Search results for: solutions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3888

Search results for: solutions

2928 Subsidying Local Health Policy Programs as a Public Management Tool in the Polish Health Care System

Authors: T. Holecki, J. Wozniak-Holecka, P. Romaniuk

Abstract:

Due to the highly centralized model of financing health care in Poland, local self-government rarely undertook their own initiatives in the field of public health, particularly health promotion. However, since 2017 the possibility of applying for a subsidy to health policy programs has been allowed, with the additional resources to be retrieved from the National Health Fund, which is the dominant payer in the health system. The amount of subsidy depends on the number of inhabitants in a given unit and ranges about 40% of the total cost of the program. The aim of this paper is to assess the impact of newly implemented solutions in financing health policy on the management of public finances, as well as on the activity provided by local self-government in health promotion. An effort to estimate the amount of expenses that both local governments, and the National Health Fund, spent on local health policy programs while implementing the new solutions. The research method is the analysis of financial data obtained from the National Health Fund and from local government units, as well as reports published by the Agency for Health Technology Assessment and Pricing, which holds substantive control over the health policy programs, and releases permission for their implementation. The study was based on a comparative analysis of expenditures on the implementation of health programs in Poland in years 2010-2018. The presentation of the results includes the inclusion of average annual expenditures of local government units per 1 inhabitant, the total number of positively evaluated applications and the percentage share in total expenditures of local governments (16 voivodships areas). The most essential purpose is to determine whether the assumptions of the subsidy program are working correctly in practice, and what are the real effects of introducing legislative changes into local government levels in the context of public health tasks. The assumption of the study was that the use of a new motivation tool in the field of public management would result in multiplication of resources invested in the provision of health policy programs. Preliminary conclusions show that financial expenditures changed significantly after the introduction of public funding at the level of 40%, obtaining an increase in funding from own funds of local governments at the level of 80 to 90%.

Keywords: health care system, health policy programs, local self-governments, public health management

Procedia PDF Downloads 156
2927 Bianchi Type- I Viscous Fluid Cosmological Models with Stiff Matter and Time Dependent Λ- Term

Authors: Rajendra Kumar Dubey

Abstract:

Einstein’s field equations with variable cosmological term Λ are considered in the presence of viscous fluid for Bianchi type I space time. Exact solutions of Einstein’s field equations are obtained by assuming cosmological term Λ Proportional to (R is a scale factor and m is constant). We observed that the shear viscosity is found to be responsible for faster removal of initial anisotropy in the universe. The physical significance of the cosmological models has also been discussed.

Keywords: bianchi type, I cosmological model, viscous fluid, cosmological constant Λ

Procedia PDF Downloads 528
2926 Accounting Information Systems of Kuwaiti Companies: Obstacles and Barriers

Authors: Haya Y Alobaid

Abstract:

The aim of this paper is to identify and discuss the obstacles to the ability of the accounting information systems of Kuwaiti companies to deal with electronic commerce, and then to propose appropriate solutions to overcome the barriers. The study revealed a remarkable decrease in external auditors who have professional certification. The results also showed an agreement regarding the accounting systems and the ability to deal with e-commerce, with a different degree of importance, despite the presence of obstacles to the ability of accounting systems in dealing with different companies.

Keywords: accounting information systems, obstacle and barriers, electronic commerce, Kuwait companies

Procedia PDF Downloads 245
2925 Teaching a Senior Design Course in Industrial Engineering

Authors: Mehmet Savsar

Abstract:

Industrial Engineering is one of the engineering disciplines that deal with analysis, design, and improvement of systems, which include manufacturing, supply chain, healthcare, communication, and general service systems. Industrial engineers involve with comprehensive study of a given system, analysis of its interacting units, determination of problem areas, application of various optimization and operations research tools, and recommendation of solutions resulting in significant improvements. The Senior Design course in Industrial Engineering is the culmination of the Industrial Engineering Curriculum in a Capstone Design course, which fundamentally deals with systems analysis and design. The course at Kuwait University has been carefully designed with various course objectives and course outcomes in mind to achieve several program outcomes by practices and learning experiences, which are explicitly gained by systems analysis and design. The Senior Design Course is carried out in a selected industrial or service organization, with support from its engineering personnel, during a full semester by a team of students, who are usually in the last semester of their academic programs. A senior faculty member constantly administers the course to ensure that the students accomplish the prescribed objectives. Students work in groups to formulate issues and propose solutions and communicate, results in formal written and oral presentations. When the course is completed, they emerge as engineers that can be clearly identified as more mature, able to communicate better, able to participate in team work, able to see systems perspective in analysis and design, and more importantly, able to assume responsibility at entry level as engineers. The accomplishments are mainly due to real life experiences gained during the course of their design study. This paper presents methods, procedures, and experiences in teaching a Senior Design Course in Industrial Engineering Curriculum. A detailed description of the course, its role, its objectives, outcomes, learning practices, and assessments are explained in relation to other courses in Industrial Engineering Curriculum. The administration of the course, selected organizations where the course project is carried out, problems and solution tools utilized, student accomplishments and obstacles faced are presented. Issues discussed in this paper could help instructors in teaching the course as well as in clarifying the contribution of a design course to the industrial engineering education in general. In addition, the methods and teaching procedures presented could facilitate future improvements in industrial engineering curriculum.

Keywords: senior design course, industrial engineering, capstone design, education

Procedia PDF Downloads 132
2924 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs

Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.

Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT

Procedia PDF Downloads 231
2923 'Light up for All': Building Knowledge on Universal Design through Direct User Contact in Design Workshops

Authors: E. Ielegems, J. Herssens, J. Vanrie

Abstract:

Designers require knowledge and data about a diversity of users throughout the design process to create inclusive design solutions which are usable, understandable and desirable by everyone. Besides understanding users’ needs and expectations, the ways in which users perceive and experience the built environment contain valuable knowledge for architects. Since users’ perceptions and experiences are mainly tacit by nature, they are much more difficult to express in words and therefore more difficult to externalise. Nevertheless, literature confirms the importance of articulating embodied knowledge from users throughout the design process. Hence, more insight is needed into the ways architects can build knowledge on Universal Design through direct user contact. In a project called ‘light up for all’ architecture students are asked to design a light switch and socket, elegant, usable and understandable to the greatest extent possible by everyone. Two workshops with user/experts are organised in the first stages of the design process in which students could gain insight into users’ experiences through direct contact. Three data collection techniques are used to analyse the teams’ design processes. First, students were asked to keep a design diary, reporting design activities, personal experiences, and thoughts about users throughout the design process. Second, one of the authors observed workshops taking field notes. Finally, focus groups are conducted with the design teams after the design process was finished. By means of analysing collected qualitative data, we first identify different design aspects that make the teams’ proposals more inclusive than standard design solutions. For this paper, we specifically focus on aspects that externalise embodied user knowledge from users’ experiences. Subsequently, we look at designers’ approaches to learn about these specific aspects throughout the design process. Results show that in some situations, designers perceive contradicting knowledge between observations and verbal conversations, which shows the value of direct user contact. Additionally, findings give indications on values and limitations of working with selected prototypes as ‘boundary objects’ when externalising users’ experiences. These insights may help researchers to better understand designers’ process of eliciting embodied user knowledge. This way, research can offer more effective support to architects, which may result in better incorporating users’ experiences so that the built environment gradually can become more inclusive for all.

Keywords: universal design, architecture, design process, embodied user knowledge

Procedia PDF Downloads 143
2922 Money Laundering Risk Assessment in the Banking Institutions: An Experimental Approach

Authors: Yusarina Mat-Isa, Zuraidah Mohd-Sanusi, Mohd-Nizal Haniff, Paul A. Barnes

Abstract:

In view that money laundering has become eminent for banking institutions, it is an obligation for the banking institutions to adopt a risk-based approach as the integral component of the accepted policies on anti-money laundering. In doing so, those involved with the banking operations are the most critical group of personnel as these are the people who deal with the day-to-day operations of the banking institutions and are obligated to form a judgement on the level of impending risk. This requirement is extended to all relevant banking institutions staff, such as tellers and customer account representatives for them to identify suspicious customers and escalate it to the relevant authorities. Banking institutions staffs, however, face enormous challenges in identifying and distinguishing money launderers from other legitimate customers seeking genuine banking transactions. Banking institutions staffs are mostly educated and trained with the business objective in mind to serve the customers and are not trained to be “detectives with a detective’s power of observation”. Despite increasing awareness as well as trainings conducted for the banking institutions staff, their competency in assessing money laundering risk is still insufficient. Several gaps have prompted this study including the lack of behavioural perspectives in the assessment of money laundering risk in the banking institutions. Utilizing experimental approach, respondents are randomly assigned within a controlled setting with manipulated situations upon which judgement of the respondents is solicited based on various observations related to the situations. The study suggests that it is imperative that informed judgement is exercised in arriving at the decision to proceed with the banking services required by the customers. Judgement forms a basis of opinion for the banking institution staff to decide if the customers posed money laundering risk. Failure to exercise good judgement could results in losses and absorption of unnecessary risk into the banking institutions. Although the banking institutions are exposed with choices of automated solutions in assessing money laundering risk, the human factor in assessing the risk is indispensable. Individual staff in the banking institutions is the first line of defence who are responsible for screening the impending risk of any customer soliciting for banking services. At the end of the spectrum, the individual role involvement on the subject of money laundering risk assessment is not a substitute for automated solutions as human judgement is inimitable.

Keywords: banking institutions, experimental approach, money laundering, risk assessment

Procedia PDF Downloads 267
2921 Research of Concentratibility of Low Quality Bauxite Raw Materials

Authors: Nadezhda Nikolaeva, Tatyana Alexandrova, Alexandr Alexandrov

Abstract:

Processing of high-silicon bauxite on the base of the traditional clinkering method is related to high power consumption and capital investments, which makes production of alumina from those ores non-competitive in terms of basic economic showings. For these reasons, development of technological solutions enabling to process bauxites with various chemical and mineralogical structures efficiently with low level of thermal power consumption is important. Flow sheet of the studies on washability of ores from the Timanskoe and the Severo-Onezhskoe deposits is on the base of the flotation method.

Keywords: low-quality bauxite, resource-saving technology, optimization, aluminum, conditioning of composition, separation characteristics

Procedia PDF Downloads 290
2920 Analysis of Big Data

Authors: Sandeep Sharma, Sarabjit Singh

Abstract:

As per the user demand and growth trends of large free data the storage solutions are now becoming more challenge-able to protect, store and to retrieve data. The days are not so far when the storage companies and organizations are start saying 'no' to store our valuable data or they will start charging a huge amount for its storage and protection. On the other hand as per the environmental conditions it becomes challenge-able to maintain and establish new data warehouses and data centers to protect global warming threats. A challenge of small data is over now, the challenges are big that how to manage the exponential growth of data. In this paper we have analyzed the growth trend of big data and its future implications. We have also focused on the impact of the unstructured data on various concerns and we have also suggested some possible remedies to streamline big data.

Keywords: big data, unstructured data, volume, variety, velocity

Procedia PDF Downloads 548
2919 Crowdsensing Project in the Brazilian Municipality of Florianópolis for the Number of Visitors Measurement

Authors: Carlos Roberto De Rolt, Julio da Silva Dias, Rafael Tezza, Luca Foschini, Matteo Mura

Abstract:

The seasonal population fluctuation presents a challenge to touristic cities since the number of inhabitants can double according to the season. The aim of this work is to develop a model that correlates the waste collected with the population of the city and also allow cooperation between the inhabitants and the local government. The model allows public managers to evaluate the impact of the seasonal population fluctuation on waste generation and also to improve planning resource utilization throughout the year. The study uses data from the company that collects the garbage in Florianópolis, a Brazilian city that presents the profile of a city that attracts tourists due to numerous beaches and warm weather. The fluctuations are caused by the number of people that come to the city throughout the year for holidays, summer time vacations or business events. Crowdsensing will be accomplished through smartphones with access to an app for data collection, with voluntary participation of the population. Crowdsensing participants can access information collected in waves for this portal. Crowdsensing represents an innovative and participatory approach which involves the population in gathering information to improve the quality of life. The management of crowdsensing solutions plays an essential role given the complexity to foster collaboration, establish available sensors and collect and process the collected data. Practical implications of this tool described in this paper refer, for example, to the management of seasonal tourism in a large municipality, whose public services are impacted by the floating of the population. Crowdsensing and big data support managers in predicting the arrival, permanence, and movement of people in a given urban area. Also, by linking crowdsourced data to databases from other public service providers - e.g., water, garbage collection, electricity, public transport, telecommunications - it is possible to estimate the floating of the population of an urban area affected by seasonal tourism. This approach supports the municipality in increasing the effectiveness of resource allocation while, at the same time, increasing the quality of the service as perceived by citizens and tourists.

