Search results for: data visualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25456

Search results for: data visualization

24496 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 260
24495 Integrated Model for Enhancing Data Security Performance in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 477
24494 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 133
24493 Challenges in Multi-Cloud Storage Systems for Mobile Devices

Authors: Rajeev Kumar Bedi, Jaswinder Singh, Sunil Kumar Gupta

Abstract:

The demand for cloud storage is increasing because users want continuous access their data. Cloud Storage revolutionized the way how users access their data. A lot of cloud storage service providers are available as DropBox, G Drive, and providing limited free storage and for extra storage; users have to pay money, which will act as a burden on users. To avoid the issue of limited free storage, the concept of Multi Cloud Storage introduced. In this paper, we will discuss the limitations of existing Multi Cloud Storage systems for mobile devices.

Keywords: cloud storage, data privacy, data security, multi cloud storage, mobile devices

Procedia PDF Downloads 699
24492 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: decision making, human capital analytics, talent management, talent value chain

Procedia PDF Downloads 187
24491 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem

Authors: Ouafa Amira, Jiangshe Zhang

Abstract:

Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.

Keywords: clustering, fuzzy c-means, regularization, relative entropy

Procedia PDF Downloads 259
24490 Sampled-Data Model Predictive Tracking Control for Mobile Robot

Authors: Wookyong Kwon, Sangmoon Lee

Abstract:

In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.

Keywords: model predictive control, sampled-data control, linear parameter varying systems, LPV

Procedia PDF Downloads 309
24489 Development of Typical Meteorological Year for Passive Cooling Applications Using World Weather Data

Authors: Nasser A. Al-Azri

Abstract:

The effectiveness of passive cooling techniques is assessed based on bioclimatic charts that require the typical meteorological year (TMY) for a specified location for their development. However, TMYs are not always available; mainly due to the scarcity of records of solar radiation which is an essential component used in developing common TMYs intended for general uses. Since solar radiation is not required in the development of the bioclimatic chart, this work suggests developing TMYs based solely on the relevant parameters. This approach improves the accuracy of the developed TMY since only the relevant parameters are considered and it also makes the development of the TMY more accessible since solar radiation data are not used. The presented paper will also discuss the development of the TMY from the raw data available at the NOAA-NCDC archive of world weather data and the construction of the bioclimatic charts for some randomly selected locations around the world.

Keywords: bioclimatic charts, passive cooling, TMY, weather data

Procedia PDF Downloads 240
24488 Cognitive Behavioral Training to Enhance Performance and Well-Being in Collegiate Athletes

Authors: Angelina Tarabokija

Abstract:

This study looks into how cognitive behavioral training (CBT) techniques affect collegiate track and field athletes' anxiety related to performance, with a focus on distance runners. The goal of the research is to discover whether consistent use of cognitive behavioral therapy (CBT) methods, such as progressive muscle relaxation, yoga (Y-CBT), visualization, relaxed breathing, and meditation, can reduce performance anxiety and improve sports performance. Six runners from the Rider Track & Field team, aged eighteen to twenty-three, participated in the quantitative research design used in the technique. Prior to employing CBT techniques every day for two weeks, including before competitions or on race day, participants conducted baseline assessments using the Sport Anxiety Scale-2 (SAS-2). The SAS-2 was used in post-competition evaluations to track alterations in performance anxiety. The findings show that participants' total trait anxiety levels significantly decreased after utilizing CBT techniques for one week. However, after two weeks, a few participants' anxiety levels slightly increased, pointing to the need for more research and regular practice. The study indicates that CBT approaches can effectively reduce performance anxiety and increase athletic performance in collegiate track and field athletes, despite constraints related to participant motivation and potential confounding variables. Future areas for research could entail examining the precise impacts of worry, interruption of attention, and bodily anxiety on performance, as well as adding more controls. Overall, by providing insights into evidence-based strategies to maximize mental states and athletic performance in collegiate athletes, this study advances the area of sports psychology.

