Search results for: random generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5390

Search results for: random generation

4460 The Next Generation of Mucoadhesive Polymer

Authors: Flavia Laffleur, Andreas Bernkop-Schnürch

Abstract:

Purpose: This study was aimed to investigate preactivated thiomers for their mucoadhesive potential. Methods: Accordingly, chitosan-thioglycolic-mercaptonicotinamide conjugates (chitosan-TGA-MNA) were synthesized by the oxidative S-S coupling of chitosan-thioglycolic acid (chitosan-TGA) with 6-mercaptonicotin amide (MNA). Unmodified chitosan, chitosan-TGA (thiomers) and chitosan-TGA-MNA conjugates were compressed into test discs to investigate cohesive properties, cytotoxicity assays and mucoadhesion studies. Results: Due to the immobilization of MNA, the chitosan-TGA-MNA conjugates exhibit comparatively higher swelling properties and cohesive properties corresponding unmodified chitosan. On the rotating cylinder, discs based on chitosan-TGA-MNA conjugates displayed 3.1-fold improved mucoadhesion time compared to thiolated polymers. Tensile study results were found in good agreement with rotating cylinder results. Moreover, preactivated thiomers showed higher stability. All polymers were found non-toxic over Caco-2 cells. Conclusion: On the basis of achieved results the pre activated thiomeric therapeutic agent seems to represent a promising generation of mucoadhesive polymers which are safe to use for a prolonged residence time to target the mucosa.

Keywords: biomedical application, drug delivery, polymer, thiomer

Procedia PDF Downloads 434
4459 Analysis on Heat Transfer in Solar Parabolic Trough Collectors

Authors: Zaid H. Yaseen, Jamel A. Orfi, Zeyad A. Alsuhaibani

Abstract:

Solar power has a huge potential to be employed in the fields of electricity production, water desalination, and multi-generation. There are various types of solar collectors, and parabolic trough collectors (PTCs) are common among these types. In PTCs, a mirror is used to direct the incident radiation on an absorber tube to utilize the heat in power generation. In this work, a PTC covered with a glass tube is presented and analyzed. Results showed that temperatures of 510℃ for steam can be reached for certain parameters. The work also showed the viability of using Benzene as the working fluid in the absorber tube. Also, some analysis regarding changing the absorber’s tube diameter and the efficiency of the solar collector was demonstrated in this work. The effect of changing the heat transfer correlations for the convection phenomena of the working fluid was illustrated. In fact, two heat transfer correlations, the Dittus-Boelter and Gnielinski correlations, were used, and the outcomes showed a resemblance in the results for the maximum attainable temperature in the working fluid.

Keywords: absorber tube, glass tube, incident radiation, parabolic trough collector

Procedia PDF Downloads 9
4458 Examination of Public Hospital Unions Technical Efficiencies Using Data Envelopment Analysis and Machine Learning Techniques

Authors: Songul Cinaroglu

Abstract:

Regional planning in health has gained speed for developing countries in recent years. In Turkey, 89 different Public Hospital Unions (PHUs) were conducted based on provincial levels. In this study technical efficiencies of 89 PHUs were examined by using Data Envelopment Analysis (DEA) and machine learning techniques by dividing them into two clusters in terms of similarities of input and output indicators. Number of beds, physicians and nurses determined as input variables and number of outpatients, inpatients and surgical operations determined as output indicators. Before performing DEA, PHUs were grouped into two clusters. It is seen that the first cluster represents PHUs which have higher population, demand and service density than the others. The difference between clusters was statistically significant in terms of all study variables (p ˂ 0.001). After clustering, DEA was performed for general and for two clusters separately. It was found that 11% of PHUs were efficient in general, additionally 21% and 17% of them were efficient for the first and second clusters respectively. It is seen that PHUs, which are representing urban parts of the country and have higher population and service density, are more efficient than others. Random forest decision tree graph shows that number of inpatients is a determinative factor of efficiency of PHUs, which is a measure of service density. It is advisable for public health policy makers to use statistical learning methods in resource planning decisions to improve efficiency in health care.

