Search results for: statistical data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27031

Search results for: statistical data

26101 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling

Authors: Vibha Devi, Shabina Khanam

Abstract:

Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.

Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation

Procedia PDF Downloads 143
26100 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand

Authors: Jefferson Hernandez, Juan Padilla

Abstract:

Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.

Keywords: price elasticity, volume, correlation structures, Bayesian models

Procedia PDF Downloads 171
26099 The Gender Perspective Applied to the Analysis of Occupational Accidents

Authors: María Del Carmen Pardo Ferreira, Fernando Rodriguez Cortes, Juan Carlos Rubio Romero

Abstract:

According to the International Labor Organization, every day there is more presence of women in the labor market although inequality between women and men persists in world labor markets. In order to try to reduce this gender inequality in the work environment, the present study is proposed, which aims to analyze the occupational accidents suffered by women and occurred in Spain between 2015 and 2018. For this, the methodology used was based on a statistical analysis of the data provided by the Government of Spain. The results will allow to know in which jobs women suffer accidents, in what type of companies and the severity of the accident. Based on these results, specific intervention policies may be defined according to the needs detected in each sector.

Keywords: Injured women, Gender perspective, Occupational accidents, Occupational health and safety

Procedia PDF Downloads 186
26098 Sport and Exercise Behavior of Students in Suan Sunandha Rajabhat University

Authors: Pimporn Thongmuang

Abstract:

The purpose of this research is to study sport and exercise behavior of students in Suan Sunandha Rajabhat University in September of 2012. The sample group used in this research was a group of regular students in undergraduate school enrolled in faculty of science and technology. This sample group consisted of 1,858 students. The research tool used to collect result was the checklist. The data was calculated by statistical percentage. From the research, it was discovered that most students did exercise in previous month. 71.6% of students exercised by running. 61.1% of students exercised in their neighborhood. 60.4% of students exercised in order to keep fit. 60.2% of students agreed that the result from this research can be educational and inspirational for students in campus in terms of living healthily by exercise.

Keywords: exercise behavior, sport behavior, students, health

Procedia PDF Downloads 476
26097 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 399
26096 Analyzing the Sensation of Jogja Kembali Monument (Monjali): Case Study of Yogyakarta as the Implementation of Attraction Tour

Authors: Hutomo Abdurrohman, Muhammad Latief, Waridatun Nida, Ranta Dwi Irawati

Abstract:

Yogyakarta Kembali Monument (Monjali) is one of the most popular tourist attraction in Yogyakarta. Yogyakarta is known as ‘Student City’, and Monjali is a right place to learn and explore more about Yogyakarta, especially for students in elementary and junior high school to do the study tour. Monjali is located in North Ringroad, Jongkang, Sariharjo village, Ngaglik Subdistrict, Sleman Regency, Yogyakarta. Monjali offers many historical replicas, and also the story behind them. That is about the war between Indonesia's fighter, called TNI (Indonesian national army) and the colonizer of Netherlands in Yogyakarta, on March, 1st 1949. That event could open the eyes of the whole of Indonesia, because at that time the TNI was placed by the invaders. This research is an effort to evaluate the visitor's interest in Monjali as a special tourist attraction. The substance that we use in this research is the Monjali's visitors whom up to 17 years old by taking a respondent in every 15 persons who visit Monjali, and we need 200 respondents to know the condition and facilities of Monjali. This research has been collected since January 2017 until October 2017. We do the interview and spread the questionnaire which has been tested all of its validity and reliability. This data analysis is descriptive statistic analysis by using the qualitative data, which is converted into the quantitative data, use the Linkert Scale. The result of this research shows that the interest of Monjali's visitors is higher 75,6%. Based on the result, we know that Monjali is being an attractiveness for people which always experience its improvements and the development. Monjali is the success to be a place which combines the entertainment with its education as a vision of Yogyakarta as a Student City.

Keywords: descriptive statistical analysis, Jogja Kembali monument, Linkert scale, sensation

Procedia PDF Downloads 192
26095 In-Depth Analysis of Involved Factors to Car-Motorcycle Accidents in Budapest City

Authors: Danish Farooq, Janos Juhasz

Abstract:

Car-motorcycle accidents have been observed higher in recent years, which caused mainly riders’ fatalities and serious injuries. In-depth crash investigation methods aim to investigate the main factors which are likely involved in fatal road accidents and injury outcomes. The main objective of this study is to investigate the involved factors in car-motorcycle accidents in Budapest city. The procedure included statistical analysis and data sampling to identify car-motorcycle accidents by dominant accident types based on collision configurations. The police report was used as a data source for specified accidents, and simulation models were plotted according to scale (M 1:200). Car-motorcycle accidents were simulated in Virtual Crash software for 5 seconds before the collision. The simulation results showed that the main involved factors to car-motorcycle accidents were human behavior and view obstructions. The comprehensive, in-depth analysis also found that most of the car drivers and riders were unable to perform collision avoidance manoeuvres before the collision. This study can help the traffic safety authorities to focus on simulated involved factors to solve road safety issues in car-motorcycle accidents. The study also proposes safety measures to improve safe movements among road users.