Keywords: cognitive behavioral training, performance, athletes, anxiety, well-being, SAS-2, Sport, trait anxiety, somatic anxiety

Procedia PDF Downloads 11
24487 Development of Management System of the Experience of Defensive Modeling and Simulation by Data Mining Approach

Authors: D. Nam Kim, D. Jin Kim, Jeonghwan Jeon

Abstract:

Defense Defensive Modeling and Simulation (M&S) is a system which enables impracticable training for reducing constraints of time, space and financial resources. The necessity of defensive M&S has been increasing not only for education and training but also virtual fight. Soldiers who are using defensive M&S for education and training will obtain empirical knowledge and know-how. However, the obtained knowledge of individual soldiers have not been managed and utilized yet since the nature of military organizations: confidentiality and frequent change of members. Therefore, this study aims to develop a management system for the experience of defensive M&S based on data mining approach. Since individual empirical knowledge gained through using the defensive M&S is both quantitative and qualitative data, data mining approach is appropriate for dealing with individual empirical knowledge. This research is expected to be helpful for soldiers and military policy makers.

Keywords: data mining, defensive m&s, management system, knowledge management

Procedia PDF Downloads 255
24486 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 236
24485 Imputation of Urban Movement Patterns Using Big Data

Authors: Eusebio Odiari, Mark Birkin, Susan Grant-Muller, Nicolas Malleson

Abstract:

Big data typically refers to consumer datasets revealing some detailed heterogeneity in human behavior, which if harnessed appropriately, could potentially revolutionize our understanding of the collective phenomena of the physical world. Inadvertent missing values skew these datasets and compromise the validity of the thesis. Here we discuss a conceptually consistent strategy for identifying other relevant datasets to combine with available big data, to plug the gaps and to create a rich requisite comprehensive dataset for subsequent analysis. Specifically, emphasis is on how these methodologies can for the first time enable the construction of more detailed pictures of passenger demand and drivers of mobility on the railways. These methodologies can predict the influence of changes within the network (like a change in time-table or impact of a new station), explain local phenomena outside the network (like rail-heading) and the other impacts of urban morphology. Our analysis also reveals that our new imputation data model provides for more equitable revenue sharing amongst network operators who manage different parts of the integrated UK railways.

Keywords: big-data, micro-simulation, mobility, ticketing-data, commuters, transport, synthetic, population

Procedia PDF Downloads 231
24484 Analyzing Data Protection in the Era of Big Data under the Framework of Virtual Property Layer Theory

Authors: Xiaochen Mu

Abstract:

Data rights confirmation, as a key legal issue in the development of the digital economy, is undergoing a transition from a traditional rights paradigm to a more complex private-economic paradigm. In this process, data rights confirmation has evolved from a simple claim of rights to a complex structure encompassing multiple dimensions of personality rights and property rights. Current data rights confirmation practices are primarily reflected in two models: holistic rights confirmation and process rights confirmation. The holistic rights confirmation model continues the traditional "one object, one right" theory, while the process rights confirmation model, through contractual relationships in the data processing process, recognizes rights that are more adaptable to the needs of data circulation and value release. In the design of the data property rights system, there is a hierarchical characteristic aimed at decoupling from raw data to data applications through horizontal stratification and vertical staging. This design not only respects the ownership rights of data originators but also, based on the usufructuary rights of enterprises, constructs a corresponding rights system for different stages of data processing activities. The subjects of data property rights include both data originators, such as users, and data producers, such as enterprises, who enjoy different rights at different stages of data processing. The intellectual property rights system, with the mission of incentivizing innovation and promoting the advancement of science, culture, and the arts, provides a complete set of mechanisms for protecting innovative results. However, unlike traditional private property rights, the granting of intellectual property rights is not an end in itself; the purpose of the intellectual property system is to balance the exclusive rights of the rights holders with the prosperity and long-term development of society's public learning and the entire field of science, culture, and the arts. Therefore, the intellectual property granting mechanism provides both protection and limitations for the rights holder. This perfectly aligns with the dual attributes of data. In terms of achieving the protection of data property rights, the granting of intellectual property rights is an important institutional choice that can enhance the effectiveness of the data property exchange mechanism. Although this is not the only path, the granting of data property rights within the framework of the intellectual property rights system helps to establish fundamental legal relationships and rights confirmation mechanisms and is more compatible with the classification and grading system of data. The modernity of the intellectual property rights system allows it to adapt to the needs of big data technology development through special clauses or industry guidelines, thus promoting the comprehensive advancement of data intellectual property rights legislation. This paper analyzes data protection under the virtual property layer theory and two-fold virtual property rights system. Based on the “bundle of right” theory, this paper establishes specific three-level data rights. This paper analyzes the cases: Google v. Vidal-Hall, Halliday v Creation Consumer Finance, Douglas v Hello Limited, Campbell v MGN and Imerman v Tchenquiz. This paper concluded that recognizing property rights over personal data and protecting data under the framework of intellectual property will be beneficial to establish the tort of misuse of personal information.