Keywords: public hospital unions, efficiency, data envelopment analysis, random forest

Procedia PDF Downloads 126
4457 Improving Cryptographically Generated Address Algorithm in IPv6 Secure Neighbor Discovery Protocol through Trust Management

Authors: M. Moslehpour, S. Khorsandi

Abstract:

As transition to widespread use of IPv6 addresses has gained momentum, it has been shown to be vulnerable to certain security attacks such as those targeting Neighbor Discovery Protocol (NDP) which provides the address resolution functionality in IPv6. To protect this protocol, Secure Neighbor Discovery (SEND) is introduced. This protocol uses Cryptographically Generated Address (CGA) and asymmetric cryptography as a defense against threats on integrity and identity of NDP. Although SEND protects NDP against attacks, it is computationally intensive due to Hash2 condition in CGA. To improve the CGA computation speed, we parallelized CGA generation process and used the available resources in a trusted network. Furthermore, we focused on the influence of the existence of malicious nodes on the overall load of un-malicious ones in the network. According to the evaluation results, malicious nodes have adverse impacts on the average CGA generation time and on the average number of tries. We utilized a Trust Management that is capable of detecting and isolating the malicious node to remove possible incentives for malicious behavior. We have demonstrated the effectiveness of the Trust Management System in detecting the malicious nodes and hence improving the overall system performance.

Keywords: CGA, ICMPv6, IPv6, malicious node, modifier, NDP, overall load, SEND, trust management

Procedia PDF Downloads 184
4456 On the Effectiveness of Electricity Market Development Strategies: A Target Model for a Developing Country

Authors: Ezgi Avci-Surucu, Doganbey Akgul

Abstract:

Turkey’s energy reforms has achieved energy security through a variety of interlinked measures including electricity, gas, renewable energy and energy efficiency legislation; the establishment of an energy sector regulatory authority; energy price reform; the creation of a functional electricity market; restructuring of state-owned energy enterprises; and private sector participation through privatization and new investment. However, current strategies, namely; “Electricity Sector Reform and Privatization Strategy” and “Electricity Market and Supply Security Strategy” has been criticized for various aspects. The present paper analyzes the implementation of the aforementioned strategies in the framework of generation scheduling, transmission constraints, bidding structure and general aspects; and argues the deficiencies of current strategies which decelerates power investments and creates uncertainties. We conclude by policy suggestions to eliminate these deficiencies in terms of price and risk management, infrastructure, customer focused regulations and systematic market development.

Keywords: electricity markets, risk management, regulations, balancing and settlement, bilateral trading, generation scheduling, bidding structure

Procedia PDF Downloads 553
4455 Attitudes, Experiences and Good Practices of Writing Online Course Material: A Case Study in Makerere University

Authors: Ruth Nsibirano

Abstract:

Online mode of delivery in higher institutions of learning, popularly known in some circles as e-Learning or distance education is a new phenomenon that is steadily taking root in African universities but specifically at Makerere University. For slightly over a decade, the Department of Open and Distance Learning has been offering the first generation mode of distance education. In this, learning and teaching experiences were based on the use of hard copy materials circulated through postal services in a rather correspondence mode. There were more challenges to this including high dropout rates, limited support to the learners and sustainability issues. Fortunately, the Department was supported by the Norwegian Government through a NORHED grant to “leapfrog” to the fifth generation of distance education that makes more use of educational technologies and tools. The capacity of faculty staff was gradually enhanced through a series of training to handle the upgraded structure of fifth generation distance education. The trained staff was then tasked to develop modules befitting an online delivery mode, for use on the program. This paper will present attitudes, experiences of the course writers with a view of sharing the good practices that enabled them leap from e-faculty trainees to distinct online course writers. This perspective will hopefully serve as building blocks to enhance the capacity of other upcoming distance education programs in low capacity universities and also promote the uptake of e-Education on the continent and beyond. Methodologically the findings were collected through individual interviews with the 30 course writers. In addition, semi structured questionnaires were designed to collect data on the profile, challenges and lessons from the writers. Findings show that the attitudes of course writers on project supported activities are so much tagged to the returns from their committed efforts. In conclusion, therefore, it is strategically useful to assess and selectively choose which individual to nominate for involvement at the initial stages.

