Search results for: Web Mining
125 Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa
Authors: B. Mavhuru, N. S. Nethengwe
Abstract:
Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley.Keywords: drainage basin, geomorphological processes, gully development, land degradation, riparian land use and sediment load
Procedia PDF Downloads 305124 From Text to Data: Sentiment Analysis of Presidential Election Political Forums
Authors: Sergio V Davalos, Alison L. Watkins
Abstract:
User generated content (UGC) such as website post has data associated with it: time of the post, gender, location, type of device, and number of words. The text entered in user generated content (UGC) can provide a valuable dimension for analysis. In this research, each user post is treated as a collection of terms (words). In addition to the number of words per post, the frequency of each term is determined by post and by the sum of occurrences in all posts. This research focuses on one specific aspect of UGC: sentiment. Sentiment analysis (SA) was applied to the content (user posts) of two sets of political forums related to the US presidential elections for 2012 and 2016. Sentiment analysis results in deriving data from the text. This enables the subsequent application of data analytic methods. The SASA (SAIL/SAI Sentiment Analyzer) model was used for sentiment analysis. The application of SASA resulted with a sentiment score for each post. Based on the sentiment scores for the posts there are significant differences between the content and sentiment of the two sets for the 2012 and 2016 presidential election forums. In the 2012 forums, 38% of the forums started with positive sentiment and 16% with negative sentiment. In the 2016 forums, 29% started with positive sentiment and 15% with negative sentiment. There also were changes in sentiment over time. For both elections as the election got closer, the cumulative sentiment score became negative. The candidate who won each election was in the more posts than the losing candidates. In the case of Trump, there were more negative posts than Clinton’s highest number of posts which were positive. KNIME topic modeling was used to derive topics from the posts. There were also changes in topics and keyword emphasis over time. Initially, the political parties were the most referenced and as the election got closer the emphasis changed to the candidates. The performance of the SASA method proved to predict sentiment better than four other methods in Sentibench. The research resulted in deriving sentiment data from text. In combination with other data, the sentiment data provided insight and discovery about user sentiment in the US presidential elections for 2012 and 2016.Keywords: sentiment analysis, text mining, user generated content, US presidential elections
Procedia PDF Downloads 190123 Advancing Environmental Remediation Through the Production of Functional Porous Materials from Phosphorite Residue Tailings
Authors: Ali Mohammed Yimer, Ayalew Assen, Youssef Belmabkhout
Abstract:
Environmental remediation is a pressing global concern, necessitating innovative strategies to address the challenges posed by industrial waste and pollution. This study aims to advance environmental remediation by developing cutting-edge functional porous materials from phosphorite residue tailings. Phosphorite mining activities generate vast amounts of waste, which pose significant environmental risks due to their contaminants. The proposed approach involved transforming these phosphorite residue tailings into valuable porous materials through a series of physico-chemical processes including milling, acid-base leaching, designing or templating as well as formation processes. The key components of the tailings were extracted and processed to produce porous arrays with high surface area and porosity. These materials were engineered to possess specific properties suitable for environmental remediation applications, such as enhanced adsorption capacity and selectivity for target contaminants. The synthesized porous materials were thoroughly characterized using advanced analytical techniques (XRD, SEM-EDX, N2 sorption, TGA, FTIR) to assess their structural, morphological, and chemical properties. The performance of the materials in removing various pollutants, including heavy metals and organic compounds, were evaluated through batch adsorption experiments. Additionally, the potential for material regeneration and reusability was investigated to enhance the sustainability of the proposed remediation approach. The outdoors of this research holds significant promise for addressing the environmental challenges associated with phosphorite residue tailings. By valorizing these waste materials into porous materials with exceptional remediation capabilities, this study contributes to the development of sustainable and cost-effective solutions for environmental cleanup. Furthermore, the utilization of phosphorite residue tailings in this manner offers a potential avenue for the remediation of other contaminated sites, thereby fostering a circular economy approach to waste management.Keywords: functional porous materials, phosphorite residue tailings, adsorption, environmental remediation, sustainable solutions
Procedia PDF Downloads 57122 Testing and Validation Stochastic Models in Epidemiology
Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa
Abstract:
This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions
Procedia PDF Downloads 1121 Hydrothermal Alteration and Mineralization of Cisarua, Nanggung District, Bogor Regency, West Java, Indonesia
Authors: A. Asaga, N. I. Basuki
Abstract:
The research area is located in Cisarua, Bogor Regency, West Java, with 12,8 km2 wide. This area belongs to mining region of PT Aneka Tambang Tbk. The purpose of this research is to study geological condition, alteration type and pattern, and type of mineralization. Geomorphology of the research area is at young to mature stage, which can be divided into Ciparigi’s Parasite Volcanic Cone Unit, Ciparigi Caldera Valley Unit, Ciparigi Caldera Rim Hill Unit, and Pongkor Volcanic Hill. Stratigraphy of the research area consist of five units, they are Laharic Breccia (Pliocene), Pyroclastic Breccia, Lapilli Tuff, Flow Tuff, Fall Tuff, and Andesite Lava (Pleistocene). Based on mineral composition, it is interpreted that there is magma composition changing from rhyolite to andesitic. Geological structures in the research area are caused by NE-SW and N-S stress direction; they are Ciparay Right Strike-Slip Fault (Pliocene), Cisarua Right Strike-Slip Fault, G. Singa Left Strike-Slip Fault, and Cinyuncung Right Strike-Slip Fault (Pleistocene). Weak to strong hydrothermal alteration can be found in the research area.They are Chlorite ± Smectite ± Halloysite Zone, Smectite - Illite - Quartz Zone, Smectite - Kaolinite - Illite - Chlorite Zone, and Smectite - Chlorite - Calcite - Quartz Zone. The distribution and assemblage of alteration minerals is controlled by lithology and geological structures in Pleistocene. Mineralization produce ore minerals, those are pyrite, marcasite, chalcopyrite, sphalerite, galena, and chalcocite. There are calcite and quartz veins that show colloform, comb, and crystalline textures. Hydrothermal alteration assemblages, ore minerals, and cavity filling textures suggest that mineralization type in research area is epithermal low sulphidation.Keywords: Pongkor, hydrothermal alteration, epithermal, geochemistry
Procedia PDF Downloads 395120 Risk Assessment of Natural Gas Pipelines in Coal Mined Gobs Based on Bow-Tie Model and Cloud Inference
Authors: Xiaobin Liang, Wei Liang, Laibin Zhang, Xiaoyan Guo
Abstract:
Pipelines pass through coal mined gobs inevitably in the mining area, the stability of which has great influence on the safety of pipelines. After extensive literature study and field research, it was found that there are a few risk assessment methods for coal mined gob pipelines, and there is a lack of data on the gob sites. Therefore, the fuzzy comprehensive evaluation method is widely used based on expert opinions. However, the subjective opinions or lack of experience of individual experts may lead to inaccurate evaluation results. Hence the accuracy of the results needs to be further improved. This paper presents a comprehensive approach to achieve this purpose by combining bow-tie model and cloud inference. The specific evaluation process is as follows: First, a bow-tie model composed of a fault tree and an event tree is established to graphically illustrate the probability and consequence indicators of pipeline failure. Second, the interval estimation method can be scored in the form of intervals to improve the accuracy of the results, and the censored mean algorithm is used to remove the maximum and minimum values of the score to improve the stability of the results. The golden section method is used to determine the weight of the indicators and reduce the subjectivity of index weights. Third, the failure probability and failure consequence scores of the pipeline are converted into three numerical features by using cloud inference. The cloud inference can better describe the ambiguity and volatility of the results which can better describe the volatility of the risk level. Finally, the cloud drop graphs of failure probability and failure consequences can be expressed, which intuitively and accurately illustrate the ambiguity and randomness of the results. A case study of a coal mine gob pipeline carrying natural gas has been investigated to validate the utility of the proposed method. The evaluation results of this case show that the probability of failure of the pipeline is very low, the consequences of failure are more serious, which is consistent with the reality.Keywords: bow-tie model, natural gas pipeline, coal mine gob, cloud inference
Procedia PDF Downloads 249119 Oxygen and Sulfur Isotope Composition of Gold Bearing Granite Gneiss and Quartz Veins of Megele Area, Western Ethiopia: Implication for Fluid Source
Authors: Temesgen Oljira, Olugbenga Akindeji Okunlola, Akinade Shadrach Olatunji, Dereje Ayalew, Bekele A. Bedada, Tasin Godlove Bafon
Abstract:
The Megele area gold-bearing Neoproterozoic rocks in the Western Ethiopian Shield has been under exploration for the last few decades. The geochemical and ore petrological characterization of the gold-bearing granite gneiss and associated quartz vein is crucial in understanding the gold's genesis. The present study concerns the ore petrological, geochemical, and stable O2 and S characterization of the gold-bearing granite gneiss and associated quartz vein. This area is known for its long history of placer gold mining. The presence of quartz veins of different generations and orientations, visible sulfide mineralization, and oxidation suggests that the Megele area is geologically fertile for mineralization. The Au and base metals analysis also indicate that Megele area rocks are characterized by Cu (2-22 ppm av. 7.83 ppm), Zn (2-53 ppm av. 29.33 ppm), Co (1-27 ppm av. 13.33 ppm), Ni (2-16 ppm av. 10 ppm), Pb (5-10 ppm av. 8.33 ppm), Au (1-5 ppb av. 2.11 ppb), Ag (0.5 ppm), As (5-12 ppm av. 7.83 ppm), Cd (0.5ppm), Li (0.5 ppm), Mo (1-4 ppm av. 1.6 ppm), Sc (5-13 ppm av. 9.3 ppm), and Tl (10 ppm). The oxygen isotope (δ18O) values of gold-bearing granite gneiss and associated quartz veins range from +8.6 to +11.5 ‰, suggesting the mixing of metamorphic water with magmatic water within the ore-forming fluid. The Sulfur isotope (δ34S) values of gold-bearing granite gneiss range from -1.92 to -0.45 ‰ (mean value of -1.13 ‰) indicating the narrow range of value. This suggests that the sulfides have been precipitated from the fluid system originating from a single source of the magmatic component under sulfur isotopic fractionation equilibrium condition. The tectonic setting of the host rocks, the occurrence of ore bodies, mineral assemblages of the host rocks and proposed ore-forming fluids of the Megele area gold prospects have similarities with features of orogenic gold deposit. The δ18O and δ34S isotopic values also suggested a metamorphic origin with the magmatic components. Thus, the Megele gold prospect could be related to an orogenic gold deposit related to metamorphism and associated intrusions.Keywords: fluid source, gold mineralization, oxygen isotope, stable isotope, sulfur isotope