Keywords: car motorcycle accidents, in-depth analysis, microscopic simulation, safety measures

Procedia PDF Downloads 154
26094 Design and Analysis of Adaptive Type-I Progressive Hybrid Censoring Plan under Step Stress Partially Accelerated Life Testing Using Competing Risk

Authors: Ariful Islam, Showkat Ahmad Lone

Abstract:

Statistical distributions have long been employed in the assessment of semiconductor devices and product reliability. The power function-distribution is one of the most important distributions in the modern reliability practice and can be frequently preferred over mathematically more complex distributions, such as the Weibull and the lognormal, because of its simplicity. Moreover, it may exhibit a better fit for failure data and provide more appropriate information about reliability and hazard rates in some circumstances. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests for competing risk based on adoptive type-I progressive hybrid censoring criteria. The life data of the units under test is assumed to follow Mukherjee-Islam distribution. The point and interval maximum-likelihood estimations are obtained for distribution parameters and tampering coefficient. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.

Keywords: adoptive progressive hybrid censoring, competing risk, mukherjee-islam distribution, partially accelerated life testing, simulation study

Procedia PDF Downloads 349
26093 Improving the Statistics Nature in Research Information System

Authors: Rajbir Cheema

Abstract:

In order to introduce an integrated research information system, this will provide scientific institutions with the necessary information on research activities and research results in assured quality. Since data collection, duplication, missing values, incorrect formatting, inconsistencies, etc. can arise in the collection of research data in different research information systems, which can have a wide range of negative effects on data quality, the subject of data quality should be treated with better results. This paper examines the data quality problems in research information systems and presents the new techniques that enable organizations to improve their quality of research information.

Keywords: Research information systems (RIS), research information, heterogeneous sources, data quality, data cleansing, science system, standardization

Procedia PDF Downloads 162
26092 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research

Authors: Carla Silva

Abstract:

Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.

Keywords: data mining, research analysis, investment decision-making, educational research

Procedia PDF Downloads 363
26091 Customised Wellness Solutions Using Health Technological Platforms: An Exploratory Research Protocol

Authors: Elaine Wong Yee-Sing, Liaw Wee Tong

Abstract:

Rapid transformations in demographic and socioeconomic shifts are leading to a growing global demand for health and beauty products and services that demands holistic concepts of well-being. In addition, technological breakthroughs such as internet of things make it convenient and offer innovative solutions for well-being and engage consumers to track their own health conditions and fitness goals. This 'new health economy' encompasses three key concepts: well-being, well-conditioned and well-shaped; which are shaped by wellness segments and goals that influence purchasing decisions of consumers. The research protocol aims to examine the feasibility, challenges, and capabilities in provision for each customer with an ecosystem, or platform, that organizes data and insights to create an individual health and fitness, nutrition, and beauty profile. Convenience sampling of 100 consumers residing in private housing within five major districts in Singapore will be selected to participate in the study. Statistical Package for Social Science 25 will be used to conduct descriptive statistics for quantitative data while qualitative data results using focus interviews, will be translated and transcribed to identify improvements in provision of these services. Rising income in emerging global markets is fuelling the demand for these general wellbeing products and services. Combined with technological advances, it is imperative to understand how these highly personalized services with integrated technology can be designed better to support consumer preferences; provide greater flexibility and high-quality service, and generate better health awareness among consumers.

Keywords: beauty, consumers, health, technology, wellness

Procedia PDF Downloads 131
26090 Impact of Geomagnetic Storm on Ionosphere

Authors: Affan Ahmed

Abstract:

This research investigates the impact of the geomagnetic storm occurring from April 22 to April 26, 2023, on the Earth’s ionosphere, with a focus on analyzing specific ionospheric parameters to understand the storm's effects on ionospheric stability and GNSS signal propagation. Geomagnetic storms, caused by intensified solar wind-magnetosphere interactions, can significantly disturb ionospheric conditions, impacting electron density, Total Electron Content (TEC), and thermospheric composition. Such disturbances are particularly relevant to satellite-based navigation and communication systems, as fluctuations in ionospheric parameters can degrade signal integrity and reliability. In this study, data were obtained from multiple sources, including OMNIWeb for parameters like Dst, Kp, Bz, Electric Field, and solar wind pressure, GUVI for O/N₂ ratio maps, and TEC data from low-, mid-, and high-latitude stations available on the IONOLAB website. Additional Equatorial Electrojet (EEJ) and geomagnetic data were acquired from INTERMAGNET. The methodology involved comparing storm-affected data from April 22 to April 26 with quiet days in April 2023, using statistical and wavelet analysis to assess variations in parameters like TEC, O/N₂ ratio, and geomagnetic indices. The results show pronounced fluctuations in TEC and other ionospheric parameters during the main phase of the storm, with spatial variations observed across latitudes, highlighting the global response of the ionosphere to geomagnetic disturbances. The findings underline the storm’s significant impact on ionospheric composition, particularly in mid- and high-latitude regions, which correlates with increased GNSS signal interference in these areas. This study contributes to understanding the ionosphere’s response to geomagnetic activity, emphasizing the need for robust models to predict and mitigate space weather effects on GNSS-dependent technologies.