Keywords: distance education, online course content, staff attitudes, best practices in online learning

Procedia PDF Downloads 253
4454 Evolution of Predator-prey Body-size Ratio: Spatial Dimensions of Foraging Space

Authors: Xin Chen

Abstract:

It has been widely observed that marine food webs have significantly larger predator–prey body-size ratios compared with their terrestrial counterparts. A number of hypotheses have been proposed to account for such difference on the basis of primary productivity, trophic structure, biophysics, bioenergetics, habitat features, energy efficiency, etc. In this study, an alternative explanation is suggested based on the difference in the spatial dimensions of foraging arenas: terrestrial animals primarily forage in two dimensional arenas, while marine animals mostly forage in three dimensional arenas. Using 2-dimensional and 3-dimensional random walk simulations, it is shown that marine predators with 3-dimensional foraging would normally have a greater foraging efficiency than terrestrial predators with 2-dimensional foraging. Marine prey with 3-dimensional dispersion usually has greater swarms or aggregations than terrestrial prey with 2-dimensional dispersion, which again favours a greater predator foraging efficiency in marine animals. As an analytical tool, a Lotka-Volterra based adaptive dynamical model is developed with the predator-prey ratio embedded as an adaptive variable. The model predicts that high predator foraging efficiency and high prey conversion rate will dynamically lead to the evolution of a greater predator-prey ratio. Therefore, marine food webs with 3-dimensional foraging space, which generally have higher predator foraging efficiency, will evolve a greater predator-prey ratio than terrestrial food webs.

Keywords: predator-prey, body size, lotka-volterra, random walk, foraging efficiency

Procedia PDF Downloads 77
4453 Algorithmic Generation of Carbon Nanochimneys

Authors: Sorin Muraru

Abstract:

Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.

Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures

Procedia PDF Downloads 170
4452 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings

Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo

Abstract:

The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.

Keywords: building structure, seismic waves, spectral analysis, structural response

Procedia PDF Downloads 400
4451 Importance of Location Selection of an Energy Storage System in a Smart Grid

Authors: Vanaja Rao

Abstract:

In the recent times, the need for the integration of Renewable Energy Sources (RES) in a Smart Grid is on the rise. As a result of this, associated energy storage systems are known to play important roles in sustaining the efficient operation of such RES like wind power and solar power. This paper investigates the importance of location selection of Energy Storage Systems (ESSs) in a Smart Grid. Three scenarios of ESS location is studied and analyzed in a Smart Grid, which are – 1. Near the generation/source, 2. In the middle of the Grid and, 3. Near the demand/consumption. This is explained with the aim of assisting any Distribution Network Operator (DNO) in deploying the ESSs in a power network, which will significantly help reduce the costs and time of planning and avoid any damages incurred as a result of installing them at an incorrect location of a Smart Grid. To do this, the outlined scenarios mentioned above are modelled and analyzed with the National Grid’s datasets of energy generation and consumption in the UK power network. As a result, the outcome of this analysis aims to provide a better overview for the location selection of the ESSs in a Smart Grid. This ensures power system stability and security along with the optimum usage of the ESSs.

