kumar, Ujjal Gosh

Abstract:

This study evaluated the use of mixed indigenous microalgae (MIMA) as a treatment process for wastewaters and CO2 capturing technology at different temperatures. The study follows the growth rate of MIMA, removals of organic matter, removal of nutrients from synthetic wastewater and its effectiveness as CO2 capturing technology from flue gas. A noticeable difference between the growth patterns of MIMA was observed at different CO2 and different operational temperatures. MIMA showed the highest growth grate when injected with CO2 dosage of 10% and limited growth was observed for the systems injected with 5% and 15 % of CO2 at 30 ◦C. Ammonia and phosphorus removals for Spirulina were 69%, 75%, and 83%, and 20%, 45%, and 75% for the media injected with 0, 5 and 10% CO2. The results of this study show that simple and cost-effective microalgae-based wastewater treatment systems can be successfully employed at different temperatures as a successful CO2 capturing technology even with the small probability of inhibition at high temperatures

Keywords: greenhouse, climate change, CO2 capturing, green algae

Procedia PDF Downloads 332
1888 Distribution System Planning with Distributed Generation and Capacitor Placements

Authors: Nattachote Rugthaicharoencheep

Abstract:

This paper presents a feeder reconfiguration problem in distribution systems. The objective is to minimize the system power loss and to improve bus voltage profile. The optimization problem is subjected to system constraints consisting of load-point voltage limits, radial configuration format, no load-point interruption, and feeder capability limits. A method based on genetic algorithm, a search algorithm based on the mechanics of natural selection and natural genetics, is proposed to determine the optimal pattern of configuration. The developed methodology is demonstrated by a 33-bus radial distribution system with distributed generations and feeder capacitors. The study results show that the optimal on/off patterns of the switches can be identified to give the minimum power loss while respecting all the constraints.

Keywords: network reconfiguration, distributed generation capacitor placement, loss reduction, genetic algorithm

Procedia PDF Downloads 174
1887 First-Person Pronoun Pragmatic Functions in Three Historical Chinese Texts

Authors: Cher Leng Lee

Abstract:

The existence of multiple first-person pronouns (1PPs) in classical Chinese is an issue that has not been resolved despite linguists using the grammatical perspective. This paper proposes pragmatics as a viable solution. There is also a lack of research exploring the evolving usage patterns of 1PPs within the historical context of Chinese language use. Such research can help us comprehend the changes and developments of these linguistic elements. To fill these research gaps, we use the diachronic pragmatics approach to contrast the functions of Chinese 1PPs in three representative texts from three different historical periods: The Analects (The Spring and Autumn Period), The Grand Scribe’s Records (Grand Records) (Qin and Han Period), and A New Account of Tales of the World (New Account) (The Wei, Jin and Southern and Northern Period). The 1PPs of these texts are manually identified and classified according to the pragmatic functions in the given contexts to observe their historical changes, understand the factors that contribute to these changes, and provide possible answers to the development of how wo became the only 1PP in today’s spoken Mandarin.

Keywords: Chinese language, classical Chinese, historical linguistics, pragmatics, first-person pronouns

Procedia PDF Downloads 22
1886 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach

Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas

Abstract:

Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.

Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)

Procedia PDF Downloads 72
1885 Interpretation and Clustering Framework for Analyzing ECG Survey Data

Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif

Abstract:

As Indo-Pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.

Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix

Procedia PDF Downloads 469
1884 Integrative Omics-Portrayal Disentangles Molecular Heterogeneity and Progression Mechanisms of Cancer

Authors: Binder Hans

Abstract:

Cancer is no longer seen as solely a genetic disease where genetic defects such as mutations and copy number variations affect gene regulation and eventually lead to aberrant cell functioning which can be monitored by transcriptome analysis. It has become obvious that epigenetic alterations represent a further important layer of (de-)regulation of gene activity. For example, aberrant DNA methylation is a hallmark of many cancer types, and methylation patterns were successfully used to subtype cancer heterogeneity. Hence, unraveling the interplay between different omics levels such as genome, transcriptome and epigenome is inevitable for a mechanistic understanding of molecular deregulation causing complex diseases such as cancer. This objective requires powerful downstream integrative bioinformatics methods as an essential prerequisite to discover the whole genome mutational, transcriptome and epigenome landscapes of cancer specimen and to discover cancer genesis, progression and heterogeneity. Basic challenges and tasks arise ‘beyond sequencing’ because of the big size of the data, their complexity, the need to search for hidden structures in the data, for knowledge mining to discover biological function and also systems biology conceptual models to deduce developmental interrelations between different cancer states. These tasks are tightly related to cancer biology as an (epi-)genetic disease giving rise to aberrant genomic regulation under micro-environmental control and clonal evolution which leads to heterogeneous cellular states. Machine learning algorithms such as self organizing maps (SOM) represent one interesting option to tackle these bioinformatics tasks. The SOMmethod enables recognizing complex patterns in large-scale data generated by highthroughput omics technologies. It portrays molecular phenotypes by generating individualized, easy to interpret images of the data landscape in combination with comprehensive analysis options. Our image-based, reductionist machine learning methods provide one interesting perspective how to deal with massive data in the discovery of complex diseases, gliomas, melanomas and colon cancer on molecular level. As an important new challenge, we address the combined portrayal of different omics data such as genome-wide genomic, transcriptomic and methylomic ones. The integrative-omics portrayal approach is based on the joint training of the data and it provides separate personalized data portraits for each patient and data type which can be analyzed by visual inspection as one option. The new method enables an integrative genome-wide view on the omics data types and the underlying regulatory modes. It is applied to high and low-grade gliomas and to melanomas where it disentangles transversal and longitudinal molecular heterogeneity in terms of distinct molecular subtypes and progression paths with prognostic impact.

