Search results for: seismic response feature
6425 Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries
Authors: Josua K. Junias, Fillemon N. Nangolo, Petrina T. Johaness
Abstract:
The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. Previous studies have only focused on the effects of either the road's uneven surface or the asymmetrical loading of the vehicle, but not both. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading.Keywords: eccentricities, pavement dynamic loading, vertical displacement dynamic response, heavy vehicles
Procedia PDF Downloads 736424 The Investigation of Oil Price Shocks by Using a Dynamic Stochastic General Equilibrium: The Case of Iran
Authors: Bahram Fathi, Karim Alizadeh, Azam Mohammadbagheri
Abstract:
The aim of this paper is to investigate the role of oil price shocks in explaining business cycles in Iran using a dynamic stochastic general equilibrium approach. This model incorporates both productivity and oil revenue shocks. The results indicate that productivity shocks are relatively more important to business cycles than oil shocks. The model with two shocks produces different values for volatility, but these values have the same ranking as that of the actual data for most variables. In addition, the actual data are close to the ratio of standard deviations to the output obtained from the model with two shocks. The results indicate that productivity shocks are relatively more important to business cycles than the oil shocks. The model with only a productivity shock produces the most similar figures in term of volatility magnitude to that of the actual data. Next, we use the Impulse Response Functions (IRF) to evaluate the capability of the model. The IRF shows no effect of an oil shock on the capital stocks and on labor hours, which is a feature of the model. When the log-linearized system of equations is solved numerically, investment and labor hours were not found to be functions of the oil shock. This research recommends using different techniques to compare the model’s robustness. One method by which to do this is to have all decision variables as a function of the oil shock by inducing the stationary to the model differently. Another method is to impose a bond adjustment cost. This study intends to fill that gap. To achieve this objective, we derive a DSGE model that allows for the world oil price and productivity shocks. Second, we calibrate the model to the Iran economy. Next, we compare the moments from the theoretical model with both single and multiple shocks with that obtained from the actual data to see the extent to which business cycles in Iran can be explained by total oil revenue shock. Then, we use an impulse response function to evaluate the role of world oil price shocks. Finally, I present implications of the findings and interpretations in accordance with economic theory.Keywords: oil price, shocks, dynamic stochastic general equilibrium, Iran
Procedia PDF Downloads 4386423 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill
Authors: Jagdish Prasad Sahoo
Abstract:
The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.Keywords: active, finite elements, limit analysis, presudo-static, reinforcement
Procedia PDF Downloads 3656422 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication
Authors: Rui Mao, Heming Ji, Xiaoyu Wang
Abstract:
Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM
Procedia PDF Downloads 1556421 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1556420 Impact of Tuberculosis Co-infection on Cytokine Expression in HIV-Infected Individuals
Authors: M. Nosik, I. Rymanova, N. Adamovich, S. Sevostyanihin, K. Ryzhov, Y. Kuimova, A. Kravtchenko, N. Sergeeva, A. Sobkin
Abstract:
HIV and Tuberculosis (TB) infections each speed the other's progress. HIV-infection increases the risk of TB disease. At the same time, TB infection is associated with clinical progression of HIV-infection. HIV+TB co-infected patients are also at higher risk of acquiring new opportunistic infections. An important feature of disease progression and clinical outcome is the innate and acquired immune responses. HIV and TB, however, have a spectrum of dysfunctions of the immune response. As cytokines play a crucial role in the immunopathology of both infections, it is important to study immune interactions in patients with dual infection HIV+TB. Plasma levels of proinflammatory cytokines IL-2, IFN-γ and immunoregulating cytokines IL-4, IL-10 were evaluated in 75 patients with dual infection HIV+TB, 58 patients with HIV monoinfection and 50 patients with TB monoinfection who were previously naïve for HAART. The decreased levels of IL-2, IFN-γ, IL-4 and IL-10 were observed in patients with dual infection HIV+TB in comparison with patients who had only HIV or TB which means the profound suppression of Th1 and Th2 cytokine secretion. Thus, those cytokines could possibly serve as immunological markers of progression of HIV-infection in patients with TB.Keywords: HIV, tuberculosis (TB), HIV associated with TB, Th1/ Th2 cytokine expression
Procedia PDF Downloads 3656419 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 796418 Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology
Authors: I. F. Ejim, F. L. Kamen
Abstract:
Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses.Keywords: algae oil, response surface methodology, optimization, Box-Bohnken, extraction