Keywords: geomagnetic storms, ionospheric disturbances, space weather effects, magnetosphere-ionosphere coupling

Procedia PDF Downloads 15
26089 The Impact of Talent Management on Improving Employee Loyalty in IT Sector, Kerala, India

Authors: Obaidullah Molakhail, R. Reshmi

Abstract:

Objective: This study explains the impact of talent management on employee loyalty in the IT sector in Kerala, India. Methods: A descriptive investigation was conducted within the confines of this paper to gain insight into the ramifications of talent management on enhancing employee allegiance to the organization. A quantitative study was conducted by distributing questionnaires to respondents in three IT companies. One hundred and seventy questionnaires were distributed, with `150 being utilized and the remainder being discarded. Data was collected from various departments within the companies, and the selection of respondents was conducted randomly. statistical software SPSS (version 26) was used to analyze the data and determine the outcomes. Results: The objective was examined through Pearson correlation to find the relation, and linear regression was used to find the strength of variables as talent management is independent and employee loyalty is the dependent variable. The results reveal that talent management is essential to employee loyalty. If there is a high-level implementation of talent management practices, there will be low turnover rate, it reflected employee loyalty towards the organization. Conclusion: Strategic planners ought to devote their attention to the realm of talent management due to the existence of a correlation between talent management and the loyalty exhibited by employees. The results of this study suggest that there is a favorable correlation between talent management and employee loyalty.

Keywords: talent management, employee loyalty, IT sector, quantitative study

Procedia PDF Downloads 62
26088 Empirical Analysis of Forensic Accounting Practices for Tackling Persistent Fraud and Financial Irregularities in the Nigerian Public Sector

Authors: Sani AbdulRahman Bala

Abstract:

This empirical study delves into the realm of forensic accounting practices within the Nigerian Public Sector, seeking to quantitatively analyze their efficacy in addressing the persistent challenges of fraud and financial irregularities. With a focus on empirical data, this research employs a robust methodology to assess the current state of fraud in the Nigerian Public Sector and evaluate the performance of existing forensic accounting measures. Through quantitative analyses, including statistical models and data-driven insights, the study aims to identify patterns, trends, and correlations associated with fraudulent activities. The research objectives include scrutinizing documented fraud cases, examining the effectiveness of established forensic accounting practices, and proposing data-driven strategies for enhancing fraud detection and prevention. Leveraging quantitative methodologies, the study seeks to measure the impact of technological advancements on forensic accounting accuracy and efficiency. Additionally, the research explores collaborative mechanisms among government agencies, regulatory bodies, and the private sector by quantifying the effects of information sharing on fraud prevention. The empirical findings from this study are expected to provide a nuanced understanding of the challenges and opportunities in combating fraud within the Nigerian Public Sector. The quantitative insights derived from real-world data will contribute to the refinement of forensic accounting strategies, ensuring their effectiveness in addressing the unique complexities of financial irregularities in the public sector. The study's outcomes aim to inform policymakers, practitioners, and stakeholders, fostering evidence-based decision-making and proactive measures for a more resilient and fraud-resistant financial governance system in Nigeria.

Keywords: fraud, financial irregularities, nigerian public sector, quantitative investigation

Procedia PDF Downloads 68
26087 Nutrition and Physical Activity Intervention on Health Screening Outcomes for Singaporean Employees: A Worksite Based Randomised Controlled Trial

Authors: Elaine Wong

Abstract:

This research protocol aims to explore and justify the need for nutrition and physical activity intervention to improve health outcomes among SME (Small Medium Enterprise) employees. It was found that the worksite is an ideal and convenient setting for employees to take charge of their health thru active participation in health programmes since they spent a great deal of time at their workplace. This study will examine the impact of both general or/and targeted health interventions in both SME and non-SME companies utilizing the Workplace Health Promotion (WHP) grant over a 12 months period and assessed the improvement in chronic health disease outcomes in Singapore. Random sampling of both non-SME and SME companies will be conducted to undergo health intervention and statistical packages such as Statistical Package for Social Science (SPSS) 25 will be used to examine the impact of both general and targeted interventions on employees who participate and those who do not participate in the intervention and their effects on blood glucose (BG), blood lipid, blood pressure (BP), body mass index (BMI), and body fat percentage. Using focus groups and interviews, the data results will be transcribed to investigate enablers and barriers to workplace health intervention revealed by employees and WHP coordinators that could explain the variation in the health screening results across the organisations. Dietary habits and physical activity levels of the employees participating and not participating in the intervention will be collected before and after intervention to assess any changes in their lifestyle practices. It makes economic sense to study the impact of these interventions on health screening outcomes across various organizations that are existing grant recipients to justify the sustainability of these programmes by the local government. Healthcare policy makers and employers can then tailor appropriate and relevant programmes to manage these escalating chronic health disease conditions which is integral to the competitiveness and productivity of the nation’s workforce.