Keywords: data protection, property rights, intellectual property, Big data

Procedia PDF Downloads 40
24483 The Influence of Housing Choice Vouchers on the Private Rental Market

Authors: Randy D. Colon

Abstract:

Through a freedom of information request, data pertaining to Housing Choice Voucher (HCV) households has been obtained from the Chicago Housing Authority, including rent price and number of bedrooms per HCV household, community area, and zip code from 2013 to the first quarter of 2018. Similar data pertaining to the private rental market will be obtained through public records found through the United States Department of Housing and Urban Development. The datasets will be analyzed through statistical and mapping software to investigate the potential link between HCV households and distorted rent prices. Quantitative data will be supplemented by qualitative data to investigate the lived experience of Chicago residents. Qualitative data will be collected at community meetings in the Chicago Englewood neighborhood through participation in neighborhood meetings and informal interviews with residents and community leaders. The qualitative data will be used to gain insight on the lived experience of community leaders and residents of the Englewood neighborhood in relation to housing, the rental market, and HCV. While there is an abundance of quantitative data on this subject, this qualitative data is necessary to capture the lived experience of local residents effected by a changing rental market. This topic reflects concerns voiced by members of the Englewood community, and this study aims to keep the community relevant in its findings.

Keywords: Chicago, housing, housing choice voucher program, housing subsidies, rental market

Procedia PDF Downloads 118
24482 The Dynamic Metadata Schema in Neutron and Photon Communities: A Case Study of X-Ray Photon Correlation Spectroscopy

Authors: Amir Tosson, Mohammad Reza, Christian Gutt

Abstract:

Metadata stands at the forefront of advancing data management practices within research communities, with particular significance in the realms of neutron and photon scattering. This paper introduces a groundbreaking approach—dynamic metadata schema—within the context of X-ray Photon Correlation Spectroscopy (XPCS). XPCS, a potent technique unravelling nanoscale dynamic processes, serves as an illustrative use case to demonstrate how dynamic metadata can revolutionize data acquisition, sharing, and analysis workflows. This paper explores the challenges encountered by the neutron and photon communities in navigating intricate data landscapes and highlights the prowess of dynamic metadata in addressing these hurdles. Our proposed approach empowers researchers to tailor metadata definitions to the evolving demands of experiments, thereby facilitating streamlined data integration, traceability, and collaborative exploration. Through tangible examples from the XPCS domain, we showcase how embracing dynamic metadata standards bestows advantages, enhancing data reproducibility, interoperability, and the diffusion of knowledge. Ultimately, this paper underscores the transformative potential of dynamic metadata, heralding a paradigm shift in data management within the neutron and photon research communities.