Keywords: integrative bioinformatics, machine learning, molecular mechanisms of cancer, gliomas and melanomas

Procedia PDF Downloads 148
1883 Irrigation Water Quality Evaluation in Jiaokou Irrigation District, Guanzhong Basin

Authors: Qiying Zhang, Panpan Xu, Hui Qian

Abstract:

Groundwater is an important water resource in the world, especially in arid and semi-arid regions. In the present study, 141 groundwater samples were collected and analyzed for various physicochemical parameters to assess the irrigation water quality using six indicators (sodium percentage (Na%), sodium adsorption ratio (SAR), magnesium hazard (MH), residual sodium carbonate (RSC), permeability index (PI), and potential salinity (PS)). The results show that the patterns for the average cation and anion concentrations were in decreasing orders of Na > Mg2 > Ca2 > Kand SO42 > HCO3 > Cl > NO3 > CO32 > F, respectively. The values of Na%, MH, and PS show that most of the groundwater samples are not suitable for irrigation. The same conclusion is drawn from the USSL and Wilcox diagrams. PS values indicate that Cland SO42have a great influence on irrigation water in Jiaokou Irrigation District. RSC and PI values indicate that more than half of groundwater samples are suitable for irrigation. The finding is beneficial for the policymakers for future water management schemes to achieve a sustainable development goal.

Keywords: groundwater chemistry, Guanzhong Basin, irrigation water quality evaluation, Jiaokou Irrigation District

Procedia PDF Downloads 208
1882 Maximizing Coverage with Mobile Crime Cameras in a Stochastic Spatiotemporal Bipartite Network

Authors: (Ted) Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup

Abstract:

This research details a coverage measure for evaluating the effectiveness of observer node placements in a spatial bipartite network. This coverage measure can be used to optimize the configuration of stationary or mobile spatially oriented observer nodes, or a hybrid of the two, over time in order to fully utilize their capabilities. To demonstrate the practical application of this approach, we construct a SpatioTemporal Bipartite Network (STBN) using real-time crime center (RTCC) camera nodes and NOPD calls for service (CFS) event nodes from New Orleans, La (NOLA). We use the coverage measure to identify optimal placements for moving mobile RTCC camera vans to improve coverage of vulnerable areas based on temporal patterns.

Keywords: coverage measure, mobile node dynamics, Monte Carlo simulation, observer nodes, observable nodes, spatiotemporal bipartite knowledge graph, temporal spatial analysis

Procedia PDF Downloads 113
1881 Greening the Academic Library: Analysis of the Effectiveness of Sustainable Online Services Towards Reducing the Environmental Impact of Academic Libraries

Authors: George Clifford Yamson

Abstract:

As institutions across the world become more focused on sustainability, academic libraries are considering ways to reduce their environmental impact. One strategy is the use of sustainable online services, which can reduce the need for physical materials and transportation. This study aims to analyze the effectiveness of sustainable online services in reducing the environmental impact of academic libraries. Using a mixed-methods approach, the survey will be used to solicit information from library staff and users to gather data on their attitudes towards sustainable online services and their usage patterns. A comparative analysis will be conducted on the costs of traditional library services versus sustainable online services. The findings of this study will contribute to the growing body of literature on green academic libraries and provide insights into the potential of sustainable online services to reduce the environmental impact of academic libraries.