Keywords: distribution networks, energy storage system, energy security, location planning, power stability, smart grid

Procedia PDF Downloads 299
4450 Water Saving in Electricity Generation System Considering Natural Gas Limitation

Authors: Mehdi Ganjkhani, Sobhan Badakhshan, Seyedvahid Hosseini

Abstract:

Power plants exploit striking proportion of underground water consumption. Correspondingly, natural gas-fired power plants need less water than the other conventional power plants. Therefore, shifting unit commitment planning toward these power plants would help to save water consumption. This paper discusses the impacts of water consumption limitation on natural gas consumption and vice versa as a short-term water consumption management solution. To do so, conventional unit commitment problem is extended by adding water consumption and natural gas constraints to the previous constrains. The paper presents the impact of water saving on natural gas demands as well as natural gas shortage on water demand. Correspondingly, the additional cost of electricity production according to the aforementioned constraints is evaluated. Finally, a test system is applied to investigate potentials and impacts of water saving and natural gas shortage. Different scenarios are conducted and the results are presented. The results of the study illustrate that in order to use less water for power production it needs to use more natural gas. Meanwhile, natural gas shortage causes to utilize more amount of water in aggregate.

Keywords: electric energy generation system, underground water sources, unit commitment, water consumption saving, natural gas

Procedia PDF Downloads 190
4449 Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage

Authors: Faezeh Mosallat, Eric L. Bibeau, Tarek El Mekkawy

Abstract:

Availability of a wide variety of renewable resources, such as large reserves of hydro, biomass, solar and wind in Canada provides significant potential to improve the sustainability of energy uses. As buildings represent a considerable portion of energy use in Canada, application of distributed solar energy systems for heating and cooling may increase the amount of renewable energy use. Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. Heat production by concentrating solar rays using parabolic troughs can overcome the poor efficiencies of flat panels and evacuated tubes in cold climates. A numerical dynamic model is developed to simulate an installed parabolic solar trough facility in Winnipeg. The results of the numerical model are validated using the experimental data obtained from this system. The model is developed in Simulink and will be utilized to simulate a tri-generation system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates as this is lacking in the literature. In this paper, the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using organic Rankine cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modeling provides dynamic performance results using real time minutely meteorological data which are collected at the same location the solar system is installed. This is a big step ahead of the current models by accurately calculating the available solar energy at each time step considering the solar radiation fluctuations due to passing clouds. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. A natural gas water heater provides the required excess heat for the absorption cooling at low or no solar radiation periods. The results of the simulation are presented for a summer month in Winnipeg which includes the amount of generated electric power from ORC and contribution of solar energy in the cooling load provision

Keywords: absorption cooling, parabolic solar trough, remote community, validated model

Procedia PDF Downloads 216
4448 Copper Chelation by 3-(Bromoacetyl) Coumarin Derivative Induced Apoptosis in Cancer Cells: Influence of Copper Chelation Strategy in Cancer Treatment

Authors: Saman Khan, Imrana Naseem

Abstract:

Copper is an essential trace element required for pro-angiogenic co-factors including vascular endothelial growth factor (VEGF). Elevated levels of copper are found in various types of cancer including prostrate, colon, breast, lung and liver for angiogensis and metastasis. Therefore, targeting copper via copper-specific chelators in cancer cells can be developed as effective anticancer treatment strategy. In continuation of our pursuit to design and synthesize copper chelators, herein we opted for a reaction to incorporate di-(2-picolyl) amine in 3-(bromoacetyl) coumarin (parent backbone) for the synthesis of complex 1. We evaluated lipid peroxidation, protein carbonylation, ROS generation, DNA damage and consequent apoptosis by complex 1 in exogenously added Cu(II) in human peripheral lymphocytes (simulate malignancy condition). Results showed that Cu(II)-complex 1 interaction leads to cell proliferation inhibition, apoptosis, ROS generation and DNA damage in human lymphocytes, and these effects were abrogated by cuprous chelator neocuproine and ROS scavengers (thiourea, catalase, SOD). This indicates that complex 1 cytotoxicity is due to redox cycling of copper to generate ROS which leads to pro-oxidant cell death in cancer cells. To further confirm our hypothesis, using the rat model of diethylnitrosamine (DEN) induced hepatocellular carcinoma; we showed that complex 1 mediates DNA breakage and cell death in isolated carcinoma cells. Membrane permeant copper chelator, neocuproine, and ROS scavengers inhibited the complex 1-mediated cellular DNA degradation and apoptosis. In summary, complex 1 anticancer activity is due to its copper chelation capability. These results will provide copper chelation as an effective targeted cancer treatment strategy for selective cytotoxic action against malignant cells without affecting normal cells.