Procedia PDF Downloads 71118 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 80117 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps
Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá
Abstract:
Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning
Procedia PDF Downloads 359116 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 68115 Use of Multivariate Statistical Techniques for Water Quality Monitoring Network Assessment, Case of Study: Jequetepeque River Basin
Authors: Jose Flores, Nadia Gamboa
Abstract:
A proper water quality management requires the establishment of a monitoring network. Therefore, evaluation of the efficiency of water quality monitoring networks is needed to ensure high-quality data collection of critical quality chemical parameters. Unfortunately, in some Latin American countries water quality monitoring programs are not sustainable in terms of recording historical data or environmentally representative sites wasting time, money and valuable information. In this study, multivariate statistical techniques, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA), are applied for identifying the most significant monitoring sites as well as critical water quality parameters in the monitoring network of the Jequetepeque River basin, in northern Peru. The Jequetepeque River basin, like others in Peru, shows socio-environmental conflicts due to economical activities developed in this area. Water pollution by trace elements in the upper part of the basin is mainly related with mining activity, and agricultural land lost due to salinization is caused by the extensive use of groundwater in the lower part of the basin. Since the 1980s, the water quality in the basin has been non-continuously assessed by public and private organizations, and recently the National Water Authority had established permanent water quality networks in 45 basins in Peru. Despite many countries use multivariate statistical techniques for assessing water quality monitoring networks, those instruments have never been applied for that purpose in Peru. For this reason, the main contribution of this study is to demonstrate that application of the multivariate statistical techniques could serve as an instrument that allows the optimization of monitoring networks using least number of monitoring sites as well as the most significant water quality parameters, which would reduce costs concerns and improve the water quality management in Peru. Main socio-economical activities developed and the principal stakeholders related to the water management in the basin are also identified. Finally, water quality management programs will also be discussed in terms of their efficiency and sustainability.Keywords: PCA, HCA, Jequetepeque, multivariate statistical
Procedia PDF Downloads 352114 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue
Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov
Abstract:
The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport
Procedia PDF Downloads 113113 Recommendations for Environmental Impact Assessment of Geothermal Projects on Mature Oil Fields
Authors: Daria Karasalihovic Sedlar, Lucija Jukic, Ivan Smajla, Marija Macenic
Abstract:
This paper analyses possible geothermal energy production from a mature oil reservoir based on exploitation of underlying aquifer thermal energy for the purpose of heating public buildings. Research was conducted based on the case study of the City of Ivanic-Grad public buildings energy demand and Ivanic oil filed that is situated in the same area. Since the City of Ivanic is one of the few cities in the EU where hydrocarbon exploitation has been taking place for decades almost entirely in urban area, decommissioning of oil wells is inevitable; therefore, the research goal was to investigate how to extend the life-time of the reservoir by exploiting geothermal brine beneath the oil reservoir in an environmental friendly manner. This kind of a project is extremely complex in all segments, from documentation preparation, implementation of technological solutions, and providing ecological measures for environmentally acceptable geothermal energy production and utilization. New mining activities that will be needed for the development of geothermal project at the observed Hydrocarbon Exploitation Field Ivanic will be carried out in order to prepare wells for increasing geothermal brine production. These operations involve the conversion of existing wells (well completion for conversion of the observation wells to production ones) along with workover activities, installation of new heat exchangers, and pipelines. Since the wells are in the urban area of the City of Ivanic-Grad in high density populated area, the inhabitants will be exposed to the different environmental impacts during preparation phase of the project. For the purpose of performing workovers, it will be necessary to secure access to wellheads of existing wells. This paper gives guidelines for describing potential impacts on environment components that could occur during geothermal production preparation on existing mature oil filed, recommends possible protection measures to mitigate these impacts, and gives recommendations for environmental monitoring.Keywords: geothermal energy production, mature oil filed, environmental impact assessment, underlying aquifer thermal energy
Procedia PDF Downloads 149112 Application of Groundwater Level Data Mining in Aquifer Identification
Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen
Abstract:
Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.Keywords: aquifer identification, decision tree, groundwater, Fourier transform