Procedia PDF Downloads 3386417 Features of Urban Planning Design of the Largest Cities Located in Areas with High Seismic (on the example of Almaty city, Republic of Kazakhstan)
Authors: Arkinzhan Mametov, Alexey Abilov
Abstract:
Strong earthquakes are dangerous natural phenomena that lead to the destruction of entire cities and the death of a large number of people. The recent strong earthquakes in Turkey and in a number of other states have shown that as a result of them, there are significant human casualties and huge destruction. The city of Almaty is located in the foothill basin of the Trans-Ili Alatau of the Tien Shan Mountain system, in a zone with 9–10-point seismicity. Almaty (formerly Verniy) was founded in 1856 and, since that period, has experienced two catastrophic earthquakes - in 1887 and 1911, which led almost to the complete destruction of the city. Since that time, according to seismologists, the city has been annually exposed to small seismic impacts of 2-3 points. This forced the subsequent search for ways to protect buildings and the public through the use of earthquake-resistant structures and materials, limiting the number of stores of buildings and increasing gaps between them, which was carried out quite consistently and since 1957. However, at present, it is necessary to state a number of violations, primarily of the urban development plan – the placement of high-density multi-stores commercial housing in the urban environment, bypassing the existing regulations and standards in the city. Their appearance contributes to a greater concentration of residents transport in a limited area, which can lead to harmful consequences during powerful earthquakes. The experience of eliminating the consequences of catastrophic earthquakes shows that an important factor in reducing human losses is timely technical and medical assistance to victims of earthquakes, the elimination of blockages, provision of temporary housing and evacuation of the population, especially in winter. In cities located in areas with high seismicity, it is necessary to ensure strict compliance with the requirements of urban development regulations, taking into account the entire complex of planning and organizational measures to minimize the destruction of buildings and human casualties.Keywords: high seismic zones, urban planning regulations, special standards for planing, minimizing the human casualties
Procedia PDF Downloads 926416 Seismic Retrofits – A Catalyst for Minimizing the Building Sector’s Carbon Footprint
Authors: Juliane Spaak
Abstract:
A life-cycle assessment was performed, looking at seven retrofit projects in New Zealand using LCAQuickV3.5. The study found that retrofits save up to 80% of embodied carbon emissions for the structural elements compared to a new building. In other words, it is only a 20% carbon investment to transform and extend a building’s life. In addition, the systems were evaluated by looking at environmental impacts over the design life of these buildings and resilience using FEMA P58 and PACT software. With the increasing interest in Zero Carbon targets, significant changes in the building and construction sector are required. Emissions for buildings arise from both embodied carbon and operations. Based on the significant advancements in building energy technology, the focus is moving more toward embodied carbon, a large portion of which is associated with the structure. Since older buildings make up most of the real estate stock of our cities around the world, their reuse through structural retrofit and wider refurbishment plays an important role in extending the life of a building’s embodied carbon. New Zealand’s building owners and engineers have learned a lot about seismic issues following a decade of significant earthquakes. Recent earthquakes have brought to light the necessity to move away from constructing code-minimum structures that are designed for life safety but are frequently ‘disposable’ after a moderate earthquake event, especially in relation to a structure’s ability to minimize damage. This means weaker buildings sit as ‘carbon liabilities’, with considerably more carbon likely to be expended remediating damage after a shake. Renovating and retrofitting older assets plays a big part in reducing the carbon profile of the buildings sector, as breathing new life into a building’s structure is vastly more sustainable than the highest quality ‘green’ new builds, which are inherently more carbon-intensive. The demolition of viable older buildings (often including heritage buildings) is increasingly at odds with society’s desire for a lower carbon economy. Bringing seismic resilience and carbon best practice together in decision-making can open the door to commercially attractive outcomes, with retrofits that include structural and sustainability upgrades transforming the asset’s revenue generation. Across the global real estate market, tenants are increasingly demanding the buildings they occupy be resilient and aligned with their own climate targets. The relationship between seismic performance and ‘sustainable design’ has yet to fully mature, yet in a wider context is of profound consequence. A whole-of-life carbon perspective on a building means designing for the likely natural hazards within the asset’s expected lifespan, be that earthquake, storms, damage, bushfires, fires, and so on, ¬with financial mitigation (e.g., insurance) part, but not all, of the picture.Keywords: retrofit, sustainability, earthquake, reuse, carbon, resilient