Keywords: big data, dashboards, floating population, smart city, urban management solutions

Procedia PDF Downloads 287
2918 Exploring Unexplored Horizons: Advanced Fluid Mechanics Solutions for Sustainable Energy Technologies

Authors: Elvira S. Castillo, Surupa Shaw

Abstract:

This paper explores advanced applications of fluid mechanics in the context of sustainable energy. By examining the integration of fluid dynamics with renewable energy technologies, the research uncovers previously underutilized strategies for improving efficiency. Through theoretical analyses, the study demonstrates how fluid mechanics can be harnessed to optimize renewable energy systems. The findings contribute to expanding knowledge in sustainable energy by offering practical insights and methodologies for future research and technological advancements to address global energy challenges.

Keywords: fluid mechanics, sustainable energy, energy efficiency, green energy

Procedia PDF Downloads 50
2917 Wave Transmitting Boundary in Dynamic Analysis for an Elastoplastic Medium Using the Material Point Method

Authors: Chinh Phuong Do

Abstract:

Dynamic analysis of slope under seismic condition requires the elimination of spurious reflection at the bounded domain. This paper studies the performances of wave transmitting boundaries, including the standard viscous boundary and the viscoelastic boundary to the material point method (MPM) framework. First, analytical derivations of these non-reflecting conditions particularly to the implicit MPM are presented. Then, a number of benchmark and geotechnical examples will be shown. Overall, the results agree well with analytical solutions, indicating the ability to accurately simulate the radiation at the bounded domain.

Keywords: dynamic analysis, implicit, MPM, non-reflecting boundary

Procedia PDF Downloads 204
2916 VR/AR Applications in Personalized Learning

Authors: Andy Wang

Abstract:

Personalized learning refers to an educational approach that tailors instruction to meet the unique needs, interests, and abilities of each learner. This method of learning aims at providing students with a customized learning experience that is more engaging, interactive, and relevant to their personal lives. With generative AI technology, the author has developed a Personal Tutoring Bot (PTB) that supports personalized learning. The author is currently testing PTB in his EE 499 – Microelectronics Metrology course. Virtual Reality (VR) and Augmented Reality (AR) provide interactive and immersive learning environments that can engage student in online learning. This paper presents the rationale of integrating VR/AR tools in PTB and discusses challenges and solutions of incorporating VA/AR into the Personal Tutoring Bot (PTB).

Keywords: personalized learning, online education, hands-on practice, VR/AR tools

Procedia PDF Downloads 68
2915 Flipped Learning in Interpreter Training: Technologies, Activities and Student Perceptions

Authors: Dohun Kim

Abstract:

Technological innovations have stimulated flipped learning in many disciplines, including language teaching. It is a specific type of blended learning, which combines onsite (i.e. face-to-face) with online experiences to produce effective, efficient and flexible learning. Flipped learning literally ‘flips’ conventional teaching and learning activities upside down: it leverages technologies to deliver a lecture and direct instruction—other asynchronous activities as well—outside the classroom to reserve onsite time for interaction and activities in the upper cognitive realms: applying, analysing, evaluating and creating. Unlike the conventional flipped approaches, which focused on video lecture, followed by face-to-face or on-site session, new innovative methods incorporate various means and structures to serve the needs of different academic disciplines and classrooms. In the light of such innovations, this study adopted ‘student-engaged’ approaches to interpreter training and contrasts them with traditional classrooms. To this end, students were also encouraged to engage in asynchronous activities online, and innovative technologies, such as Telepresence, were employed. Based on the class implementation, a thorough examination was conducted to examine how we can structure and implement flipped classrooms for language and interpreting training while actively engaging learners. This study adopted a quantitative research method, while complementing it with a qualitative one. The key findings suggest that the significance of the instructor’s role does not dwindle, but his/her role changes to a moderator and a facilitator. Second, we can apply flipped learning to both theory- and practice-oriented modules. Third, students’ integration into the community of inquiry is of significant importance to foster active and higher-order learning. Fourth, cognitive presence and competence can be enhanced through strengthened and integrated teaching and social presences. Well-orchestrated teaching presence stimulates students to find out the problems and voices the convergences and divergences, while fluid social presence facilitates the exchanges of knowledge and the adjustment of solutions, which eventually contributes to consolidating cognitive presence—a key ingredient that enables the application and testing of the solutions and reflection thereon.

