Search results for: two-unit series systems
1958 Engineering Education for Sustainable Development in China: Perceptions Bias between Experienced Engineers and Engineering Students
Authors: Liang Wang, Wei Zhang
Abstract:
Nowadays, sustainable development has increasingly become an important research topic of engineering education. Existing research on Engineering Education for Sustainable Development (EESD) has highlighted the importance of perceptions for ethical responsibility to address sustainable development in practice. However, whether and how the professional engineering experience affects those perceptions has not been proved, especially in a Chinese context. Our study fills this gap by investigating the perceptions bias of EESD between experienced engineers and engineering students. We specifically examined what EESD means for experienced engineers and engineering students using a triple-dimensional model to understand if there are obvious differences between the two groups. Our goal is to make the benefits of these experiences more accessible in school context. The data (n=438) came from a questionnaire created and adapted from previously published studies containing 288 students from mechanical or civil engineering and 150 civil engineers with rich working experience, and the questionnaire was distributed during Fall 2020. T-test was used to find the difference in different dimensions between the two groups. The statistical results show that there is a significant difference in the perceptions of EESD between experienced engineers and inexperienced engineering students in China. Experienced engineers tend to consider sustainable development from ecological, economic, and social perspectives, while engineering students' answers focus more on ecology and ignore economic and social dimensions to some extend. The findings provide empirical evidence that professional experience is helpful to cultivate the cognition and ability of sustainable development in engineering education. The results of this work indicate that more practical content should be added to engineering education to promote sustainable development. In addition, for the design of engineering courses and professional practice systems for sustainable development, we should not only pay attention to the ecological aspects but also emphasize the coordination of ecological, economic, and socially sustainable development (e.g., engineer's ethical responsibility).Keywords: engineering education, sustainable development, experienced engineers, engineering students
Procedia PDF Downloads 1061957 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.Keywords: big data, machine learning, smart city, social cost, transportation network
Procedia PDF Downloads 2631956 From Pink to Ink: Understanding the Decision-Making Process of Post-mastectomy Women Who Have Covered Their Scars with Decorative Tattoos
Authors: Fernanda Rodriguez
Abstract:
Breast cancer is pervasive among women, and an increasing number of women are opting for a mastectomy: a medical operation in which one or both breasts are removed with the intention of treating or averting breast cancer. However, there is an emerging population of cancer survivors in European nations that, rather than attempting to reconstruct their breasts to resemble as much as possible ‘normal’ breasts, have turned to dress their scars with decorative tattoos. At a practical level, this study hopes to improve the support systems of these women by possibly providing professionals in the medical field, tattoo artists, and family members of cancer survivors with a deeper understanding of their motivations and decision-making processes for choosing an alternative restorative route - such as decorative tattoos - after their mastectomy. At an intellectual level, however, this study aims to narrow a gap in the academic field concerning the relationship between mastectomies and alternative methods of healing, such as decorative tattoos, as well as to broaden the understanding regarding meaning-making and the ‘normal’ feminine body. Thus, by means of semi-structured interviews and a phenomenological standpoint, this research set itself the goal to understand why do women who have undergone a mastectomy choose to dress their scars with decorative tattoos instead of attempting to regain ‘normalcy’ through breast reconstruction or 3D areola tattoos? The results obtained from the interviews with fifteen women showed that the disillusionment with one part of the other of breast restoration techniques had led these women to find an alternative form of healing that allows them not only to close a painful chapter of their life but also to regain control over their bodies after a period of time in which agency was taking away from them. Decorative post-mastectomy tattoos allow these women to grant their bodies with new meanings and produce their own interpretation of their feminine body and identity.Keywords: alternative femininity, decorative mastectomy tattoos, gender embodiment, social stigmatization