Keywords: chronic diseases, health screening, nutrition and fitness intervention , workplace health

Procedia PDF Downloads 151
26086 Assessing the Theoretical Suitability of Sentinel-2 and Worldview-3 Data for Hydrocarbon Mapping of Spill Events, Using Hydrocarbon Spectral Slope Model

Authors: K. Tunde Olagunju, C. Scott Allen, Freek Van Der Meer

Abstract:

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization are only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two (2) operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the hydrocarbon spectral slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven (7) different hydrocarbon oils (crude and refined oil) taken on ten (10) different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon-substrate combination, Sentinel-2, WorldView-3

Procedia PDF Downloads 220
26085 Optimization of Manufacturing Process Parameters: An Empirical Study from Taiwan's Tech Companies

Authors: Chao-Ton Su, Li-Fei Chen

Abstract:

The parameter design is crucial to improving the uniformity of a product or process. In the product design stage, parameter design aims to determine the optimal settings for the parameters of each element in the system, thereby minimizing the functional deviations of the product. In the process design stage, parameter design aims to determine the operating settings of the manufacturing processes so that non-uniformity in manufacturing processes can be minimized. The parameter design, trying to minimize the influence of noise on the manufacturing system, plays an important role in the high-tech companies. Taiwan has many well-known high-tech companies, which show key roles in the global economy. Quality remains the most important factor that enables these companies to sustain their competitive advantage. In Taiwan however, many high-tech companies face various quality problems. A common challenge is related to root causes and defect patterns. In the R&D stage, root causes are often unknown, and defect patterns are difficult to classify. Additionally, data collection is not easy. Even when high-volume data can be collected, data interpretation is difficult. To overcome these challenges, high-tech companies in Taiwan use more advanced quality improvement tools. In addition to traditional statistical methods and quality tools, the new trend is the application of powerful tools, such as neural network, fuzzy theory, data mining, industrial engineering, operations research, and innovation skills. In this study, several examples of optimizing the parameter settings for the manufacturing process in Taiwan’s tech companies will be presented to illustrate proposed approach’s effectiveness. Finally, a discussion of using traditional experimental design versus the proposed approach for process optimization will be made.

Keywords: quality engineering, parameter design, neural network, genetic algorithm, experimental design

Procedia PDF Downloads 147
26084 The Determinants of Customer’s Purchase Intention of Islamic Credit Card: Evidence from Pakistan

Authors: Nasir Mehmood, Muhammad Yar Khan, Anam Javeed

Abstract:

This study aims to scrutinize the dynamics which tend to impact customer’s purchasing intention of Islamic credit card and nexus of product’s knowledge and religiosity with the attitude of potential Islamic credit card’s customer. The theory of reasoned action strengthened the idea that intentions due to its proven predictive power are most likely to instigate intended consumer behavior. Particularly, the study examines the relationships of perceived financial cost (PFC), subjective norms (SN), and attitude (ATT) with the intention to purchase Islamic credit cards. Using a convenience sampling approach, data have been collected from 450 customers of banks located in Rawalpindi and Islamabad. A five-point Likert scale self-administered questionnaire was used to collect the data. The data were analyzed using the Statistical Package of Social Sciences (SPSS) through the procedures of principal component and multiple regression analysis. The results suggested that customer’s religiosity and product knowledge are strong indicators of attitude towards buying Islamic credit cards. Likewise, subjective norms, attitude, and perceived financial cost have a significant positive impact on customers’ purchase intent of Islamic bank’s credit cards. This study models a useful path for future researchers to further investigate the underlined phenomenon along with a variety of psychodynamic factors which are still in its infancy, at least in the Pakistani banking sector. The study also provides an insight to the practitioners and Islamic bank managers for directing their efforts toward educating customers regarding the use of Islamic credit cards and other financial products.

Keywords: attitude, Islamic credit card, religiosity, subjective norms

Procedia PDF Downloads 151
26083 Application of Scanning Electron Microscopy and X-Ray Evaluation of the Main Digestion Methods for Determination of Macroelements in Plant Tissue

Authors: Krasimir I. Ivanov, Penka S. Zapryanova, Stefan V. Krustev, Violina R. Angelova

Abstract:

Three commonly used digestion methods (dry ashing, acid digestion, and microwave digestion) in different variants were compared for digestion of tobacco leaves. Three main macroelements (K, Ca and Mg) were analysed using AAS Spectrometer Spectra АА 220, Varian, Australia. The accuracy and precision of the measurements were evaluated by using Polish reference material CTR-VTL-2 (Virginia tobacco leaves). To elucidate the problems with elemental recovery X-Ray and SEM–EDS analysis of all residues after digestion were performed. The X-ray investigation showed a formation of KClO4 when HClO4 was used as a part of the acids mixture. The use of HF at Ca and Mg determination led to the formation of CaF2 and MgF2. The results were confirmed by energy dispersive X-ray microanalysis. SPSS program for Windows was used for statistical data processing.