Keywords: blended learning, Community of Inquiry, flipped learning, interpreter training, student-centred learning

Procedia PDF Downloads 195
2914 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 118
2913 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance

Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher

Abstract:

The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.

Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis

Procedia PDF Downloads 45
2912 Superconvergence of the Iterated Discrete Legendre Galerkin Method for Fredholm-Hammerstein Equations

Authors: Payel Das, Gnaneshwar Nelakanti

Abstract:

In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equations with smooth kernel. Using sufficiently accurate numerical quadrature rule, we obtain superconvergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and $L^2$-norm. Numerical examples are given to illustrate the theoretical results.

Keywords: hammerstein integral equations, spectral method, discrete galerkin, numerical quadrature, superconvergence

Procedia PDF Downloads 469
2911 Advancements in Smart Home Systems: A Comprehensive Exploration in Electronic Engineering

Authors: Chukwuka E. V., Rowling J. K., Rushdie Salman

Abstract:

The field of electronic engineering encompasses the study and application of electrical systems, circuits, and devices. Engineers in this discipline design, analyze and optimize electronic components to develop innovative solutions for various industries. This abstract provides a brief overview of the diverse areas within electronic engineering, including analog and digital electronics, signal processing, communication systems, and embedded systems. It highlights the importance of staying abreast of advancements in technology and fostering interdisciplinary collaboration to address contemporary challenges in this rapidly evolving field.

Keywords: smart home engineering, energy efficiency, user-centric design, security frameworks

Procedia PDF Downloads 87
2910 Case of an Engineering Design Class in Architectural Engineering

Authors: Myunghoun Jang

Abstract:

Most engineering colleges in South Korea have engineering design classes in order to develop and enhance a student's creativity and problem-solving ability. Many cases about engineering design class are shown in journals and magazines, but a case lasting many years is few. The engineering design class in the Department of Architectural Engineering, Jeju National University was open in 2009 and continues to this year. 3-5 teams in every year set up their problems found their solutions and produced good results. Three of the results obtained patents. The class also provides students with opportunities to improve communication skill because they have many discussions in solving their problems.

Keywords: engineering design, architectural engineering, team-based learning, construction safety

Procedia PDF Downloads 236
2909 Synthesis, Characterization and Applications of Hydrogels Based on Chitosan Derivatives

Authors: Mahmoud H. Abu Elella, Riham R. Mohamed, Magdy W. Sabaa

Abstract:

Firstly, synthesis of N-Quaternized Chitosan (NQC), then it was proven by FTIR and 1H-NMR analysis. The degree of quaternization(DQ 35% ) was determined by equation. Secondly, synthesis of cross-linked hydrogels composed of NQC and poly (vinyl alcohol) (PVA) in different weight ratios in presence of glutaraldehyde (GA) as cross-linking agent. Characterization of the prepared hydrogels was done using FTIR, SEM, XRD,and TGA. Swellability in simulated body fluid (SBF) solutions applied on NQC / PVA hydrogels and swelling rate(Wt%) and metal ions uptake was done on it.

Keywords: hydrogel, metal ions uptake, N-quaternized chitosan, poly (vinyl alcohol), swellability

Procedia PDF Downloads 430
2908 Representation of the Solution of One Dynamical System on the Plane

Authors: Kushakov Kholmurodjon, Muhammadjonov Akbarshox

Abstract:

This present paper is devoted to a system of second-order nonlinear differential equations with a special right-hand side, exactly, the linear part and a third-order polynomial of a special form. It is shown that for some relations between the parameters, there is a second-order curve in which trajectories leaving the points of this curve remain in the same place. Thus, the curve is invariant with respect to the given system. Moreover, this system is invariant under a non-degenerate linear transformation of variables. The form of this curve, depending on the relations between the parameters and the eigenvalues of the matrix, is proved. All solutions of this system of differential equations are shown analytically.