Procedia PDF Downloads 1221955 Health and the Politics of Trust: Multi-Drug-Resistant Tuberculosis in Kathmandu
Authors: Mattia Testuzza
Abstract:
Public health is a social endeavour, which involves many different actors: from extremely stratified, structured health systems to unofficial networks of people and knowledge. Health and diseases are an intertwined individual and social experiences. Both patients and health workers navigate this public space through relations of trust. Trust in healthcare goes from the personal trust between a patient and her/his doctor to the trust of both the patient and the health worker in the medical knowledge and the healthcare system. Trust it is not a given, but it is continuously negotiated, given and gained. The key to understand these essential relations of trust in health is to recognise them as a social practice, which therefore implies agency and power. In these terms, health is constantly public and made public, as trust emerges as a meaningfully political phenomenon. Trust as a power relation can be observed at play in the implementation of public health policies such as the WHO’s Directly-Observed Theraphy Short-course (DOTS), and with the increasing concern for drug-resistance that tuberculosis pose, looking at the role of trust in the healthcare delivery system and implementation of public health policies becomes significantly relevant. The ethnographic fieldwork was carried out in four months through observation of the daily practices at the National Tuberculosis Center of Nepal, and semi-structured interviews with MultiDrug-Resistant Tuberculosis (MDR-TB) patients at different stages of the treatment, their relatives, MDR-TB specialised nurses, and doctors. Throughout the research, the role which trust plays in tuberculosis treatment emerged as one fundamental ax that cuts through all the different factors intertwined with drug-resistance development, unfolding a tension between the DOTS policy, which undermines trust, and the day-to-day healthcare relations and practices which cannot function without trust. Trust also stands out as a key component of the solutions to unforeseen issues which develop from the overall uncertainty of the context - for example, political instability and extreme poverty - in which tuberculosis treatment is carried out in Nepal.Keywords: trust, tuberculosis, drug-resistance, politics of health
Procedia PDF Downloads 2581954 Extension and Closure of a Field for Engineering Purpose
Authors: Shouji Yujiro, Memei Dukovic, Mist Yakubu
Abstract:
Fields are important objects of study in algebra since they provide a useful generalization of many number systems, such as the rational numbers, real numbers, and complex numbers. In particular, the usual rules of associativity, commutativity and distributivity hold. Fields also appear in many other areas of mathematics; see the examples below. When abstract algebra was first being developed, the definition of a field usually did not include commutativity of multiplication, and what we today call a field would have been called either a commutative field or a rational domain. In contemporary usage, a field is always commutative. A structure which satisfies all the properties of a field except possibly for commutativity, is today called a division ring ordivision algebra or sometimes a skew field. Also non-commutative field is still widely used. In French, fields are called corps (literally, body), generally regardless of their commutativity. When necessary, a (commutative) field is called corps commutative and a skew field-corps gauche. The German word for body is Körper and this word is used to denote fields; hence the use of the blackboard bold to denote a field. The concept of fields was first (implicitly) used to prove that there is no general formula expressing in terms of radicals the roots of a polynomial with rational coefficients of degree 5 or higher. An extension of a field k is just a field K containing k as a subfield. One distinguishes between extensions having various qualities. For example, an extension K of a field k is called algebraic, if every element of K is a root of some polynomial with coefficients in k. Otherwise, the extension is called transcendental. The aim of Galois Theory is the study of algebraic extensions of a field. Given a field k, various kinds of closures of k may be introduced. For example, the algebraic closure, the separable closure, the cyclic closure et cetera. The idea is always the same: If P is a property of fields, then a P-closure of k is a field K containing k, having property, and which is minimal in the sense that no proper subfield of K that contains k has property P. For example if we take P (K) to be the property ‘every non-constant polynomial f in K[t] has a root in K’, then a P-closure of k is just an algebraic closure of k. In general, if P-closures exist for some property P and field k, they are all isomorphic. However, there is in general no preferable isomorphism between two closures.Keywords: field theory, mechanic maths, supertech, rolltech