Keywords: digestion methods, plant tissue, determination of macroelements, K, Ca, Mg

Procedia PDF Downloads 322
26082 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments

Authors: Xiaoqin Wang, Li Yin

Abstract:

Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.

Keywords: causal effect, point effect, statistical modelling, sequential causal inference

Procedia PDF Downloads 209
26081 Analysis of Tourism Development Level and Research on Improvement Strategies - Take Chongqing as an Example

Authors: Jiajun Lu, Yun Ma

Abstract:

As a member of the tertiary industry, tourism is an important driving factor for urban economic development. As a well-known tourist city in China, according to statistics, the added value of tourism and related industries in 2022 will reach 106.326 billion yuan, a year-on-year increase of 1.2%, accounting for 3.7% of the city's GDP. However, the overall tourism development level of Chongqing is seriously unbalanced, and the tourism strength of the main urban area is much higher than that of the southeast Chongqing, northeast Chongqing and the surrounding city tourism area, and the overall tourism strength of the other three regions is relatively balanced. Based on the estimation of tourism development level and the geographic detector method, this paper finds that the important factors affecting the tourism development level of non-main urban areas in Chongqing are A-level tourist attractions. Through GIS geospatial analysis technology and SPSS data correlation research method, the spatial distribution characteristics and influencing factors of A-level tourist attractions in Chongqing were quantitatively analyzed by using data such as geospatial data cloud, relevant documents of Chongqing Municipal Commission of Culture and Tourism Development, planning cloud, and relevant statistical yearbooks. The results show that: (1) The spatial distribution of tourist attractions in non-main urban areas of Chongqing is agglomeration and uneven. (2) The spatial distribution of A-level tourist attractions in non-main urban areas of Chongqing is affected by ecological factors, and the degree of influence is in the order of water factors> topographic factors > green space factors.

Keywords: tourist attractions, geographic detectors, quantitative research, ecological factors, GIS technology, SPSS analysis

Procedia PDF Downloads 21
26080 Occult Haemolacria Paradigm in the Study of Tears

Authors: Yuliya Huseva

Abstract:

To investigate the contents of tears to determine latent blood. Methods: Tear samples from 72 women were studied with the microscopy of tears aspirated with a capillary and stained by Nocht and with a chemical method of test strips with chromogen. Statistical data processing was carried out using statistical packages Statistica 10.0 for Windows, calculation of Pearson's chi-square test, Yule association coefficient, the method of determining sensitivity and specificity. Results:, In 30.6% (22) of tear samples erythrocytes were revealed microscopically. Correlations between the presence of erythrocytes in the tear and the phase of the menstrual cycle has been discovered. In the follicular phase of the cycle, erythrocytes were found in 59.1% (13) people, which is significantly more (x2=4.2, p=0.041) compared to the luteal phase - in 40.9% (9) women. In the first seven days of the follicular phase of the menstrual cycle the erythrocytes were predominanted of in the tears of women examined testifies in favour of the vicarious bleeding from the mucous membranes of extragenital organs in sync with menstruation. Of the other cellular elements in tear samples with latent haemolacria, neutrophils prevailed - in 45.5% (10), while lymphocytes were less common - in 27.3% (6), because neutrophil exudation is accompanied by vasodilatation of the conjunctiva and the release of erythrocytes into the conjunctival cavity. It was found that the prognostic significance of the chemical method was 0.53 of the microscopic method. In contrast to microscopy, which detected blood in tear samples from 30.6% (22) of women, blood was detected chemically in tears of 16.7% (12). An association between latent haemolacria and endometriosis was found (k=0.75, p≤0.05). Microscopically, in the tears of patients with endometriosis, erythrocytes were detected in 70% of cases, while in healthy women without endometriosis - in 25% of cases. The proportion of women with erythrocytes in tears, determined by a chemical method, was 41.7% among patients with endometriosis, which is significantly more (x2=6.5, p=0.011) than 11.7% among women without endometriosis. The data obtained can be explained by the etiopathogenesis of the extragenital endometriosis which is caused by hematogenous spread of endometrial tissue into the orbit. In endometriosis, erythrocytes are found against the background of accumulations of epithelial cells. In the tear samples of 4 women with endometriosis, glandular cuboidal epithelial cells, morphologically similar to endometrial cells, were found, which may indicate a generalization of the disease. Conclusions: Single erythrocytes can normally be found in the tears, their number depends on the phase of the menstrual cycle, increasing in the follicular phase. Erythrocytes found in tears against the background of accumulations of epitheliocytes and their glandular atypia may indicate a manifestation of extragenital endometriosis. Both used methods (microscopic and chemical) are informative in revealing latent haemolacria. The microscopic method is more sensitive, reveals intact erythrocytes, and besides, it provides information about other cells. At the same time, the chemical method is faster and technically simpler, it determines the presence of haemoglobin and its metabolic products, and can be used as a screening.