Keywords: dynamic system, ellipse, hyperbola, Hess system, polar coordinate system

Procedia PDF Downloads 193
2907 Unsteady Reactive Hydromagnetic Fluid Flow of a Two-Step Exothermic Chemical Reaction through a Channel

Authors: J. A. Gbadeyan, R. A. Kareem

Abstract:

In this paper, we investigated the effects of unsteady internal heat generation of a two-step exothermic reactive hydromagnetic fluid flow under different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics through an isothermal wall temperature channel. The resultant modeled nonlinear partial differential equations were simplified and solved using a combined Laplace-Differential Transform Method (LDTM). The solutions obtained were discussed and presented graphically to show the salient features of the fluid flow and heat transfer characteristics.

Keywords: unsteady, reactive, hydromagnetic, couette ow, exothermi creactio

Procedia PDF Downloads 448
2906 Broadband Ultrasonic and Rheological Characterization of Liquids Using Longitudinal Waves

Authors: M. Abderrahmane Mograne, Didier Laux, Jean-Yves Ferrandis

Abstract:

Rheological characterizations of complex liquids like polymer solutions present an important scientific interest for a lot of researchers in many fields as biology, food industry, chemistry. In order to establish master curves (elastic moduli vs frequency) which can give information about microstructure, classical rheometers or viscometers (such as Couette systems) are used. For broadband characterization of the sample, temperature is modified in a very large range leading to equivalent frequency modifications applying the Time Temperature Superposition principle. For many liquids undergoing phase transitions, this approach is not applicable. That is the reason, why the development of broadband spectroscopic methods around room temperature becomes a major concern. In literature many solutions have been proposed but, to our knowledge, there is no experimental bench giving the whole rheological characterization for frequencies about a few Hz (Hertz) to many MHz (Mega Hertz). Consequently, our goal is to investigate in a nondestructive way in very broadband frequency (A few Hz – Hundreds of MHz) rheological properties using longitudinal ultrasonic waves (L waves), a unique experimental bench and a specific container for the liquid: a test tube. More specifically, we aim to estimate the three viscosities (longitudinal, shear and bulk) and the complex elastic moduli (M*, G* and K*) respectively longitudinal, shear and bulk moduli. We have decided to use only L waves conditioned in two ways: bulk L wave in the liquid or guided L waves in the tube test walls. In this paper, we will present first results for very low frequencies using the ultrasonic tracking of a falling ball in the test tube. This will lead to the estimation of shear viscosity from a few mPa.s to a few Pa.s (Pascal second). Corrections due to the small dimensions of the tube will be applied and discussed regarding the size of the falling ball. Then the use of bulk L wave’s propagation in the liquid and the development of a specific signal processing in order to assess longitudinal velocity and attenuation will conduct to the longitudinal viscosity evaluation in the MHz frequency range. At last, the first results concerning the propagation, the generation and the processing of guided compressional waves in the test tube walls will be discussed. All these approaches and results will be compared to standard methods available and already validated in our lab.

Keywords: nondestructive measurement for liquid, piezoelectric transducer, ultrasonic longitudinal waves, viscosities

Procedia PDF Downloads 265
2905 Optimization of Cloud Classification Using Particle Swarm Algorithm

Authors: Riffi Mohammed Amine

Abstract:

A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results.

Keywords: remote sensing, particle swarm optimization, clouds, meteorological image

Procedia PDF Downloads 15
2904 Aggregate Production Planning Framework in a Multi-Product Factory: A Case Study

Authors: Ignatio Madanhire, Charles Mbohwa

Abstract:

This study looks at the best model of aggregate planning activity in an industrial entity and uses the trial and error method on spreadsheets to solve aggregate production planning problems. Also linear programming model is introduced to optimize the aggregate production planning problem. Application of the models in a furniture production firm is evaluated to demonstrate that practical and beneficial solutions can be obtained from the models. Finally some benchmarking of other furniture manufacturing industries was undertaken to assess relevance and level of use in other furniture firms

Keywords: aggregate production planning, trial and error, linear programming, furniture industry

Procedia PDF Downloads 556
2903 Utilize 5G Mobile Connection as a Node in the Proof of Authority Blockchain Used for Microtransaction

Authors: Frode van der Laak

Abstract:

The paper contributes to the feasibility of using a 5G mobile connection as a node for a Proof of Authority (PoA) blockchain, which is used for microtransactions at the same time. It uses the phone number identity of the users that are linked to the crypto wallet address. It also proposed a consensus protocol based on Proof-of-Authority (PoA) blockchain; PoA is a permission blockchain where consensus is achieved through a set of designated authority rather than through mining, as is the case with a Proof of Work (PoW) blockchain. This report will first explain the concept of a PoA blockchain and how it works. It will then discuss the potential benefits and challenges of using a 5G mobile connection as a node in such a blockchain, and finally, the main open problem statement and proposed solutions with the requirements.