Procedia PDF Downloads 3791953 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 631952 A Comparative Analysis of the Private and Social Benefit-Cost Ratios of Organic and Inorganic Rice Farming: Case Study of Smallholder Farmers in the Aveyime Community, Ghana
Authors: Jerome E. Abiemo, Takeshi Mizunoya
Abstract:
The Aveyime community in the Volta region of Ghana is one of the major hubs for rice production. In the past, rice farmers applied organic pesticides to control pests, and compost as a soil amendment to improve fertility and productivity. However, the introduction of chemical pesticides and fertilizers have led many farmers to convert to inorganic system of rice production, without considering the social costs (e.g. groundwater contamination and health costs) related to the use of pesticides. The study estimates and compares the private and social BCRs of organic and inorganic systems of rice production. Both stratified and simple random sampling techniques were employed to select 300 organic and inorganic rice farmers and 50 pesticide applicators. The respondents were interviewed with pre-tested questionnaires. The Contingent Valuation Method (CVM) which elucidates organic farmers` Willingness-to-Pay (WTP) was employed to estimate the cost of groundwater contamination. The Cost of Illness (COI) analysis was used to estimate the health cost of pesticide-induced poisoning of applicators. The data collated, was analyzed with the aid of Microsoft excel. The study found that high private benefit (e.g. increase in farm yield and income) was the most influential factor for the rapid adoption of pesticides among rice farmers. The study also shows that the social costs of inorganic rice production were high. As such the social BCR of inorganic farming (0.2) was low as compared to organic farming (0.7). Based on the results, it was recommended that government should impose pesticide environmental tax, review current agricultural policies to favour organic farming and promote extension education to farmers on pesticide risk, to ensure agricultural and environmental sustainability.Keywords: benefit-cost-ratio (BCR), inorganic farming, pesticides, social cost
Procedia PDF Downloads 4821951 Exploring the Effectiveness of End-Of-Life Patient Decision Add in the ICU
Authors: Ru-Yu Lien, Shih-Hsin Hung, Shu-Fen Lu, Ju-Jen Shie, Wen-Ju Yang, Yuann-Meei Tzeng, Chien-Ying Wang
Abstract:
Background: The quality of care in intensive care units (ICUs) is crucial, especially for terminally ill patients. Shared decision-making (SDM) with families is essential to ensure appropriate care and reduce suffering. Aim: This study explores the effectiveness of an end-of-life decision support Patient Decision Aid (PDA) in an ICU setting. Methods: This study employed a cross-sectional research design conducted in an ICU from August 2020 to June 2023. Participants included family members of end-of-life patients aged 20 or older. A total of 319 participants. Family members of end-of-life patients received the PDA, and data were collected after they made medical decisions. Data collection involved providing family members with a PDA during family meetings. A post-PDA questionnaire with 17 questions assessed PDA effectiveness and anxiety levels. Statistical analysis was performed using SPSS 22.0. Results: The PDA significantly reduced anxiety levels among family members (p < 0.001). It helped them organize their thoughts, prepare for discussions with doctors, and understand critical decision factors. Most importantly, it influenced decision outcomes, with a shift towards palliative care and withdrawal of life-sustaining treatment. Conclusion: This study highlights the importance of family-centered end-of-life care in ICUs. PDAs promote informed decision-making, reduce conflicts, and enhance patient and family involvement. These tools align patient values and goals with medical recommendations, ultimately leading to decisions that prioritize comfort and quality of life. Implementing PDAs in healthcare systems can ensure that patients' care aligns with their values.Keywords: shared decision-making, patient decision aid, end-of-life care, intensive care unit, family-centered care