Keywords: cancer treatment, copper chelation, ROS generation, DNA damage, redox cycling, apoptosis

Procedia PDF Downloads 292
4447 Optimization of Water Desalination System Powered by High Concentrated Photovoltaic Panels in Kuwait Climate Conditions

Authors: Adel A. Ghoneim

Abstract:

Desalination using solar energy is an interesting option specifically at regions with abundant solar radiation since such areas normally have scarcity of clean water resources. Desalination is the procedure of eliminating dissolved minerals from seawater or brackish water to generate fresh water. In this work, a simulation program is developed to determine the performance of reverse osmosis (RO) water desalination plant powered by high concentrated photovoltaic (HCPV) panels in Kuwait climate conditions. The objective of such a photovoltaic thermal system is to accomplish a double output, i.e., co-generation of both electricity and fresh water that is applicable for rural regions with high solar irradiation. The suggested plan enables to design an RO plant that does not depend on costly batteries or additional land and significantly reduce the government costs to subsidize the water generation cost. Typical weather conditions for Kuwait is employed as input to the simulation program. The simulation program is utilized to optimize the system efficiency as well as the distillate water production. The areas and slopes of HCPV modules are varied to attain maximum yearly power production. Maximum yearly distillate production and HCPV energy generation are found to correspond to HCPV facing south with tilt of 27° (Kuwait latitude-3°). The power needed to produce 1 l of clean drinking water ranged from 2 to 8 kW h/m³, based on the salinity of the feed water and the system operating conditions. Moreover, adapting HCPV systems achieve an avoided greenhouse gases emission by about 1128 ton CO₂ annually. Present outcomes certainly illustrate environmental advantages of water desalination system powered by high concentrated photovoltaic systems in Kuwait climate conditions.

Keywords: desalination, high concentrated photovoltaic systems, reverse osmosis, solar radiation

Procedia PDF Downloads 142
4446 Lightweight Cryptographically Generated Address for IPv6 Neighbor Discovery

Authors: Amjed Sid Ahmed, Rosilah Hassan, Nor Effendy Othman

Abstract:

Limited functioning of the Internet Protocol version 4 (IPv4) has necessitated the development of the Internetworking Protocol next generation (IPng) to curb the challenges. Indeed, the IPng is also referred to as the Internet Protocol version 6 (IPv6) and includes the Neighbor Discovery Protocol (NDP). The latter performs the role of Address Auto-configuration, Router Discovery (RD), and Neighbor Discovery (ND). Furthermore, the role of the NDP entails redirecting the service, detecting the duplicate address, and detecting the unreachable services. Despite the fact that there is an NDP’s assumption regarding the existence of trust the links’ nodes, several crucial attacks may affect the Protocol. Internet Engineering Task Force (IETF) therefore has recommended implementation of Secure Neighbor Discovery Protocol (SEND) to tackle safety issues in NDP. The SEND protocol is mainly used for validation of address rights, malicious response inhibiting techniques and finally router certification procedures. For routine running of these tasks, SEND utilizes on the following options, Cryptographically Generated Address (CGA), RSA Signature, Nonce and Timestamp option. CGA is produced at extra high costs making it the most notable disadvantage of SEND. In this paper a clear description of the constituents of CGA, its operation and also recommendations for improvements in its generation are given.