Procedia PDF Downloads 155111 Excavation of Phylogenetically Diverse Bioactive Actinobacteria from Unexplored Regions of Sundarbans Mangrove Ecosystem for Mining of Economically Important Antimicrobial Compounds
Authors: Sohan Sengupta, Arnab Pramanik, Abhrajyoti Ghosh, Maitree Bhattacharyya
Abstract:
Newly emerged phyto-pathogens and multi drug resistance have been threating the world for last few decades. Actinomycetes, the most endowed group of microorganisms isolated from unexplored regions of the world may be the ultimate solution to these problems. Thus the aim of this study was to isolate several bioactive actinomycetes strains capable of producing antimicrobial secondary metabolite from Sundarbans, the only mangrove tiger land of the world. Fifty four actinomycetes were isolated and analyzed for antimicrobial activity against fifteen test organisms including three phytopathogens. Nine morphologically distinct and biologically active isolates were subjected to polyphasic identification study. 16s rDNA sequencing indicated eight isolates to reveal maximum similarity to the genus streptomyces, whereas one isolate presented only 93.57% similarity with Streptomyces albogriseolus NRRL B-1305T. Seventy-one carbon sources and twenty-three chemical sources utilization assay revealed their metabolic relatedness. Among these nine isolates three specific strains were found to have notably higher degree of antimicrobial potential effective in a broader range including phyto-pathogenic fungus. PCR base whole genome screen for PKS and NRPS genes, confirmed the occurrence of bio-synthetic gene cluster in some of the isolates for novel antibiotic production. Finally the strain SMS_SU21, which showed antimicrobial activity with MIC value of 0.05 mg ml-1and antioxidant activity with IC50 value of 0.242±0.33 mg ml-1 was detected to be the most potential one. True prospective of this strain was evaluated utilizing GC-MS and the bioactive compound responsible for antimicrobial activity was purified and characterized. Rare bioactive actinomycetes were isolated from unexplored heritage site. Diversity of the biosynthetic gene cluster for antimicrobial compound production has also been evaluated. Antimicrobial compound SU21-C has been identified and purified which is active against a broad range of pathogens.Keywords: actinomycetes, sundarbans, antimicrobial, pks nrps, phyto-pathogens, GC-MS
Procedia PDF Downloads 503110 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining
Procedia PDF Downloads 170109 Geological Structure Identification in Semilir Formation: An Correlated Geological and Geophysical (Very Low Frequency) Data for Zonation Disaster with Current Density Parameters and Geological Surface Information
Authors: E. M. Rifqi Wilda Pradana, Bagus Bayu Prabowo, Meida Riski Pujiyati, Efraim Maykhel Hagana Ginting, Virgiawan Arya Hangga Reksa
Abstract:
The VLF (Very Low Frequency) method is an electromagnetic method that uses low frequencies between 10-30 KHz which results in a fairly deep penetration. In this study, the VLF method was used for zonation of disaster-prone areas by identifying geological structures in the form of faults. Data acquisition was carried out in Trimulyo Region, Jetis District, Bantul Regency, Special Region of Yogyakarta, Indonesia with 8 measurement paths. This study uses wave transmitters from Japan and Australia to obtain Tilt and Elipt values that can be used to create RAE (Rapat Arus Ekuivalen or Current Density) sections that can be used to identify areas that are easily crossed by electric current. This section will indicate the existence of a geological structure in the form of faults in the study area which is characterized by a high RAE value. In data processing of VLF method, it is obtained Tilt vs Elliptical graph and Moving Average (MA) Tilt vs Moving Average (MA) Elipt graph of each path that shows a fluctuating pattern and does not show any intersection at all. Data processing uses Matlab software and obtained areas with low RAE values that are 0%-6% which shows medium with low conductivity and high resistivity and can be interpreted as sandstone, claystone, and tuff lithology which is part of the Semilir Formation. Whereas a high RAE value of 10% -16% which shows a medium with high conductivity and low resistivity can be interpreted as a fault zone filled with fluid. The existence of the fault zone is strengthened by the discovery of a normal fault on the surface with strike N550W and dip 630E at coordinates X= 433256 and Y= 9127722 so that the activities of residents in the zone such as housing, mining activities and other activities can be avoided to reduce the risk of natural disasters.Keywords: current density, faults, very low frequency, zonation
Procedia PDF Downloads 172108 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination
Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo
Abstract:
In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator
Procedia PDF Downloads 195107 The Nubian Ibex’s Distribution, Population, Habitat, and Conservation Status in Sudan’s Red Sea State Over the Past Decade
Authors: Lubna M. A. Hassan, Nasir Brema, Abdallah Mamy, Insaf Yahya, Tanzil A. G., Ahmed M. M. Hasoba, Omer A. Suliman
Abstract:
The Nubian ibex species has been categorized as vulnerable by the International Union for Conservation of Nature (IUCN) due to a lack of population data in specific regions within their habitat. This species faces numerous challenges, including habitat loss caused by agricultural practices, livestock rearing, mining activity, and infrastructure development. Additionally, competition with non-native species and hunting pose significant threats to their survival. Unfortunately, studies on the distribution, conservation status, ecology, and health of the ibex are limited and primarily descriptive in nature. In order to bridge this knowledge gap, recent surveys were conducted in the Red Sea State of Sudan during specific periods in 2015, 2016, 2019, and 2021. These surveys have provided valuable insights into the distribution, habitats, and conservation status of the Nubian ibex in the Red Sea State. The findings indicate that the Capra nubiana ibex can be found across more than 17 mountains in the Red Sea State. However, the total population estimate from recent years suggests that there are fewer than 250 individuals remaining. The study has also identified the highest altitude at which the Nubian ibex habitats existed in Sudan's Red Sea State, measuring 1675 m. This area harbors a diverse array of Nubian ibex habitats, encompassing a total of 21 wild plant species from 10 distinct families. The region experiences an average annual temperature ranging from 20.64°C in January to 33.30°C in August. Precipitation occurs in November and December, although it is characterized by unreliability and erratic patterns. It is important to note that these population estimates were obtained through surveys conducted in collaboration with rangers and local communities, and adjustments to survey methods are necessary to accommodate the challenging mountainous terrain, such as utilizing aerial surveys. To effectively address these threats, it is imperative to establish comprehensive long-term monitoring programs.Keywords: Nubian ibex, distribution, population, habitats
Procedia PDF Downloads 84106 Report of Gangamopteris cyclopteroides from the Rajmahal Basin, India: An Evidence for Coal Forming Vegetation in the Area
Authors: Arun Joshi
Abstract:
The present study deals with the report of Gangamopteriscyclopteroides from the Barakar Formation of Simlong Open Cast Mine, Rajmahal Area, Rajmahal Basin, Jharkhand, India. The genus Gangamopteriscomprises leaves which are simple, entire, symmetrical or asymmetrical, linear, lanceolate, elliptical, obovate in shape, apex broadly rounded, obtuse, acute, acuminate or mucronate, base petiolate or contracted, midrib absent. Median region occupied by subparallel veins with anastomoses of elongate or hexagonal outline. Secondary veins arise from median veins by repeated dichotomy, arched, bifurcating and anasotomosing network. The present work is significant as it represents the presence of Glossopteris flora (250- 290 ma) which is mainly responsible for the formation of coal. Coal is one of the major fuels for power production through thermal power plants. The Glossopteris flora is one of the major floras that occupied the southern continent during Carboniferous- Permian time. This southern continent is also known as Gondwana comprising Australia, South Africa, Antarctica, Madagascar and India. There is a vast geological reserve of coal with favorable stripping ratio available at the Simlong Block but the area comes under the most naxalite prone area and thus the mine has been running in an unplanned manner. It has got the potential of becoming a big project with higher capacity and is well suited for enhancing production which can be helpful in the economic growth of the country. Though, the present record is scanty, it shows the presence of Glossopteris flora responsible for the formation of coal in the Coalmine. However, there are fears of fossils disappearing from this area as the state government of Jharkhand has given out a mining lease in the area to private companies. Therefore, it is very necessary to study such coal forming vegetation and their systematic study from the area to generate a new palaeobotanical database, palaeoenvironmental interpretation, basinal correlation and for the understanding of evolutionary perspectives.Keywords: Barakar formation, coal, Glossopteris flora, Gondwana, India, Naxalite, Rajmahal Basin
Procedia PDF Downloads 154105 Uncertainty Quantification of Corrosion Anomaly Length of Oil and Gas Steel Pipelines Based on Inline Inspection and Field Data
Authors: Tammeen Siraj, Wenxing Zhou, Terry Huang, Mohammad Al-Amin
Abstract:
The high resolution inline inspection (ILI) tool is used extensively in the pipeline industry to identify, locate, and measure metal-loss corrosion anomalies on buried oil and gas steel pipelines. Corrosion anomalies may occur singly (i.e. individual anomalies) or as clusters (i.e. a colony of corrosion anomalies). Although the ILI technology has advanced immensely, there are measurement errors associated with the sizes of corrosion anomalies reported by ILI tools due limitations of the tools and associated sizing algorithms, and detection threshold of the tools (i.e. the minimum detectable feature dimension). Quantifying the measurement error in the ILI data is crucial for corrosion management and developing maintenance strategies that satisfy the safety and economic constraints. Studies on the measurement error associated with the length of the corrosion anomalies (in the longitudinal direction of the pipeline) has been scarcely reported in the literature and will be investigated in the present study. Limitations in the ILI tool and clustering process can sometimes cause clustering error, which is defined as the error introduced during the clustering process by including or excluding a single or group of anomalies in or from a cluster. Clustering error has been found to be one of the biggest contributory factors for relatively high uncertainties associated with ILI reported anomaly length. As such, this study focuses on developing a consistent and comprehensive framework to quantify the measurement errors in the ILI-reported anomaly length by comparing the ILI data and corresponding field measurements for individual and clustered corrosion anomalies. The analysis carried out in this study is based on the ILI and field measurement data for a set of anomalies collected from two segments of a buried natural gas pipeline currently in service in Alberta, Canada. Data analyses showed that the measurement error associated with the ILI-reported length of the anomalies without clustering error, denoted as Type I anomalies is markedly less than that for anomalies with clustering error, denoted as Type II anomalies. A methodology employing data mining techniques is further proposed to classify the Type I and Type II anomalies based on the ILI-reported corrosion anomaly information.Keywords: clustered corrosion anomaly, corrosion anomaly assessment, corrosion anomaly length, individual corrosion anomaly, metal-loss corrosion, oil and gas steel pipeline