Procedia PDF Downloads 891950 Influence of Digestate Fertilization on Soil Microbial Activity, Greenhouse Gas Emissions and Yield
Authors: M. Doyeni, S. Suproniene, V. Tilvikiene
Abstract:
Agricultural wastes contribute significantly to global climate change through greenhouse gas emissions if not adequately recycled and sustainably managed. A recurring agricultural waste is livestock wastes that have consistently served as feedstock for biogas systems. The objective of this study was to access the influence of digestate fertilization on soil microbial activity and greenhouse gas emissions in agricultural fields. Wheat (Triticum spp. L.) was fertilized with different types of animal wastes digestates (organic fertilizers) and mineral nitrogen (inorganic fertilizer) for three years. The 170 kg N ha⁻¹ presented in digestates were split fertilized at an application rate of 90 and 80 kg N ha⁻¹. The soil microorganism activity could be predicted significantly using the dehydrogenase activity and soil microbial biomass carbon. By combining the two different monitoring approaches, the different methods applied in this study were sensitive to enzymatic activities and organic carbon in the living component of the soil organic matter. The emissions of greenhouse gasses (carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) were monitored directly by a static chamber system. The soil and environmental variables were measured to determine their influence on greenhouse gas emissions. Emission peaks was observed in N₂O and CO₂ after the first application of fertilizers with the emissions flattening out over the cultivating season while CH₄ emission was negligible with no apparent patterns observed. Microbial biomass carbon and dehydrogenase activity were affected by the fertilized organic digestates. A significant difference was recorded between the control and the digestate treated soils for the microbial biomass carbon and dehydrogenase. Results also showed individual and cumulative emissions of CO₂, CH₄ and N₂O from the digestates were relatively low suggesting the digestate fertilization can be an efficient method for improving soil quality and reducing greenhouse gases from agricultural sources in temperate climate conditions.Keywords: greenhouse gas emission, manure digestate, soil microbial activity, yield
Procedia PDF Downloads 1431949 Quantifying Rumen Enteric Methane Production in Extensive Production Systems
Authors: Washaya Soul, Mupangwa John, Mapfumo Lizwell, Muchenje Voster
Abstract:
Ruminant animals contribute a considerable amount of methane to the atmosphere, which is a cause of concern for global warming. Two studies were conducted in beef and goats where the studies aimed to determine the enteric CH₄ levels from a herd of beef cows raised on semi-arid rangelands and to evaluate the effect of supplementing goats with forage legumes: Vigna unguiculata and Lablab purpureus on enteric methane production. A total of 24 cows were selected from Boran and Nguni cows (n = 12 per breed) from two different farms; parity (P1 – P4) and season (dry vs. wet) were considered predictor variables in the first experiment. Eighteen goats (weaners, 9 males, 9 females) were used, in which sex and forage species were predictor variables in the second experiment. Three treatment diets were used in goats. Methane was measured using a Laser methane detector [LMD] for six consecutive days and repeated once after every three months in beef cows and once every week for 6 weeks in goats during the post-adaptation period. Parity and breed had no effects on CH₄ production in beef cows; however, season significantly influenced CH₄ outputs. Methane production was higher (P<0.05) in the dry compared to the wet season, 31.1CH₄/DMI(g/kg) and 28.8 CH₄/DMI(g/kg) for the dry and wet seasons, respectively. In goats, forage species and sex of the animal affected enteric methane production (P<0.05). Animals produce more gas when ruminating than feeding or just standing for all treatments. The control treatment exhibited higher (P<0.05) methane emissions per kg of DMI. Male goats produced more methane compared to females (17.40L/day; 12.46 g/kg DMI and 0.126g/day) versus (15.47L/day, 12.28 g/kg DMI, 0.0109g/day) respectively. It was concluded that cows produce more CH₄/DMI during the dry season, while forage legumes reduce enteric methane production in goats, and male goats produce more gas compared to females. It is recommended to introduce forage legumes, particularly during the dry season, to reduce the amount of gas produced.Keywords: beef cows, extensive grazing system, forage legumes, greenhouse gases, goats Laser methane detector.