Keywords: metadata, FAIR, data analysis, XPCS, IoT

Procedia PDF Downloads 62
24481 Exploring SSD Suitable Allocation Schemes Incompliance with Workload Patterns

Authors: Jae Young Park, Hwansu Jung, Jong Tae Kim

Abstract:

Whether the data has been well parallelized is an important factor in the Solid-State-Drive (SSD) performance. SSD parallelization is affected by allocation scheme and it is directly connected to SSD performance. There are dynamic allocation and static allocation in representative allocation schemes. Dynamic allocation is more adaptive in exploiting write operation parallelism, while static allocation is better in read operation parallelism. Therefore, it is hard to select the appropriate allocation scheme when the workload is mixed read and write operations. We simulated conditions on a few mixed data patterns and analyzed the results to help the right choice for better performance. As the results, if data arrival interval is long enough prior operations to be finished and continuous read intensive data environment static allocation is more suitable. Dynamic allocation performs the best on write performance and random data patterns.

Keywords: dynamic allocation, NAND flash based SSD, SSD parallelism, static allocation

Procedia PDF Downloads 340
24480 Social Data Aggregator and Locator of Knowledge (STALK)

Authors: Rashmi Raghunandan, Sanjana Shankar, Rakshitha K. Bhat

Abstract:

Social media contributes a vast amount of data and information about individuals to the internet. This project will greatly reduce the need for unnecessary manual analysis of large and diverse social media profiles by filtering out and combining the useful information from various social media profiles, eliminating irrelevant data. It differs from the existing social media aggregators in that it does not provide a consolidated view of various profiles. Instead, it provides consolidated INFORMATION derived from the subject’s posts and other activities. It also allows analysis over multiple profiles and analytics based on several profiles. We strive to provide a query system to provide a natural language answer to questions when a user does not wish to go through the entire profile. The information provided can be filtered according to the different use cases it is used for.

Keywords: social network, analysis, Facebook, Linkedin, git, big data

Procedia PDF Downloads 444
24479 Data Integrity between Ministry of Education and Private Schools in the United Arab Emirates

Authors: Rima Shishakly, Mervyn Misajon

Abstract:

Education is similar to other businesses and industries. Achieving data integrity is essential in order to attain a significant supporting for all the stakeholders in the educational sector. Efficient data collect, flow, processing, storing and retrieving are vital in order to deliver successful solutions to the different stakeholders. Ministry of Education (MOE) in United Arab Emirates (UAE) has adopted ‘Education 2020’ a series of five-year plans designed to introduce advanced education management information systems. As part of this program, in 2010 MOE implemented Student Information Systems (SIS) to manage and monitor the students’ data and information flow between MOE and international private schools in UAE. This paper is going to discuss data integrity concerns between MOE, and private schools. The paper will clarify the data integrity issues and will indicate the challenges that face private schools in UAE.

Keywords: education management information systems (EMIS), student information system (SIS), United Arab Emirates (UAE), ministry of education (MOE), (KHDA) the knowledge and human development authority, Abu Dhabi educational counsel (ADEC)

Procedia PDF Downloads 222
24478 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems

Authors: Georgi Y. Georgiev, Matthew Brouillet

Abstract:

This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.

Keywords: complexity, self-organization, agent based modelling, efficiency

Procedia PDF Downloads 68
24477 Using Game Engines in Lightning Shielding: The Application of the Rolling Spheres Method on Virtual As-Built Power Substations

Authors: Yuri A. Gruber, Matheus Rosendo, Ulisses G. A. Casemiro, Klaus de Geus, Rafael T. Bee

Abstract:

Lightning strikes can cause severe negative impacts to the electrical sector causing direct damage to equipment as well as shutdowns, especially when occurring in power substations. In order to mitigate this problem, a meticulous planning of the power substation protection system is of vital importance. A critical part of this is the distribution of shielding wires through the substation, which creates a 3D imaginary protection mesh similar to a circus tarpaulin. Equipment enclosed in the volume defined by that 3D mesh is considered protected against lightning strikes. The use of traditional methods of longitudinal cutting analysis based on 2D CAD tools makes the process laborious and the results obtained may not guarantee satisfactory protection of electrical equipment. This work describes the application of a Game Engine to the problem of lightning protection of power substations providing the visualization of the 3D protection mesh, the amount of protected components and the highlight of equipment which remain unprotected. In addition, aspects regarding the implementation and the advantages of approaching the problem using Unreal® Engine 4 are described. In order to validate results, a comparison with traditional 2D methods is applied to the same case study to which the proposed technique has been applied. Finally, a comparative study involving different levels of protection using the technique developed in this work is presented, showing that modern game engines can be a powerful accessory for simulations in several areas of engineering.

Keywords: game engine, rolling spheres method, substation protection, UE4, Unreal Engine 4

Procedia PDF Downloads 527
24476 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 532
24475 Circular Tool and Dynamic Approach to Grow the Entrepreneurship of Macroeconomic Metabolism

Authors: Maria Areias, Diogo Simões, Ana Figueiredo, Anishur Rahman, Filipa Figueiredo, João Nunes

Abstract:

It is expected that close to 7 billion people will live in urban areas by 2050. In order to improve the sustainability of the territories and its transition towards circular economy, it’s necessary to understand its metabolism and promote and guide the entrepreneurship answer. The study of a macroeconomic metabolism involves the quantification of the inputs, outputs and storage of energy, water, materials and wastes for an urban region. This quantification and analysis representing one opportunity for the promotion of green entrepreneurship. There are several methods to assess the environmental impacts of an urban territory, such as human and environmental risk assessment (HERA), life cycle assessment (LCA), ecological footprint assessment (EF), material flow analysis (MFA), physical input-output table (PIOT), ecological network analysis (ENA), multicriteria decision analysis (MCDA) among others. However, no consensus exists about which of those assessment methods are best to analyze the sustainability of these complex systems. Taking into account the weaknesses and needs identified, the CiiM - Circular Innovation Inter-Municipality project aims to define an uniform and globally accepted methodology through the integration of various methodologies and dynamic approaches to increase the efficiency of macroeconomic metabolisms and promoting entrepreneurship in a circular economy. The pilot territory considered in CiiM project has a total area of 969,428 ha, comprising a total of 897,256 inhabitants (about 41% of the population of the Center Region). The main economic activities in the pilot territory, which contribute to a gross domestic product of 14.4 billion euros, are: social support activities for the elderly; construction of buildings; road transport of goods, retailing in supermarkets and hypermarkets; mass production of other garments; inpatient health facilities; and the manufacture of other components and accessories for motor vehicles. The region's business network is mostly constituted of micro and small companies (similar to the Central Region of Portugal), with a total of 53,708 companies identified in the CIM Region of Coimbra (39 large companies), 28,146 in the CIM Viseu Dão Lafões (22 large companies) and 24,953 in CIM Beiras and Serra da Estrela (13 large companies). For the construction of the database was taking into account data available at the National Institute of Statistics (INE), General Directorate of Energy and Geology (DGEG), Eurostat, Pordata, Strategy and Planning Office (GEP), Portuguese Environment Agency (APA), Commission for Coordination and Regional Development (CCDR) and Inter-municipal Community (CIM), as well as dedicated databases. In addition to the collection of statistical data, it was necessary to identify and characterize the different stakeholder groups in the pilot territory that are relevant to the different metabolism components under analysis. The CIIM project also adds the potential of a Geographic Information System (GIS) so that it is be possible to obtain geospatial results of the territorial metabolisms (rural and urban) of the pilot region. This platform will be a powerful visualization tool of flows of products/services that occur within the region and will support the stakeholders, improving their circular performance and identifying new business ideas and symbiotic partnerships.