Keywords: tear, blood, microscopy, epitheliocytes

Procedia PDF Downloads 124
26079 The Relationship between Eating Disorders (Anorexia and Bulimia Nervosa) with Some of the Demographic Factors among University Students

Authors: Shima Hashemi, Firoozeh Ghazanfari

Abstract:

Introduction: Eating disorder is a psychiatric disorder that is increasingly growing. This study aimed to determine the relationship between eating disorders (anorexia and bulimia nervosa) with some of the demographic factors among Lorestan University of Medical Sciences students. Materials and Methods: This study is a cross-sectional and descriptive study that was done at Lorestan University of Medical Sciences in 2019. Four hundred fifty students were studied by stratified and cluster sampling methods. For gathering data, we use the standard questionnaire Eating Attitudes Test EAT (26). Data were analyzed using statistical software SPSS. Results: According to the results, 144 (32%) males and 305 (67.8%) females were studied. 88.7% were single, and 8.9% were married. In the anorexia nervosa group, the results showed that there was a significant meaning between demographic information, and the number of family members, marital status, BMI, level of education, family income, father and mother education, as well as in the bulimia nervosa group, there was no significant meaning with any demographic information (p>0.05). Conclusion: Anorexia and bulimia nervosa are two known types of eating disorders, and some demographic factors can be effective in causing or aggravating these disorders.

Keywords: eating disorder, anorexia nervosa, bulimia nervosa, students

Procedia PDF Downloads 104
26078 Improved K-Means Clustering Algorithm Using RHadoop with Combiner

Authors: Ji Eun Shin, Dong Hoon Lim

Abstract:

Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.

Keywords: big data, combiner, K-means clustering, RHadoop

Procedia PDF Downloads 446
26077 Determination Optimum Strike Price of FX Option Call Spread with USD/IDR Volatility and Garman–Kohlhagen Model Analysis

Authors: Bangkit Adhi Nugraha, Bambang Suripto

Abstract:

On September 2016 Bank Indonesia (BI) release regulation no.18/18/PBI/2016 that permit bank clients for using the FX option call spread USD/IDR. Basically, this product is a combination between clients buy FX call option (pay premium) and sell FX call option (receive premium) to protect against currency depreciation while also capping the potential upside with cheap premium cost. BI classifies this product as a structured product. The structured product is combination at least two financial instruments, either derivative or non-derivative instruments. The call spread is the first structured product against IDR permitted by BI since 2009 as response the demand increase from Indonesia firms on FX hedging through derivative for protecting market risk their foreign currency asset or liability. The composition of hedging products on Indonesian FX market increase from 35% on 2015 to 40% on 2016, the majority on swap product (FX forward, FX swap, cross currency swap). Swap is formulated by interest rate difference of the two currency pairs. The cost of swap product is 7% for USD/IDR with one year USD/IDR volatility 13%. That cost level makes swap products seem expensive for hedging buyers. Because call spread cost (around 1.5-3%) cheaper than swap, the most Indonesian firms are using NDF FX call spread USD/IDR on offshore with outstanding amount around 10 billion USD. The cheaper cost of call spread is the main advantage for hedging buyers. The problem arises because BI regulation requires the call spread buyer doing the dynamic hedging. That means, if call spread buyer choose strike price 1 and strike price 2 and volatility USD/IDR exchange rate surpass strike price 2, then the call spread buyer must buy another call spread with strike price 1’ (strike price 1’ = strike price 2) and strike price 2’ (strike price 2’ > strike price 1‘). It could make the premium cost of call spread doubled or even more and dismiss the purpose of hedging buyer to find the cheapest hedging cost. It is very crucial for the buyer to choose best optimum strike price before entering into the transaction. To help hedging buyer find the optimum strike price and avoid expensive multiple premium cost, we observe ten years 2005-2015 historical data of USD/IDR volatility to be compared with the price movement of the call spread USD/IDR using Garman–Kohlhagen Model (as a common formula on FX option pricing). We use statistical tools to analysis data correlation, understand nature of call spread price movement over ten years, and determine factors affecting price movement. We select some range of strike price and tenor and calculate the probability of dynamic hedging to occur and how much it’s cost. We found USD/IDR currency pairs is too uncertain and make dynamic hedging riskier and more expensive. We validated this result using one year data and shown small RMS. The study result could be used to understand nature of FX call spread and determine optimum strike price for hedging plan.