Procedia PDF Downloads 307104 Disentangling the Sources and Context of Daily Work Stress: Study Protocol of a Comprehensive Real-Time Modelling Study Using Portable Devices
Authors: Larissa Bolliger, Junoš Lukan, Mitja Lustrek, Dirk De Bacquer, Els Clays
Abstract:
Introduction and Aim: Chronic workplace stress and its health-related consequences like mental and cardiovascular diseases have been widely investigated. This project focuses on the sources and context of psychosocial daily workplace stress in a real-world setting. The main objective is to analyze and model real-time relationships between (1) psychosocial stress experiences within the natural work environment, (2) micro-level work activities and events, and (3) physiological signals and behaviors in office workers. Methods: An Ecological Momentary Assessment (EMA) protocol has been developed, partly building on machine learning techniques. Empatica® wristbands will be used for real-life detection of stress from physiological signals; micro-level activities and events at work will be based on smartphone registrations, further processed according to an automated computer algorithm. A field study including 100 office-based workers with high-level problem-solving tasks like managers and researchers will be implemented in Slovenia and Belgium (50 in each country). Data mining and state-of-the-art statistical methods – mainly multilevel statistical modelling for repeated data – will be used. Expected Results and Impact: The project findings will provide novel contributions to the field of occupational health research. While traditional assessments provide information about global perceived state of chronic stress exposure, the EMA approach is expected to bring new insights about daily fluctuating work stress experiences, especially micro-level events and activities at work that induce acute physiological stress responses. The project is therefore likely to generate further evidence on relevant stressors in a real-time working environment and hence make it possible to advise on workplace procedures and policies for reducing stress.Keywords: ecological momentary assessment, real-time, stress, work
Procedia PDF Downloads 160103 Expectation for Professionalism Effects Reality Shock: A Qualitative And Quantitative Study of Reality Shock among New Human Service Professionals
Authors: Hiromi Takafuji
Abstract:
It is a well-known fact that health care and welfare are the foundation of human activities, and human service professionals such as nurses and child care workers support these activities. COVID-19 pandemic has made the severity of the working environment in these fields even more known. It is high time to discuss the work of human service workers for the sustainable development of the human environment. Early turnover has been recognized as a long-standing issue in these fields. In Japan, the attrition rate within three years of graduation for these occupations has remained high at about 40% for more than 20 years. One of the reasons for this is Reality Shock: RS, which refers to the stress caused by the gap between pre-employment expectations and the post-employment reality experienced by new workers. The purpose of this study was to academically elucidate the mechanism of RS among human service professionals and to contribute to countermeasures against it. Firstly, to explore the structure of the relationship between professionalism and workers' RS, an exploratory interview survey was conducted and analyzed by text mining and content analysis. The results showed that the expectation of professionalism influences RS as a pre-employment job expectation. Next, the expectations of professionalism were quantified and categorized, and the responses of a total of 282 human service work professionals, nurses, child care workers, and caregivers; were finalized for data analysis. The data were analyzed using exploratory factor analysis, confirmatory factor analysis, multiple regression analysis, and structural equation modeling techniques. The results revealed that self-control orientation and authority orientation by qualification had a direct positive significant impact on RS. On the other hand, interpersonal helping orientation and altruistic orientation were found to have a direct negative significant impact and an indirect positive significant impact on RS.; we were able to clarify the structure of work expectations that affect the RS of welfare professionals, which had not been clarified in previous studies. We also explained the limitations, practical implications, and directions for future research.Keywords: human service professional, new hire turnover, SEM, reality shock
Procedia PDF Downloads 98102 Crime Prevention with Artificial Intelligence
Authors: Mehrnoosh Abouzari, Shahrokh Sahraei
Abstract:
Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.Keywords: artificial intelligence, criminology, crime, prevention, prediction
Procedia PDF Downloads 75101 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin
Authors: Mikhail O. Eremin
Abstract:
Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression
Procedia PDF Downloads 174100 A Study on Impact of Scheduled Preventive Maintenance on Overall Self-Life as Well as Reduction of Operational down Time of Critical Oil Field Mobile Equipment
Authors: Dipankar Deka
Abstract:
Exploration and production of Oil & Gas is a very challenging business on which a nation’s energy security depends on. The exploration and Production of hydrocarbon is a very precise and time-bound process. The striking rate of hydrocarbon in a drilled well is so uncertain that the success rate is only 31% in 2021 as per Rigzone. Huge cost is involved in drilling as well as the production of hydrocarbon from a well. Due to this very reason, no one can effort to lose a well because of faulty machines, which increases the non-productive time (NPT). Numerous activities that include manpower and machines synchronized together works in a precise way to complete the full cycle of exploration, rig movement, drilling and production of crude oil. There are several machines, both fixed and mobile, are used in the complete cycle. Most of these machines have a tight schedule of work operating in various drilling sites that are simultaneously being drilled, providing a very narrow window for maintenance. The shutdown of any of these machines for even a small period of time delays the whole project and increases the cost of production of hydrocarbon by manifolds. Moreover, these machines are custom designed exclusively for oil field operations to be only used in Mining Exploration Licensed area (MEL) earmarked by the government and are imported and very costly in nature. The cost of some of these mobile units like Well Logging Units, Coil Tubing units, Nitrogen pumping units etc. that are used for Well stimulation and activation process exceeds more than 1 million USD per unit. So the increase of self-life of these units also generates huge revenues during the extended duration of their services. In this paper we are considering the very critical mobile oil field equipment like Well Logging Unit, Coil Tubing unit, well-killing unit, Nitrogen pumping unit, MOL Oil Field Truck, Hot Oil Circulation Unit etc., and their extensive preventive maintenance in our auto workshop. This paper is the outcome of 10 years of structured automobile maintenance and minute documentation of each associated event that allowed us to perform the comparative study between the new practices of preventive maintenance over the age-old practice of system-based corrective maintenance and its impact on the self-life of the equipment.Keywords: automobile maintenance, preventive maintenance, symptom based maintenance, workshop technologies
Procedia PDF Downloads 7399 Study the Difference Between the Mohr-Coulomb and the Barton-Bandis Joint Constitutive Models: A Case Study from the Iron Open Pit Mine, Canada
Authors: Abbas Kamalibandpey, Alain Beland, Joseph Mukendi Kabuya
Abstract:
Since a rock mass is a discontinuum medium, its behaviour is governed by discontinuities such as faults, joint sets, lithologic contact, and bedding planes. Thus, rock slope stability analysis in jointed rock masses is largely dependent upon discontinuities constitutive equations. This paper studies the difference between the Mohr-Coulomb (MC) and the Barton-Bandis (BB) joint constitutive numerical models for lithological contacts and joint sets. For the rock in these models, generalized Hoek-Brown criteria have been considered. The joint roughness coefficient (JRC) and the joint wall compressive strength (JCS) are vital parameters in the BB model. The numerical models are applied to the rock slope stability analysis in the Mont-Wright (MW) mine. The Mont-Wright mine is owned and operated by ArcelorMittal Mining Canada (AMMC), one of the largest iron-ore open pit operations in Canada. In this regard, one of the high walls of the mine has been selected to undergo slope stability analysis with RS2D software, finite element method. Three piezometers have been installed in this zone to record pore water pressure and it is monitored by radar. In this zone, the AMP-IF and QRMS-IF contacts and very persistent and altered joint sets in IF control the rock slope behaviour. The height of the slope is more than 250 m and consists of different lithologies such as AMP, IF, GN, QRMS, and QR. To apply the B-B model, the joint sets and geological contacts have been scanned by Maptek, and their JRC has been calculated by different methods. The numerical studies reveal that the JRC of geological contacts, AMP-IF and QRMS-IF, and joint sets in IF had a significant influence on the safety factor. After evaluating the results of rock slope stability analysis and the radar data, the B-B constitutive equation for discontinuities has shown acceptable results to the real condition in the mine. It should be noted that the difference in safety factors in MC and BB joint constitutive models in some cases is more than 30%.Keywords: barton-Bandis criterion, Hoek-brown and Mohr-Coulomb criteria, open pit, slope stability
Procedia PDF Downloads 10098 Evaluation of Surface Water and Groundwater Quality in Parts of Umunneochi Southeast, Nigeria
Authors: Joshua Chima Chizoba, Wisdom Izuchukwu Uzoma, Elizabeth Ifeyiwa Okoyeh
Abstract:
Water cannot be optimally used and sustained unless the quality is periodically assessed. The study area Umunneochi and environs are located in south eastern part of Nigeria. It stretches geographically from latitudes 50501N to 60000N and longitudes 70201E to 70301. The major geologic formations in the area include the Asu River group, Nkporo Shale, and Ajali Sandstone. The aim of this study is to evaluate the hydrochemical characteristics of surface and ground water sources in parts of Umunneochi and environs in order to establish portability of the water sources for drinking, domestic and irrigation purposes. A total of 15 samples were collected randomly from streams, springs and wells. The samples were analyzed for physicochemical parameters and heavy metals using handheld digital kits, photometer, titration method and Atomic Absorption Spectrophotometer (AAS) following acceptable standards. The obtained analytical data were interpreted, and results were compared with World Health Organization (WHO) standard. The concentration of pH, SO42-and Cl- range from 5.81 mg/l – 6.07 mg/l, 41.93 mg/l – 142.95 mg/l and 20.00 mg/l – 111 mg/l respectively, while Pb and Zn revealed a relative low mean concentration of 0.14 mg/l and 0.40 mg/l, which are all within (WHO) permissible limits except pH. About 27% of the samples are moderately hard. This is attributed to the mining activities in the areas. The abundance of cations and anions in the area are in the order of K+>Na+>Mg2+>Ca2+ and SO4->Cl->HCO3->NO3-, respectively. Chloride, bicarbonate, and nitrate are all within the permissible limits. 13.33% of the total samples contain Sulphate above the standard permissible limits. The values of calculated Water Quality Index (WQI) are less than 50 indicating excellent water. The predominant water-type in the study area is Na-Cl water type and mixed Ca-Mg-Cl water type based on the sample plots on the Piper diagram. The Sodium Absorption Ratio (SAR) calculations showed excellent water for consumption and also good water for irrigation purpose with low sodium and alkalinity ratio respectively. Government water projects are recommended in the area for sustainable domestic and agricultural water supply to ease the stress of water supply problems.Keywords: groundwater, hydrochemical, physichochemical, water-type, sodium adsorption ratio