Procedia PDF Downloads 711948 Hydrodynamics of Periphyton Biofilters in Recirculating Aquaculture
Authors: Adam N. Bell, Sarina J. Ergas, Michael Nystrom, Nathan P. Brennan, Kevan L. Main
Abstract:
Integrated Multi-Trophic Aquaculture systems (IMTA) have the potential to improve the sustainability of seafood production, generate organic fertilizer and feed, remove waste discharges and reduce energy use. IMTA can include periphyton biofilters where algae and microbes grow on surfaces, along with caught detritus and amphipods. Periphyton biofilters provide many advantages: nitrification, denitrification, primary production and ecological diversity. The goal of this study was to determine how biofilter hydraulic residence time (τ) effects periphyton biomass production, dissolved oxygen (DO) and nutrient removal. A pilot scale recirculating aquaculture system (RAS) was designed, constructed and operated at different hydraulic residence times (τ= 1, 2, 4, 6, 8 hours per tank). For each τ, a conservative tracer study was conducted to investigate system hydrodynamics. Data on periphyton weights, pH, nitrogen species, phosphorus, temperature and DO were collected. The tracer study for τ =1 hour revealed that the normalized time < τ, indicating short-circuiting. Periphyton biomass production rate was relatively unaffected by τ (R_e<1 for all τ). Average ammonia nitrogen removal was > 75% for all trials. Nitrate and nitrite did not accumulate in the RAS for τ≥4 hours due to enhanced denitrification in anoxic zones. For τ≥4 hours DO concentration was at a maximum of 4 mg L-1 after 14:00, and decreased to 0 mg L-1 during nighttime. At τ=1 hour, the RAS stayed > 2 mg L-1 and DO was more evenly distributed. For the validation trial, the culture tank was stocked with Centropomus undecimalis (common snook) and the system was operated at τ= 1 hr. Preliminary results showed that a RAS with an integrated periphyton biofilter could support fish health with low nutrient concentrations DO > 6 mg L-1.Keywords: sustainable aquaculture, resource recovery, nitrogen, microalgae, hydrodynamics, integrated multi-trophic aquaculture
Procedia PDF Downloads 1361947 Application of Environmental Justice Concept in Urban Planning, The Peri-Urban Environment of Tehran as the Case Study
Authors: Zahra Khodaee
Abstract:
Environmental Justice (EJ) concept consists of multifaceted movements, community struggles, and discourses in contemporary societies that seek to reduce environmental risks, increase environmental protections, and generally reduce environmental inequalities suffered by minority and poor communities; a term that incorporates ‘environmental racism’ and ‘environmental classism,’ captures the idea that different racial and socioeconomic groups experience differential access to environmental quality. This article explores environmental justice as an urban phenomenon in urban planning and applies it in peri-urban environment of a metropolis. Tehran peri-urban environments which are the result of meeting the city- village- nature systems or «city-village junction» have gradually faced effects such as accelerated environmental decline, changes without land-use plan, and severe service deficiencies. These problems are instances of environmental injustice which make the planners to adjust the problems and use and apply the appropriate strategies and policies by looking for solutions and resorting to theories, techniques and methods related to environmental justice. In order to access to this goal, try to define environmental justice through justice and determining environmental justice indices to analysis environmental injustice in case study. Then, make an effort to introduce some criteria to select case study in two micro and micro levels. Qiyamdasht town as the peri-urban environment of Tehran metropolis is chosen and examined to show the existence of environmental injustice by questionnaire analysis and SPSS software. Finally, use AIDA technique to design a strategic plan and reduce environmental injustice in case study by introducing the better scenario to be used in policy and decision making areas.Keywords: environmental justice, metropolis of Tehran, Qiyam, Dasht peri, urban settlement, analysis of interconnected decision area (AIDA)
Procedia PDF Downloads 4961946 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 2121945 Interactive IoT-Blockchain System for Big Data Processing
Authors: Abdallah Al-ZoubI, Mamoun Dmour
Abstract:
The spectrum of IoT devices is becoming widely diversified, entering almost all possible fields and finding applications in industry, health, finance, logistics, education, to name a few. The IoT active endpoint sensors and devices exceeded the 12 billion mark in 2021 and are expected to reach 27 billion in 2025, with over $34 billion in total market value. This sheer rise in numbers and use of IoT devices bring with it considerable concerns regarding data storage, analysis, manipulation and protection. IoT Blockchain-based systems have recently been proposed as a decentralized solution for large-scale data storage and protection. COVID-19 has actually accelerated the desire to utilize IoT devices as it impacted both demand and supply and significantly affected several regions due to logistic reasons such as supply chain interruptions, shortage of shipping containers and port congestion. An IoT-blockchain system is proposed to handle big data generated by a distributed network of sensors and controllers in an interactive manner. The system is designed using the Ethereum platform, which utilizes smart contracts, programmed in solidity to execute and manage data generated by IoT sensors and devices. such as Raspberry Pi 4, Rasbpian, and add-on hardware security modules. The proposed system will run a number of applications hosted by a local machine used to validate transactions. It then sends data to the rest of the network through InterPlanetary File System (IPFS) and Ethereum Swarm, forming a closed IoT ecosystem run by blockchain where a number of distributed IoT devices can communicate and interact, thus forming a closed, controlled environment. A prototype has been deployed with three IoT handling units distributed over a wide geographical space in order to examine its feasibility, performance and costs. Initial results indicated that big IoT data retrieval and storage is feasible and interactivity is possible, provided that certain conditions of cost, speed and thorough put are met.Keywords: IoT devices, blockchain, Ethereum, big data