Keywords: 5G, mobile, connection, node, PoA, blockchain, microtransaction

Procedia PDF Downloads 96
2902 Optimization Approach to Integrated Production-Inventory-Routing Problem for Oxygen Supply Chains

Authors: Yena Lee, Vassilis M. Charitopoulos, Karthik Thyagarajan, Ian Morris, Jose M. Pinto, Lazaros G. Papageorgiou

Abstract:

With globalisation, the need to have better coordination of production and distribution decisions has become increasingly important for industrial gas companies in order to remain competitive in the marketplace. In this work, we investigate a problem that integrates production, inventory, and routing decisions in a liquid oxygen supply chain. The oxygen supply chain consists of production facilities, external third-party suppliers, and multiple customers, including hospitals and industrial customers. The product produced by the plants or sourced from the competitors, i.e., third-party suppliers, is distributed by a fleet of heterogenous vehicles to satisfy customer demands. The objective is to minimise the total operating cost involving production, third-party, and transportation costs. The key decisions for production include production and inventory levels and product amount from third-party suppliers. In contrast, the distribution decisions involve customer allocation, delivery timing, delivery amount, and vehicle routing. The optimisation of the coordinated production, inventory, and routing decisions is a challenging problem, especially when dealing with large-size problems. Thus, we present a two-stage procedure to solve the integrated problem efficiently. First, the problem is formulated as a mixed-integer linear programming (MILP) model by simplifying the routing component. The solution from the first-stage MILP model yields the optimal customer allocation, production and inventory levels, and delivery timing and amount. Then, we fix the previous decisions and solve a detailed routing. In the second stage, we propose a column generation scheme to address the computational complexity of the resulting detailed routing problem. A case study considering a real-life oxygen supply chain in the UK is presented to illustrate the capability of the proposed models and solution method. Furthermore, a comparison of the solutions from the proposed approach with the corresponding solutions provided by existing metaheuristic techniques (e.g., guided local search and tabu search algorithms) is presented to evaluate the efficiency.

Keywords: production planning, inventory routing, column generation, mixed-integer linear programming

Procedia PDF Downloads 112
2901 Orientation of Rotating Platforms on Mobile Vehicles by GNNS

Authors: H. İmrek, O. Corumluoglu, B. Akdemir, I. Sanlioglu

Abstract:

It is important to be able to determine the heading direction of a moving vehicle with respect to a distant location. Additionally, it is important to be able to direct a rotating platform on a moving vehicle towards a distant position or location on the earth surface, especially for applications such as determination of the Kaaba direction for daily Muslim prayers. GNNS offers some reasonable solutions. In this study, a functional model of such a directing system supported by GNNS is discussed, and an appropriate system is designed for these purposes. An application for directing system is done by using RTK and DGNSS. Accuracy estimations are given for this system.

Keywords: GNNS, orientation of rotating platform, vehicle orientation, prayer aid device

Procedia PDF Downloads 396
2900 A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks

Authors: Khelifa Benahmed, Tarek Benahmed

Abstract:

There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks.

Keywords: critical infrastructure monitoring, environment monitoring, event region detection, wireless sensor networks

Procedia PDF Downloads 350
2899 Analysis of a Generalized Sharma-Tasso-Olver Equation with Variable Coefficients

Authors: Fadi Awawdeh, O. Alsayyed, S. Al-Shará

Abstract:

Considering the inhomogeneities of media, the variable-coefficient Sharma-Tasso-Olver (STO) equation is hereby investigated with the aid of symbolic computation. A newly developed simplified bilinear method is described for the solution of considered equation. Without any constraints on the coefficient functions, multiple kink solutions are obtained. Parametric analysis is carried out in order to analyze the effects of the coefficient functions on the stabilities and propagation characteristics of the solitonic waves.

Keywords: Hirota bilinear method, multiple kink solution, Sharma-Tasso-Olver equation, inhomogeneity of media

Procedia PDF Downloads 517