Keywords: circular economy tools, life cycle assessment macroeconomic metabolism, multicriteria decision analysis, decision support tools, circular entrepreneurship, industrial and regional symbiosis

Procedia PDF Downloads 101
24474 Data Protection, Data Privacy, Research Ethics in Policy Process Towards Effective Urban Planning Practice for Smart Cities

Authors: Eugenio Ferrer Santiago

Abstract:

The growing complexities of the modern world on high-end gadgets, software applications, scams, identity theft, and Artificial Intelligence (AI) make the “uninformed” the weak and vulnerable to be victims of cybercrimes. Artificial Intelligence is not a new thing in our daily lives; the principles of database management, logical programming, and garbage in and garbage out are all connected to AI. The Philippines had in place legal safeguards against the abuse of cyberspace, but self-regulation of key industry players and self-protection by individuals are primordial to attain the success of these initiatives. Data protection, Data Privacy, and Research Ethics must work hand in hand during the policy process in the course of urban planning practice in different environments. This paper focuses on the interconnection of data protection, data privacy, and research ethics in coming up with clear-cut policies against perpetrators in the urban planning professional practice relevant in sustainable communities and smart cities. This paper shall use expository methodology under qualitative research using secondary data from related literature, interviews/blogs, and the World Wide Web resources. The claims and recommendations of this paper will help policymakers and implementers in the policy cycle. This paper shall contribute to the body of knowledge as a simple treatise and communication channel to the reading community and future researchers to validate the claims and start an intellectual discourse for better knowledge generation for the good of all in the near future.

Keywords: data privacy, data protection, urban planning, research ethics

Procedia PDF Downloads 60
24473 Review of the Road Crash Data Availability in Iraq

Authors: Abeer K. Jameel, Harry Evdorides

Abstract:

Iraq is a middle income country where the road safety issue is considered one of the leading causes of deaths. To control the road risk issue, the Iraqi Ministry of Planning, General Statistical Organization started to organise a collection system of traffic accidents data with details related to their causes and severity. These data are published as an annual report. In this paper, a review of the available crash data in Iraq will be presented. The available data represent the rate of accidents in aggregated level and classified according to their types, road users’ details, and crash severity, type of vehicles, causes and number of causalities. The review is according to the types of models used in road safety studies and research, and according to the required road safety data in the road constructions tasks. The available data are also compared with the road safety dataset published in the United Kingdom as an example of developed country. It is concluded that the data in Iraq are suitable for descriptive and exploratory models, aggregated level comparison analysis, and evaluation and monitoring the progress of the overall traffic safety performance. However, important traffic safety studies require disaggregated level of data and details related to the factors of the likelihood of traffic crashes. Some studies require spatial geographic details such as the location of the accidents which is essential in ranking the roads according to their level of safety, and name the most dangerous roads in Iraq which requires tactic plan to control this issue. Global Road safety agencies interested in solve this problem in low and middle-income countries have designed road safety assessment methodologies which are basing on the road attributes data only. Therefore, in this research it is recommended to use one of these methodologies.

Keywords: road safety, Iraq, crash data, road risk assessment, The International Road Assessment Program (iRAP)

Procedia PDF Downloads 256
24472 Dys-Regulation of Immune and Inflammatory Response in in vitro Fertilization Implantation Failure Patients under Ovarian Stimulation

Authors: Amruta D. S. Pathare, Indira Hinduja, Kusum Zaveri

Abstract:

Implantation failure (IF) even after the good-quality embryo transfer (ET) in the physiologically normal endometrium is the main obstacle in in vitro fertilization (IVF). Various microarray studies have been performed worldwide to elucidate the genes requisite for endometrial receptivity. These studies have included the population based on different phases of menstrual cycle during natural cycle and stimulated cycle in normal fertile women. Additionally, the literature is also available in recurrent implantation failure patients versus oocyte donors in natural cycle. However, for the first time, we aim to study the genomics of endometrial receptivity in IF patients under controlled ovarian stimulation (COS) during which ET is generally practised in IVF. Endometrial gene expression profiling in IF patients (n=10) and oocyte donors (n=8) were compared during window of implantation under COS by whole genome microarray (using Illumina platform). Enrichment analysis of microarray data was performed to determine dys-regulated biological functions and pathways using Database for Annotation, Visualization and Integrated Discovery, v6.8 (DAVID). The enrichment mapping was performed with the help of Cytoscape software. Microarray results were validated by real-time PCR. Localization of genes related to immune response (Progestagen-Associated Endometrial Protein (PAEP), Leukaemia Inhibitory Factor (LIF), Interleukin-6 Signal Transducer (IL6ST) was detected by immunohistochemistry. The study revealed 418 genes downregulated and 519 genes upregulated in IF patients compared to healthy fertile controls. The gene ontology, pathway analysis and enrichment mapping revealed significant downregulation in activation and regulation of immune and inflammation response in IF patients under COS. The lower expression of Progestagen Associated Endometrial Protein (PAEP), Leukemia Inhibitory Factor (LIF) and Interleukin 6 Signal Transducer (IL6ST) in cases compared to controls by real time and immunohistochemistry suggests the functional importance of these genes. The study was proved useful to uncover the probable reason of implantation failure being imbalance of immune and inflammatory regulation in our group of subjects. Based on the present study findings, a panel of significant dysregulated genes related to immune and inflammatory pathways needs to be further substantiated in larger cohort in natural as well as stimulated cycle. Upon which these genes could be screened in IF patients during window of implantation (WOI) before going for embryo transfer or any other immunological treatment. This would help to estimate the regulation of specific immune response during WOI in a patient. The appropriate treatment of either activation of immune response or suppression of immune response can be then attempted in IF patients to enhance the receptivity of endometrium.

Keywords: endometrial receptivity, immune and inflammatory response, gene expression microarray, window of implantation

Procedia PDF Downloads 155
24471 Eliciting and Confirming Data, Information, Knowledge and Wisdom in a Specialist Health Care Setting - The Wicked Method

Authors: Sinead Impey, Damon Berry, Selma Furtado, Miriam Galvin, Loretto Grogan, Orla Hardiman, Lucy Hederman, Mark Heverin, Vincent Wade, Linda Douris, Declan O'Sullivan, Gaye Stephens

Abstract:

Healthcare is a knowledge-rich environment. This knowledge, while valuable, is not always accessible outside the borders of individual clinics. This research aims to address part of this problem (at a study site) by constructing a maximal data set (knowledge artefact) for motor neurone disease (MND). This data set is proposed as an initial knowledge base for a concurrent project to develop an MND patient data platform. It represents the domain knowledge at the study site for the duration of the research (12 months). A knowledge elicitation method was also developed from the lessons learned during this process - the WICKED method. WICKED is an anagram of the words: eliciting and confirming data, information, knowledge, wisdom. But it is also a reference to the concept of wicked problems, which are complex and challenging, as is eliciting expert knowledge. The method was evaluated at a second site, and benefits and limitations were noted. Benefits include that the method provided a systematic way to manage data, information, knowledge and wisdom (DIKW) from various sources, including healthcare specialists and existing data sets. Limitations surrounded the time required and how the data set produced only represents DIKW known during the research period. Future work is underway to address these limitations.

Keywords: healthcare, knowledge acquisition, maximal data sets, action design science

Procedia PDF Downloads 362
24470 Tool for Metadata Extraction and Content Packaging as Endorsed in OAIS Framework

Authors: Payal Abichandani, Rishi Prakash, Paras Nath Barwal, B. K. Murthy

Abstract:

Information generated from various computerization processes is a potential rich source of knowledge for its designated community. To pass this information from generation to generation without modifying the meaning is a challenging activity. To preserve and archive the data for future generations it’s very essential to prove the authenticity of the data. It can be achieved by extracting the metadata from the data which can prove the authenticity and create trust on the archived data. Subsequent challenge is the technology obsolescence. Metadata extraction and standardization can be effectively used to resolve and tackle this problem. Metadata can be categorized at two levels i.e. Technical and Domain level broadly. Technical metadata will provide the information that can be used to understand and interpret the data record, but only this level of metadata isn’t sufficient to create trustworthiness. We have developed a tool which will extract and standardize the technical as well as domain level metadata. This paper is about the different features of the tool and how we have developed this.