Procedia PDF Downloads 1511944 Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review
Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam
Abstract:
Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.Keywords: crop models, remote sensing, data assimilation, crop yield estimation
Procedia PDF Downloads 1341943 Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review
Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam
Abstract:
Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.Keywords: crop models, remote sensing, data assimilation, crop yield estimation
Procedia PDF Downloads 841942 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components
Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea
Abstract:
Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.Keywords: assessment, part of speech, sentiment analysis, student feedback
Procedia PDF Downloads 1471941 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling
Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani
Abstract:
In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment
Procedia PDF Downloads 1711940 Active Control Effects on Dynamic Response of Elevated Water Storage Tanks
Authors: Ali Etemadi, Claudia Fernanda Yasar
Abstract:
Elevated water storage tank structures (EWSTs) are high elevated-ponderous structural systems and very vulnerable to seismic vibrations. In past earthquake events, many of these structures exhibit poor performance and experienced severe damage. The dynamic analysis of the EWSTs under earthquake loads is, therefore, of significant importance for the design of the structure and a key issue for the development of modern methods, such as active control design. In this study, a reduced model of the EWSTs is explained, which is based on a tuned mass damper model (TMD). Vibration analysis of a structure under seismic excitation is presented and then used to propose an active vibration controller. MATLAB/Simulink is employed for dynamic analysis of the system and control of the seismic response. A single degree of freedom (SDOF) and two degree of freedom (2DOF) models of ELSTs are going to be used to study the concept of active vibration control. Lab-scale experimental models similar to pendulum are applied to suppress vibrations in ELST under seismic excitation. One of the most important phenomena in liquid storage tanks is the oscillation of fluid due to the movements of the tank body because of its base motions during an earthquake. Simulation results illustrate that the EWSTs vibration can be reduced by means of an input shaping technique that takes into account the dominant mode shape of the structure. Simulations with which to guide many of our designs are presented in detail. A simple and effective real-time control for seismic vibration damping can be, therefore, design and built-in practice.Keywords: elevated water storage tank, tuned mass damper model, real time control, shaping control, seismic vibration control, the laplace transform
Procedia PDF Downloads 1541939 Influence of the Adsorption of Anionic–Nonionic Surfactants/Silica Nanoparticles Mixture on Clay Rock Minerals in Chemical Enhanced Oil Recovery
Authors: C. Mendoza Ramírez, M. Gambús Ordaz, R. Mercado Ojeda.
Abstract:
Chemical solutions flooding with surfactants, based on their property of reducing the interfacial tension between crude oil and water, is a potential application of chemical enhanced oil recovery (CEOR), however, the high-rate retention of surfactants associated with adsorption in the porous medium and the complexity of the mineralogical composition of the reservoir rock generates a limitation in the efficiency of displacement of crude oil. This study evaluates the effect of the concentration of a mixture of anionic-non-ionic surfactants with silica nanoparticles, in a rock sample composed of 25.14% clay minerals of the kaolinite, chlorite, halloysite and montmorillonite type, according to the results of X-Ray Diffraction analysis and Scanning Electron Spectrometry (XRD and SEM, respectively). The amount of the surfactant mixture adsorbed on the clay rock minerals was analyzed from the construction of its calibration curve and the 4-Region Isotherm Model in a UV-Visible spectroscopy. The adsorption rate of the surfactant in the clay rock averages 32% across all concentrations, influenced by the presence of the surface area of the substrate with a value of 1.6 m2/g and by the mineralogical composition of the clay that increases the cation exchange capacity (CEC). In addition, on Region I and II a final concentration measurement is not evident in the UV-VIS, due to its ionic nature, its high affinity with the clay rock and its low concentration. Finally, for potential CEOR applications, the adsorption of these mixed surfactant systems is considered due to their industrial relevance and it is concluded that it is possible to use concentrations in Region III and IV; initially the adsorption has an increasing slope and then reaches zero in the equilibrium where interfacial tension values are reached in the order of x10-1 mN/m.Keywords: anionic–nonionic surfactants, clay rock, adsorption, 4-region isotherm model, cation exchange capacity, critical micelle concentration, enhanced oil recovery