Procedia PDF Downloads 12997 Bio-Remediation of Lead-Contaminated Water Using Adsorbent Derived from Papaya Peel
Authors: Sahar Abbaszadeh, Sharifah Rafidah Wan Alwi, Colin Webb, Nahid Ghasemi, Ida Idayu Muhamad
Abstract:
Toxic heavy metal discharges into environment due to rapid industrialization is a serious pollution problem that has drawn global attention towards their adverse impacts on both the structure of ecological systems as well as human health. Lead as toxic and bio-accumulating elements through the food chain, is regularly entering to water bodies from discharges of industries such as plating, mining activities, battery manufacture, paint manufacture, etc. The application of conventional methods to degrease and remove Pb(II) ion from wastewater is often restricted due to technical and economic constrains. Therefore, the use of various agro-wastes as low-cost bioadsorbent is found to be attractive since they are abundantly available and cheap. In this study, activated carbon of papaya peel (AC-PP) (as locally available agricultural waste) was employed to evaluate its Pb(II) uptake capacity from single-solute solutions in sets of batch mode experiments. To assess the surface characteristics of the adsorbents, the scanning electron microscope (SEM) coupled with energy disperse X-ray (EDX), and Fourier transform infrared spectroscopy (FT-IR) analysis were utilized. The removal amount of Pb(II) was determined by atomic adsorption spectrometry (AAS). The effects of pH, contact time, the initial concentration of Pb(II) and adsorbent dosage were investigated. The pH value = 5 was observed as optimum solution pH. The optimum initial concentration of Pb(II) in the solution for AC-PP was found to be 200 mg/l where the amount of Pb(II) removed was 36.42 mg/g. At the agitating time of 2 h, the adsorption processes using 100 mg dosage of AC-PP reached equilibrium. The experimental results exhibit high capability and metal affinity of modified papaya peel waste with removal efficiency of 93.22 %. The evaluation results show that the equilibrium adsorption of Pb(II) was best expressed by Freundlich isotherm model (R2 > 0.93). The experimental results confirmed that AC-PP potentially can be employed as an alternative adsorbent for Pb(II) uptake from industrial wastewater for the design of an environmentally friendly yet economical wastewater treatment process.Keywords: activated carbon, bioadsorption, lead removal, papaya peel, wastewater treatment
Procedia PDF Downloads 28496 Construction and Demolition Waste Management in Indian Cities
Authors: Vaibhav Rathi, Soumen Maity, Achu R. Sekhar, Abhijit Banerjee
Abstract:
Construction sector in India is extremely resource and carbon intensive. It contributes to significantly to national greenhouse emissions. At the resource end the industry consumes significant portions of the output from mining. Resources such as sand and soil are most exploited and their rampant extraction is becoming constant source of impact on environment and society. Cement is another resource that is used in abundance in building and construction and has a direct impact on limestone resources. Though India is rich in cement grade limestone resource, efforts have to be made for sustainable consumption of this resource to ensure future availability. Use of these resources in high volumes in India is a result of rapid urbanization. More cities have grown to a population of million plus in the last decade and million plus cities are growing further. To cater to needs of growing urban population of construction activities are inevitable in the coming future thereby increasing material consumption. Increased construction will also lead to substantial increase in end of life waste generation from Construction and Demolition (C&D). Therefore proper management of C&D waste has the potential to reduce environmental pollution as well as contribute to the resource efficiency in the construction sector. The present study deals with estimation, characterisation and documenting current management practices of C&D waste in 10 Indian cities of different geographies and classes. Based on primary data the study draws conclusions on the potential of C&D waste to be used as an alternative to primary raw materials. The estimation results show that India generates 716 million tons of C&D waste annually, placing the country as second largest C&D waste generator in the world after China. The study also aimed at utilization of C&D waste in to building materials. The waste samples collected from various cities have been used to replace 100% stone aggregates in paver blocks without any decrease in strength. However, management practices of C&D waste in cities still remains poor instead of notification of rules and regulations notified for C&D waste management. Only a few cities have managed to install processing plant and set up management systems for C&D waste. Therefore there is immense opportunity for management and reuse of C&D waste in Indian cities.Keywords: building materials, construction and demolition waste, cities, environmental pollution, resource efficiency
Procedia PDF Downloads 302