Keywords: FX call spread USD/IDR, USD/IDR volatility statistical analysis, Garman–Kohlhagen Model on FX Option USD/IDR, Bank Indonesia Regulation no.18/18/PBI/2016

Procedia PDF Downloads 383
26076 Influence of Geomagnetic Storms on Ionospheric Parameters

Authors: Affan Ahmed

Abstract:

This research investigates the Influence of geomagnetic storm occurring from April 22 to April 26, 2023, on the Earth’s ionosphere, with a focus on analyzing specific ionospheric parameters to understand the storm's effects on ionospheric stability and GNSS signal propagation. Geomagnetic storms, caused by intensified solar wind-magnetosphere interactions, can significantly disturb ionospheric conditions, impacting electron density, Total Electron Content (TEC), and thermospheric composition. Such disturbances are particularly relevant to satellite-based navigation and communication systems, as fluctuations in ionospheric parameters can degrade signal integrity and reliability. In this study, data were obtained from multiple sources, including OMNIWeb for parameters like Dst, Kp, Bz, Electric Field, and solar wind pressure, GUVI for O/N₂ ratio maps, and TEC data from low-, mid-, and high-latitude stations available on the IONOLAB website. Additional Equatorial Electrojet (EEJ) and geomagnetic data were acquired from INTERMAGNET. The methodology involved comparing storm-affected data from April 22 to April 26 with quiet days in April 2023, using statistical and wavelet analysis to assess variations in parameters like TEC, O/N₂ ratio, and geomagnetic indices. The results show pronounced fluctuations in TEC and other ionospheric parameters during the main phase of the storm, with spatial variations observed across latitudes, highlighting the global response of the ionosphere to geomagnetic disturbances. The findings underline the storm’s significant impact on ionospheric composition, particularly in mid- and high-latitude regions, which correlates with increased GNSS signal interference in these areas. This study contributes to understanding the ionosphere’s response to geomagnetic activity, emphasizing the need for robust models to predict and mitigate space weather effects on GNSS-dependent technologies.

Keywords: geomagnetic storms, ionospheric disturbances, space weather effects, magnetosphere-ionopheric coupling

Procedia PDF Downloads 17
26075 Vehicles Analysis, Assessment and Redesign Related to Ergonomics and Human Factors

Authors: Susana Aragoneses Garrido

Abstract:

Every day, the roads are scenery of numerous accidents involving vehicles, producing thousands of deaths and serious injuries all over the world. Investigations have revealed that Human Factors (HF) are one of the main causes of road accidents in modern societies. Distracted driving (including external or internal aspects of the vehicle), which is considered as a human factor, is a serious and emergent risk to road safety. Consequently, a further analysis regarding this issue is essential due to its transcendence on today’s society. The objectives of this investigation are the detection and assessment of the HF in order to provide solutions (including a better vehicle design), which might mitigate road accidents. The methodology of the project is divided in different phases. First, a statistical analysis of public databases is provided between Spain and The UK. Second, data is classified in order to analyse the major causes involved in road accidents. Third, a simulation between different paths and vehicles is presented. The causes related to the HF are assessed by Failure Mode and Effects Analysis (FMEA). Fourth, different car models are evaluated using the Rapid Upper Body Assessment (RULA). Additionally, the JACK SIEMENS PLM tool is used with the intention of evaluating the Human Factor causes and providing the redesign of the vehicles. Finally, improvements in the car design are proposed with the intention of reducing the implication of HF in traffic accidents. The results from the statistical analysis, the simulations and the evaluations confirm that accidents are an important issue in today’s society, especially the accidents caused by HF resembling distractions. The results explore the reduction of external and internal HF through the global analysis risk of vehicle accidents. Moreover, the evaluation of the different car models using RULA method and the JACK SIEMENS PLM prove the importance of having a good regulation of the driver’s seat in order to avoid harmful postures and therefore distractions. For this reason, a car redesign is proposed for the driver to acquire the optimum position and consequently reducing the human factors in road accidents.

Keywords: analysis vehicles, asssesment, ergonomics, car redesign

Procedia PDF Downloads 342
26074 Social Media Influencers and Tourist’s Hotel Booking Decisions: A Case Study of Facebook

Authors: Fahsai Pawapootanont, Sasithon Yuwakosol

Abstract:

The objectives of this research study are as follows: 1) Study the information-seeking behavior of followers of influencers on Facebook in making hotel booking decisions and 2) Study the characteristics of travel influencers that affect their followers' hotel booking decisions. The Data was collected by interviewing 35 key informants, consisting of 25 Thai tourists who were followers of travel influencers and 10 travel influencers, as well as collecting data using online questionnaires from a sample of 400 Thai tourists and using statistical data analysis: percentage, standard deviation, mean, T-Test and One-Way Analysis of Variance: ANOVA. The results of the influence of travel influencers on Facebook on hotel booking decisions in Thailand revealed the following: People in different age groups have different information-seeking behaviours. Depends on experience and aptitude in using technology. The sample group did not seek information from only one source. There is also a search for information from various places in order to get comparative information and the most truthful information to make decisions. In addition, travel influencers should be those who present honest, clear, and complete content. And present services honestly. In addition to the characteristics of travel influencers affecting hotel booking decisions, Presentation formats and platforms also affect hotel booking decisions. But it must be designed and presented to suit the behavior of the group of people we want. As for the influence of travel influencers, it can be concluded that The influence of travel influencers can influence their followers' interests and hotel booking decisions. However, it was found that there are other factors that followers of travel influencers on Facebook will factor into their decision to book a hotel, such as Whether the hotel's comfort meets your needs or not; location, price, and promotions also play an important role in deciding to book a hotel.