Keywords: sustainability, environmental sustainability, academic libraries, green printing, green copying, online services

Procedia PDF Downloads 78
1880 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 115
1879 Achievement Goal Orientations of Schooling Adolescents in Bayelsa State, Nigeria: Implications for Sustainable Development

Authors: Iniye Irene Wodi, Allen A. Agih

Abstract:

Goal theory perspective as an emerging trend in students’ motivation explores reasons why students engage in achievement related behaviour. While previous research typifies students’ goal orientations into two dimensions of mastery and performance orientations in various other parts of the world, not much has been done in this regard in Nigeria and specifically in Bayelsa state to the best of the researcher’s knowledge. To this end, the study explores the achievement goal orientations of schooling adolescents in Bayelsa State. The sample of the study consists of 220 schooling adolescents drawn from four urban schools in the state. A modified form of the Patterns of Adaptive learning survey (PALS) questionnaire was used to elicit data. Results indicated that schooling adolescents in Bayelsa state are mastery as well as performance oriented. The students also did not differ in goal orientations by gender. The implications of this for sustainable development were highlighted.

Keywords: achievement goals, goal orientations, schooling adolescents, sustainable development

Procedia PDF Downloads 274
1878 Research on Urban Point of Interest Generalization Method Based on Mapping Presentation

Authors: Chengming Li, Yong Yin, Peipei Guo, Xiaoli Liu

Abstract:

Without taking account of the attribute richness of POI (point of interest) data and spatial distribution limited by roads, a POI generalization method considering both attribute information and spatial distribution has been proposed against the existing point generalization algorithm merely focusing on overall information of point groups. Hierarchical characteristic of urban POI information expression has been firstly analyzed to point out the measurement feature of the corresponding hierarchy. On this basis, an urban POI generalizing strategy has been put forward: POIs urban road network have been divided into three distribution pattern; corresponding generalization methods have been proposed according to the characteristic of POI data in different distribution patterns. Experimental results showed that the method taking into account both attribute information and spatial distribution characteristics of POI can better implement urban POI generalization in the mapping presentation.

Keywords: POI, road network, selection method, spatial information expression, distribution pattern

Procedia PDF Downloads 410
1877 Counseling Ethics in Turkish Counseling Programs

Authors: Umut Arslan, John Sommers Flanagan

Abstract:

The purpose of this study was to investigate qualifications of ethics training in counselor education programs in Turkey. The survey data were collected from 251 Turkish counseling students to examine differences in ethical judgments between freshmen and seniors. Chi-square analysis was used to analyze the data from an ethical practice and belief survey. This survey was used to assess counselor candidates’ ethical judgments regarding Turkish counseling ethical codes and sources of ethics information. Statistically significant differences were found between university seniors and freshmen on items that are related to confidentiality, dual relationships, and professional relationships. Furthermore, patterns based on demographic information showed significant differences as a result of gender, economic status, and parents’ educational level. Participants gave the highest rating of information sources to Turkish counseling ethical codes.

Keywords: ethics, training, Turkey, counselor, education

Procedia PDF Downloads 371
1876 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains

Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.

Keywords: binary vector quantization (BVQ), DCT coefficients, face recognition, local binary patterns (LBP)

Procedia PDF Downloads 348
1875 Ex-Post Export Data for Differentiated Products Revealing the Existence of Productcycles

Authors: Ranajoy Bhattcharyya

Abstract:

We estimate international product cycles as shifting product spaces by using 1976 to 2010 UN Comtrade data on all differentiated tradable products in all countries. We use a product space approach to identify the representative product baskets of high-, middle and low-income countries and then use these baskets to identify the patterns of change in comparative advantage of countries over time. We find evidence of a product cycle in two senses: First, high-, middle- and low-income countries differ in comparative advantage, and high-income products migrate to the middle-income basket. A similar pattern is observed for middle- and low-income countries. Our estimation of the lag shows that middle-income countries tend to quickly take up the products of high-income countries, but low-income countries take a longer time absorbing these products. Thus, the gap between low- and middle-income countries is considerably higher than that between middle- and high-income nations.

Keywords: product cycle, comparative advantage, representative product basket, ex-post data

Procedia PDF Downloads 419
1874 Beam Methods Applications to the Design of Curved Pulsed Beams

Authors: Timor Melamed

Abstract:

In this study, we consider two methods for synthesizing a pulsed curved beam along a generic beam-axis trajectory. In the first approach, we evaluate the space-time aperture field distribution that radiates the beam along a predefined trajectory by constructing a time-dependent caustic surface around the beam-axis skeleton. We derive the aperture field delay to form a caustic of rays along the beam axis and extend this method to other points over the aperture. In the second approach, we harness the proven capabilities of beam methods to address the challenge of designing curved intensity profiles in three-dimensional free space. By leveraging advanced beam propagation techniques, we create and manipulate complex intensity patterns along arbitrarily curved trajectories, offering additional possibilities for precision control in various wave-based applications. Numerical examples are presented to demonstrate the robust capabilities of both methods.

Keywords: pulsed Airy beams, pulsed beams, pulsed curved beams, transient fields

Procedia PDF Downloads 21