Procedia PDF Downloads 741938 Information Security Risk Management in IT-Based Process Virtualization: A Methodological Design Based on Action Research
Authors: Jefferson Camacho Mejía, Jenny Paola Forero Pachón, Luis Carlos Gómez Flórez
Abstract:
Action research is a qualitative research methodology, which leads the researcher to delve into the problems of a community in order to understand its needs in depth and finally, to propose actions that lead to a change of social paradigm. Although this methodology had its beginnings in the human sciences, it has attracted increasing interest and acceptance in the field of information systems research since the 1990s. The countless possibilities offered nowadays by the use of Information Technologies (IT) in the development of different socio-economic activities have meant a change of social paradigm and the emergence of the so-called information and knowledge society. According to this, governments, large corporations, small entrepreneurs and in general, organizations of all kinds are using IT to virtualize their processes, taking them from the physical environment to the digital environment. However, there is a potential risk for organizations related with exposing valuable information without an appropriate framework for protecting it. This paper shows progress in the development of a methodological design to manage the information security risks associated with the IT-based processes virtualization, by applying the principles of the action research methodology and it is the result of a systematic review of the scientific literature. This design consists of seven fundamental stages. These are distributed in the three stages described in the action research methodology: 1) Observe, 2) Analyze and 3) Take actions. Finally, this paper aims to offer an alternative tool to traditional information security management methodologies with a view to being applied specifically in the planning stage of IT-based process virtualization in order to foresee risks and to establish security controls before formulating IT solutions in any type of organization.Keywords: action research, information security, information technology, methodological design, process virtualization, risk management
Procedia PDF Downloads 1681937 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured GNSS-Denied Environments
Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis
Abstract:
In global navigation satellite systems (GNSS), denied settings such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation, thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.Keywords: autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion
Procedia PDF Downloads 2101936 AI-Driven Solutions for Optimizing Master Data Management
Authors: Srinivas Vangari
Abstract:
In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.Keywords: artificial intelligence, master data management, data governance, data quality
Procedia PDF Downloads 231935 Research Trends in Using Virtual Reality for the Analysis and Treatment of Lower-Limb Musculoskeletal Injury of Athletes: A Literature Review
Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes
Abstract:
There is little research applying virtual reality (VR) to the treatment of musculoskeletal injury in athletes. This is despite their prevalence, and the implications for physical and psychological health. Nevertheless, developments of wireless VR headsets better facilitate dynamic movement in VR environments (VREs), and more research is expected in this emerging field. This systematic review identified publications that used VR interventions for the analysis or treatment of lower-limb musculoskeletal injury of athletes. It established a search protocol, and through narrative discussion, identified existing trends. Database searches encompassed four term sets: 1) VR systems; 2) musculoskeletal injuries; 3) sporting population; 4) movement outcome analysis. Overall, a total of 126 publications were identified through database searching, and twelve were included in the final analysis and discussion. Many of the studies were pilot and proof of concept work. Seven of the twelve publications were observational studies. However, this may provide preliminary data from which clinical trials will branch. If specified, the focus of the literature was very narrow, with very similar population demographics and injuries. The trends in the literature findings emphasised the role of VR and attentional focus, the strategic manipulation of movement outcomes, and the transfer of skill to the real-world. Causal inferences may have been undermined by flaws, as most studies were limited by the practicality of conducting a two-factor clinical-VR-based study. In conclusion, by assessing the exploratory studies, and combining this with the use of numerous developments, techniques, and tools, a novel application could be established to utilise VR with dynamic movement, for the effective treatment of specific musculoskeletal injuries of athletes.Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality
Procedia PDF Downloads 2371934 Revolutionizing Autonomous Trucking Logistics with Customer Relationship Management Cloud
Authors: Sharda Kumari, Saiman Shetty
Abstract:
Autonomous trucking is just one of the numerous significant shifts impacting fleet management services. The Society of Automotive Engineers (SAE) has defined six levels of vehicle automation that have been adopted internationally, including by the United States Department of Transportation. On public highways in the United States, organizations are testing driverless vehicles with at least Level 4 automation which indicates that a human is present in the vehicle and can disable automation, which is usually done while the trucks are not engaged in highway driving. However, completely driverless vehicles are presently being tested in the state of California. While autonomous trucking can increase safety, decrease trucking costs, provide solutions to trucker shortages, and improve efficiencies, logistics, too, requires advancements to keep up with trucking innovations. Given that artificial intelligence, machine learning, and automated procedures enable people to do their duties in other sectors with fewer resources, CRM (Customer Relationship Management) can be applied to the autonomous trucking business to provide the same level of efficiency. In a society witnessing significant digital disruptions, fleet management is likewise being transformed by technology. Utilizing strategic alliances to enhance core services is an effective technique for capitalizing on innovations and delivering enhanced services. Utilizing analytics on CRM systems improves cost control of fuel strategy, fleet maintenance, driver behavior, route planning, road safety compliance, and capacity utilization. Integration of autonomous trucks with automated fleet management, yard/terminal management, and customer service is possible, thus having significant power to redraw the lines between the public and private spheres in autonomous trucking logistics.Keywords: autonomous vehicles, customer relationship management, customer experience, autonomous trucking, digital transformation
Procedia PDF Downloads 1131933 Influence of Carbon Addition on the Activity of Silica Supported Copper and Cobalt Catalysts in NO Reduction with CO
Authors: N. Stoeva, I. Spassova, R. Nickolov, M. Khristova
Abstract:
Exhaust gases from stationary and mobile combustion sources contain nitrogen oxides that cause a variety of environmentally harmful effects. The most common approach of their elimination is the catalytic reaction in the exhaust using various reduction agents such as NH3, CO and hydrocarbons. Transition metals (Co, Ni, Cu, etc.) are the most widely used as active components for deposition on various supports. However, since the interaction between different catalyst components have been extensively studied in different types of reaction systems, the possible cooperation between active components and the support material and the underlying mechanisms have not been thoroughly investigated. The support structure may affect how these materials maintain an active phase. The objective is to investigate the addition of carbonaceous materials with different nature and texture characteristics on the properties of the resulting silica-carbon support and how it influences of the catalytic properties of the supported copper and cobalt catalysts for reduction of NO with CO. The versatility of the physico-chemical properties of the composites and the supported copper and cobalt catalysts are discussed with an emphasis on the relationship of the properties with the catalytic performance. The catalysts were prepared by sol-gel process and were characterized by XRD, XPS, AAS and BET analysis. The catalytic experiments were carried out in catalytic flow apparatus with isothermal flow reactor in the temperature range 20–300оС. After the catalytic test temperature-programmed desorption (TPD) was carried out. The transient response method was used to study the interaction of the gas phase with the catalyst surface. The role of the interaction between the support and the active phase on the catalyst’s activity in the studied reaction was discussed. We suppose the carbon particles with small sizes to participate in the formation of the active sites for the reduction of NO with CO along with their effect on the kind of deposited metal oxide phase. The existence of micropore texture for some of composites also influences by mass-transfer limitations.Keywords: catalysts, no reduction, composites, bet analysis
Procedia PDF Downloads 4261932 Adaptability of Steel-Framed Industrialized Building System In Post-Service Life
Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi
Abstract:
Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, the importance of sustainability principles for building construction is obviously known and great significance must be attached to the consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have a positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and the environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.Keywords: adaptability, durability, open building, service life, structural building system
Procedia PDF Downloads 4371931 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia
Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.
Abstract:
Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy
Procedia PDF Downloads 1381930 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering
Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause
Abstract:
In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.Keywords: image processing, illumination equalization, shadow filtering, object detection
Procedia PDF Downloads 2181929 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries
Authors: Gaurav Kumar Sinha
Abstract:
In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency
Procedia PDF Downloads 65