Keywords: influencer, travel, facebook, hotel booking decisions, Thailand

Procedia PDF Downloads 55
26073 Analyzing the Results of Buildings Energy Audit by Using Grey Set Theory

Authors: Tooraj Karimi, Mohammadreza Sadeghi Moghadam

Abstract:

Grey set theory has the advantage of using fewer data to analyze many factors, and it is therefore more appropriate for system study rather than traditional statistical regression which require massive data, normal distribution in the data and few variant factors. So, in this paper grey clustering and entropy of coefficient vector of grey evaluations are used to analyze energy consumption in buildings of the Oil Ministry in Tehran. In fact, this article intends to analyze the results of energy audit reports and defines most favorable characteristics of system, which is energy consumption of buildings, and most favorable factors affecting these characteristics in order to modify and improve them. According to the results of the model, ‘the real Building Load Coefficient’ has been selected as the most important system characteristic and ‘uncontrolled area of the building’ has been diagnosed as the most favorable factor which has the greatest effect on energy consumption of building. Grey clustering in this study has been used for two purposes: First, all the variables of building relate to energy audit cluster in two main groups of indicators and the number of variables is reduced. Second, grey clustering with variable weights has been used to classify all buildings in three categories named ‘no standard deviation’, ‘low standard deviation’ and ‘non- standard’. Entropy of coefficient vector of Grey evaluations is calculated to investigate greyness of results. It shows that among the 38 buildings surveyed in terms of energy consumption, 3 cases are in standard group, 24 cases are in ‘low standard deviation’ group and 11 buildings are completely non-standard. In addition, clustering greyness of 13 buildings is less than 0.5 and average uncertainly of clustering results is 66%.

Keywords: energy audit, grey set theory, grey incidence matrixes, grey clustering, Iran oil ministry

Procedia PDF Downloads 377
26072 Comparison of the Effects of Alprazolam and Zaleplon on Anxiety Levels in Patients Undergoing Abdominal Gynecological Surgery

Authors: Shekoufeh Behdad, Amirhossein Yadegari, Leila Ghodrati, Saman Yadegari

Abstract:

Context: Preoperative anxiety is a common psychological reaction experienced by all patients undergoing surgery. It can have negative effects on the patient's well-being and even impact surgical outcomes. Therefore, finding effective interventions to reduce preoperative anxiety is important in improving patient care. Research Aim: The aim of this study is to compare the effects of oral administration of zaleplon (5 mg) and alprazolam (0.5 mg) on preoperative anxiety levels in women undergoing gynecological abdominal surgery. Methodology: This study is a double-blind, randomized clinical trial conducted after receiving approval from the university's ethics committee and obtaining written informed consent from the patients. The night before the surgery, patients were randomly assigned to receive either 0.5 mg of alprazolam or 5 mg of zaleplon orally. Anxiety levels, measured using a 10-cm visual analog scale, and hemodynamic variables (blood pressure and heart rate) were assessed before drug administration and on the morning of the operation after the patient entered the pre-operation room. Findings: The study found that there were no significant differences in mean anxiety levels or hemodynamic variables before and after administration of either drug in both groups (P value > 0.05). This suggests that both 0.5 mg of alprazolam and 5 mg of zaleplon effectively reduce preoperative anxiety in women undergoing abdominal surgery without serious side effects. Theoretical Importance: This study contributes to the understanding of the effectiveness of alprazolam and zaleplon in reducing preoperative anxiety. It adds to the existing literature on pharmacological interventions for anxiety management, specifically in the context of gynecological abdominal surgery. Data Collection: Data for this study were collected through the assessment of anxiety levels using a visual analog scale and measuring hemodynamic variables, including systolic, diastolic, and mean arterial blood pressures, as well as heart rate. These measurements were taken before drug administration and on the morning of the surgery. Analysis Procedures: Statistical analysis was performed to compare the mean anxiety levels and hemodynamic variables before and after drug administration in the two groups. The significance of the differences was determined using appropriate statistical tests. Questions Addressed: This study aimed to answer the question of whether there are differences in the effects of alprazolam and zaleplon on preoperative anxiety levels in women undergoing gynecological abdominal surgery. Conclusion: The oral administration of both 0.5 mg of alprazolam and 5 mg of zaleplon the night before surgery effectively reduces preoperative anxiety in women undergoing abdominal surgery. These findings have important implications for the management of preoperative anxiety and can contribute to improving the overall surgical experience for patients.

Keywords: zaleplon, alprazolam, premedication, abdominal surgery

Procedia PDF Downloads 84