Keywords: digital preservation, metadata, OAIS, PDI, XML

Procedia PDF Downloads 393
24469 The Trigger-DAQ System in the Mu2e Experiment

Authors: Antonio Gioiosa, Simone Doanti, Eric Flumerfelt, Luca Morescalchi, Elena Pedreschi, Gianantonio Pezzullo, Ryan A. Rivera, Franco Spinella

Abstract:

The Mu2e experiment at Fermilab aims to measure the charged-lepton flavour violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. With the expected experimental sensitivity, Mu2e will improve the previous limit of four orders of magnitude. The Mu2e data acquisition (DAQ) system provides hardware and software to collect digitized data from the tracker, calorimeter, cosmic ray veto, and beam monitoring systems. Mu2e’s trigger and data acquisition system (TDAQ) uses otsdaq as its solution. developed at Fermilab, otsdaq uses the artdaq DAQ framework and art analysis framework, under-the-hood, for event transfer, filtering, and processing. Otsdaq is an online DAQ software suite with a focus on flexibility and scalability while providing a multi-user, web-based interface accessible through the Chrome or Firefox web browser. The detector read out controller (ROC) from the tracker and calorimeter stream out zero-suppressed data continuously to the data transfer controller (DTC). Data is then read over the PCIe bus to a software filter algorithm that selects events which are finally combined with the data flux that comes from a cosmic ray veto system (CRV).

Keywords: trigger, daq, mu2e, Fermilab

Procedia PDF Downloads 155
24468 An Improved Parallel Algorithm of Decision Tree

Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng

Abstract:

Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.

Keywords: classification, Gini index, parallel data mining, pruning ahead

Procedia PDF Downloads 124
24467 Mnemotopic Perspectives: Communication Design as Stabilizer for the Memory of Places

Authors: C. Galasso

Abstract:

The ancestral relationship between humans and geographical environment has long been at the center of an interdisciplinary dialogue, which sees one of its main research nodes in the relationship between memory and places. Given its deep complexity, this symbiotic connection continues to look for a proper definition that appears increasingly negotiated by different disciplines. Numerous fields of knowledge are involved, from anthropology to semiotics of space, from photography to architecture, up to subjects traditionally far from these reasonings. This is the case of Design of Communication, a young discipline, now confident in itself and its objectives, aimed at finding and investigating original forms of visualization and representation, between sedimented knowledge and new technologies. In particular, Design of Communication for the Territory offers an alternative perspective to the debate, encouraging the reactivation and reconstruction of the memory of places. Recognizing mnemotopes as a cultural object of vertical interpretation of the memory-place relationship, design can become a real mediator of the territorial fixation of memories, making them increasingly accessible and perceptible, contributing to build a topography of memory. According to a mnemotopic vision, Communication Design can support the passage from a memory in which the observer participates only as an individual to a collective form of memory. A mnemotopic form of Communication Design can, through geolocation and content map-based systems, make chronology a topography rooted in the territory and practicable; it can be useful to understand how the perception of the memory of places changes over time, considering how to insert them in the contemporary world. Mnemotopes can be materialized in different format of translation, editing and narration and then involved in complex systems of communication. The memory of places, therefore, if stabilized by the tools offered by Communication Design, can make visible ruins and territorial stratifications, illuminating them with new communicative interests that can be shared and participated.

Keywords: memory of places, design of communication, territory, mnemotope, topography of memory

Procedia PDF Downloads 134