Procedia PDF Downloads 736415 Field Experience with Sweep Frequency Response Analysis for Power Transformer Diagnosis
Authors: Ambuj Kumar, Sunil Kumar Singh, Shrikant Singh, Zakir Husain, R. K. Jarial
Abstract:
Sweep frequency response analysis has been turning out a powerful tool for investigation of mechanical as well as electrical integration of transformers. In this paper various aspect of practical application of SFRA has been studied. Open circuit and short circuit measurement were done on different phases of high voltage and low voltage winding. A case study was presented for the transformer of rating 31.5 MVA for various frequency ranges. A clear picture was presented for sub- frequency ranges for HV as well as LV winding. The main motive of work is to investigate high voltage short circuit response. The theoretical concept about SFRA responses is validated with expert system software results.Keywords: transformer winding, SFRA, OCT & SCT, frequency deviation
Procedia PDF Downloads 9576414 Liquefaction Assessment of Marine Soil in Western Yemen Region Based on Laboratory and Field Tests
Authors: Monalisha Nayak, T. G. Sitharam
Abstract:
Liquefaction is a major threat for sites consists of or on sandy soil. But this present study concentrates on the behavior of fine soil under cyclic loading. This paper presents the study of liquefaction susceptibility of marine silty clay to clayey silt for an offshore site near western Yemen. The submerged and loose sediment condition of marine soil of an offshore site can favour liquefaction during earthquakes. In this regard, the liquefaction susceptibility of the site was carried out based on both field test results and laboratory test results. From field test results of seismic cone penetration test (SCPT), liquefaction susceptibility was assessed considering normalized cone tip resistance, and normalized friction ratio and results give an idea regarding both cyclic mobility and flow liquefaction. Laboratory cyclic triaxial tests were also conducted on saturated undisturbed and remoulded sample to study the effect of cyclic loading on strength and strain characteristics. Liquefaction susceptibility of the marine soft soil was also carried out based on index properties like grain size distribution, natural moisture content and liquid limit of soil.Keywords: index properties, liquefaction, marine soil, seismic cone penetration test (SCPT)
Procedia PDF Downloads 2326413 Application of EEG Wavelet Power to Prediction of Antidepressant Treatment Response
Authors: Dorota Witkowska, Paweł Gosek, Lukasz Swiecicki, Wojciech Jernajczyk, Bruce J. West, Miroslaw Latka
Abstract:
In clinical practice, the selection of an antidepressant often degrades to lengthy trial-and-error. In this work we employ a normalized wavelet power of alpha waves as a biomarker of antidepressant treatment response. This novel EEG metric takes into account both non-stationarity and intersubject variability of alpha waves. We recorded resting, 19-channel EEG (closed eyes) in 22 inpatients suffering from unipolar (UD, n=10) or bipolar (BD, n=12) depression. The EEG measurement was done at the end of the short washout period which followed previously unsuccessful pharmacotherapy. The normalized alpha wavelet power of 11 responders was markedly different than that of 11 nonresponders at several, mostly temporoparietal sites. Using the prediction of treatment response based on the normalized alpha wavelet power, we achieved 81.8% sensitivity and 81.8% specificity for channel T4.Keywords: alpha waves, antidepressant, treatment outcome, wavelet
Procedia PDF Downloads 3156412 The Acquisition of Case in Biological Domain Based on Text Mining
Authors: Shen Jian, Hu Jie, Qi Jin, Liu Wei Jie, Chen Ji Yi, Peng Ying Hong
Abstract:
In order to settle the problem of acquiring case in biological related to design problems, a biometrics instance acquisition method based on text mining is presented. Through the construction of corpus text vector space and knowledge mining, the feature selection, similarity measure and case retrieval method of text in the field of biology are studied. First, we establish a vector space model of the corpus in the biological field and complete the preprocessing steps. Then, the corpus is retrieved by using the vector space model combined with the functional keywords to obtain the biological domain examples related to the design problems. Finally, we verify the validity of this method by taking the example of text.Keywords: text mining, vector space model, feature selection, biologically inspired design
Procedia PDF Downloads 2626411 Projective Lag Synchronization in Drive-Response Dynamical Networks via Hybrid Feedback Control
Authors: Mohd Salmi Md Noorani, Ghada Al-Mahbashi, Sakhinah Abu Bakar
Abstract:
This paper investigates projective lag synchronization (PLS) behavior in drive response dynamical networks (DRDNs) model with identical nodes. A hybrid feedback control method is designed to achieve the PLS with mismatch and without mismatch terms. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method.Keywords: drive-response dynamical network, projective lag synchronization, hybrid feedback control, stability theory
Procedia PDF Downloads 3916410 Shock Response Analysis of Soil-Structure Systems Induced by Near-Fault Pulses
Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian
Abstract:
Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by Shock Response Spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear Soil–Structure Interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.Keywords: nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation
Procedia PDF Downloads 3166409 Nonlinear Dynamic Response of Helical Gear with Torque-Limiter
Authors: Ahmed Guerine, Ali El Hafidi, Bruno Martin, Philippe Leclaire
Abstract:
This paper investigates the nonlinear dynamic response of a mechanical torque limiter which is used to protect drive parts from overload (helical transmission gears). The system is driven by four excitations: two external excitations (aerodynamics torque and force) and two internal excitations (two mesh stiffness fluctuations). In this work, we develop a dynamic model with lumped components and 28 degrees of freedom. We use the Runge Kutta step-by-step time integration numerical algorithm to solve the equations of motion obtained by Lagrange formalism. The numerical results have allowed us to identify the sources of vibration in the wind turbine. Also, they are useful to help the designer to make the right design and correctly choose the times for maintenance.Keywords: two-stage helical gear, lumped model, dynamic response, torque-limiter
Procedia PDF Downloads 3536408 Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders
Authors: Helia Barzegar Sedigh, Farzaneh Hamedi, Payam Ashtari
Abstract:
There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.Keywords: experimental study, finite element model, flexural and shear yielding, t-resisting frame
Procedia PDF Downloads 2326407 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion
Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro
Abstract:
Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.Keywords: basketball, deep learning, feature extraction, single-camera, tracking
Procedia PDF Downloads 1386406 A Product-Specific/Unobservable Approach to Segmentation for a Value Expressive Credit Card Service
Authors: Manfred F. Maute, Olga Naumenko, Raymond T. Kong
Abstract:
Using data from a nationally representative financial panel of Canadian households, this study develops a psychographic segmentation of the customers of a value-expressive credit card service and tests for effects on relational response differences. The variety of segments elicited by agglomerative and k means clustering and the familiar profiles of individual clusters suggest that the face validity of the psychographic segmentation was quite high. Segmentation had a significant effect on customer satisfaction and relationship depth. However, when socio-demographic characteristics like household size and income were accounted for in the psychographic segmentation, the effect on relational response differences was magnified threefold. Implications for the segmentation of financial services markets are considered.Keywords: customer satisfaction, financial services, psychographics, response differences, segmentation
Procedia PDF Downloads 3346405 Image Instance Segmentation Using Modified Mask R-CNN
Authors: Avatharam Ganivada, Krishna Shah
Abstract:
The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision
Procedia PDF Downloads 736404 Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt
Authors: R. E. Fat-Helbary, A. A. Abdel-latief, M. S. Arfa, Alaa Mostafa
Abstract:
The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design.Keywords: shallow seismic refraction technique, Kurkur area, p and s-wave velocities, geotechnical parameters, bulk density, Kalabsha faults
Procedia PDF Downloads 4276403 Nanocrystalline Na0.1V2O5.nH2Oxerogel Thin Film for Gas Sensing
Authors: M. S. Al-Assiri, M. M. El-Desoky, A. A. Bahgat
Abstract:
Nanocrystalline thin film of Na0.1V2O5.nH2O xerogel obtained by sol-gel synthesis was used as a gas sensor. Gas sensing properties of different gases such as hydrogen, petroleum and humidity were investigated. Applying XRD and TEM the size of the nanocrystals is found to be 7.5 nm. SEM shows a highly porous structure with submicron meter-sized voids present throughout the sample. FTIR measurement shows different chemical groups identifying the obtained series of gels. The sample was n-type semiconductor according to the thermoelectric power and electrical conductivity. It can be seen that the sensor response curves from 130°C to 150°C show a rapid increase in sensitivity for all types of gas injection, low response values for heating period and the rapid high response values for cooling period. This result may suggest that this material is able to act as gas sensor during the heating and cooling process.Keywords: sol-gel, thermoelectric power, XRD, TEM, gas sensing
Procedia PDF Downloads 3036402 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.Keywords: camera-based OCR, feature extraction, document, image processing, grocery products
Procedia PDF Downloads 4066401 Applying Kinect on the Development of a Customized 3D Mannequin
Authors: Shih-Wen Hsiao, Rong-Qi Chen
Abstract:
In the field of fashion design, 3D Mannequin is a kind of assisting tool which could rapidly realize the design concepts. While the concept of 3D Mannequin is applied to the computer added fashion design, it will connect with the development and the application of design platform and system. Thus, the situation mentioned above revealed a truth that it is very critical to develop a module of 3D Mannequin which would correspond with the necessity of fashion design. This research proposes a concrete plan that developing and constructing a system of 3D Mannequin with Kinect. In the content, ergonomic measurements of objective human features could be attained real-time through the implement with depth camera of Kinect, and then the mesh morphing can be implemented through transformed the locations of the control-points on the model by inputting those ergonomic data to get an exclusive 3D mannequin model. In the proposed methodology, after the scanned points from the Kinect are revised for accuracy and smoothening, a complete human feature would be reconstructed by the ICP algorithm with the method of image processing. Also, the objective human feature could be recognized to analyze and get real measurements. Furthermore, the data of ergonomic measurements could be applied to shape morphing for the division of 3D Mannequin reconstructed by feature curves. Due to a standardized and customer-oriented 3D Mannequin would be generated by the implement of subdivision, the research could be applied to the fashion design or the presentation and display of 3D virtual clothes. In order to examine the practicality of research structure, a system of 3D Mannequin would be constructed with JAVA program in this study. Through the revision of experiments the practicability-contained research result would come out.Keywords: 3D mannequin, kinect scanner, interactive closest point, shape morphing, subdivision
Procedia PDF Downloads 3066400 Accelerated Evaluation of Structural Reliability under Tsunami Loading
Authors: Sai Hung Cheung, Zhe Shao
Abstract:
It is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis in view of recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 which brought huge losses of lives and properties. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of a recently proposed moving least squares response surface approach for stochastic sampling and the Subset Simulation algorithm is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.Keywords: response surface, stochastic simulation, structural reliability tsunami, risk
Procedia PDF Downloads 6766399 The Role of the Stud’s Configuration in the Structural Response of Composite Bridges
Authors: Mohammad Mahdi Mohammadi Dehnavi, Alessandra De Angelis, Maria Rosaria Pecce
Abstract:
This paper deals with the role of studs in the structural response of steel-concrete composite beams. A tri-linear slip-shear strength law is assumed according to literature and codes provisions for developing a finite element (FE) model of a case study of a composite deck. The variation of the strength and ductility of the connection is implemented in the numerical model carrying out nonlinear analyses. The results confirm the utility of the model to evaluate the importance of the studs capacity, ductility and strength on the global response (ductility and strength) of the structures but also to analyze the trend of slip and shear at interface along the beams.Keywords: stud connectors, finite element method, slip, shear load, steel-concrete composite bridge
Procedia PDF Downloads 1536398 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading
Authors: Robert Caulk
Abstract:
A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration
Procedia PDF Downloads 896397 Understanding Seismic Behavior of Masonry Buildings in Earthquake
Authors: Alireza Mirzaee, Soosan Abdollahi, Mohammad Abdollahi
Abstract:
Unreinforced Masonry (URM) wall is vulnerable in resisting horizontal load such as wind and seismic loading. It is due to the low tensile strength of masonry, the mortar connection between the brick units. URM structures are still widely used in the world as an infill wall and commonly constructed with door and window openings. This research aimed to investigate the behavior of URM wall with openings when horizontal load acting on it and developed load-drift relationship of the wall. The finite element (FE) method was chosen to numerically simulate the behavior of URM with openings. In this research, ABAQUS, commercially available FE software with explicit solver was employed. In order to ensure the numerical model can accurately represent the behavior of an URM wall, the model was validated for URM wall without openings using available experimental results. Load-displacement relationship of numerical model is well agreed with experimental results. Evidence shows the same load displacement curve shape obtained from the FE model. After validating the model, parametric study conducted on URM wall with openings to investigate the influence of area of openings and pre-compressive load on the horizontal load capacity of the wall. The result showed that the increasing of area of openings decreases the capacity of the wall in resisting horizontal loading. It is also well observed from the result that capacity of the wall increased with the increasing of pre-compressive load applied on the top of the walls.Keywords: masonry constructions, performance at earthquake, MSJC-08 (ASD), bearing wall, tie-column
Procedia PDF Downloads 2516396 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures
Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar
Abstract:
Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.Keywords: wavelet transform, computational error, computational duration, strong ground motion data
Procedia PDF Downloads 378