Keywords: CGA, IPv6, NDP, SEND

Procedia PDF Downloads 385
4445 Advancing Net Zero Showcase in Subtropical High-Rise Commercial Building

Authors: Melody Wong

Abstract:

Taikoo Green Ribbon is the winning scheme of International Advancing Net Zero ANZ Ideas Competition 2021 and shortlisted as a finalist of top Architectural Award “AJ100 Sustainability Initiative of the Year, 2022, demonstrating city's aspirations to reach carbon neutrality by 2050. The project showcases total design solutions to blend technology and nature to create a futuristic workplace achieving net zero within a decade. The net zero building design featured with extremely low embodied carbon emission (<250 kgCO2/sqm), significant surplus in renewable energy generation (130% of energy consumption) and various carbon capture technology. The project leverages aesthetics, user-experience, sustainability, and technology to develop over 40 design features. Utilizing AI-controlled Smart Envelope system, the possibility of naturally ventilation was maximized to adjust the microclimate to foster behavourial change. The design principle – healthy and collaborative working environment is realized with a landscaped sky-track with kinetic energy pads, natural ventilated open space with edible plants across floors, and 500-seat open-space rooftop theatre to reshape and redefine the new generation of workplaces.

Keywords: NetZero, zero carbon, green, sustainability

Procedia PDF Downloads 77
4444 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms

Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel

Abstract:

Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.

Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning

Procedia PDF Downloads 168
4443 The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar

Authors: Yasuyo Makido, Vivek Shandas, David J. Sailor, M. Salim Ferwati

Abstract:

Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates.

Keywords: desert cities, tree-structure regression model, urban cool Island, vehicle temperature traverse

Procedia PDF Downloads 392
4442 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin

Authors: Triveni Gogoi, Rima Chatterjee

Abstract:

Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.

Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs

Procedia PDF Downloads 229
4441 Using the Combination of Food Waste and Animal Waste as a Reliable Energy Source in Rural Guatemala

Authors: Jina Lee

Abstract:

Methane gas is a common byproduct in any process of rot and degradation of organic matter. This gas, when decomposition occurs, is emitted directly into the atmosphere. Methane is the simplest alkane hydrocarbon that exists. Its chemical formula is CH₄. This means that there are four atoms of hydrogen and one of carbon, which is linked by covalent bonds. Methane is found in nature in the form of gas at normal temperatures and pressures. In addition, it is colorless and odorless, despite being produced by the rot of plants. It is a non-toxic gas, and the only real danger is that of burns if it were to ignite. There are several ways to generate methane gas in homes, and the amount of methane gas generated by the decomposition of organic matter varies depending on the type of matter in question. An experiment was designed to measure the efficiency, such as a relationship between the amount of raw material and the amount of gas generated, of three different mixtures of organic matter: 1. food remains of home; 2. animal waste (excrement) 3. equal parts mixing of food debris and animal waste. The results allowed us to conclude which of the three mixtures is the one that grants the highest efficiency in methane gas generation and which would be the most suitable for methane gas generation systems for homes in order to occupy less space generating an equal amount of gas.

Keywords: alternative energy source, energy conversion, methane gas conversion system, waste management

Procedia PDF Downloads 166
4440 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 320
4439 Economic Load Dispatch with Valve-Point Loading Effect by Using Differential Evolution Immunized Ant Colony Optimization Technique

Authors: Nur Azzammudin Rahmat, Ismail Musirin, Ahmad Farid Abidin

Abstract:

Economic load dispatch is performed by the utilities in order to determine the best generation level at the most feasible operating cost. In order to guarantee satisfying energy delivery to the consumer, a precise calculation of generation level is required. In order to achieve accurate and practical solution, several considerations such as prohibited operating zones, valve-point effect and ramp-rate limit need to be taken into account. However, these considerations cause the optimization to become complex and difficult to solve. This research focuses on the valve-point effect that causes ripple in the fuel-cost curve. This paper also proposes Differential Evolution Immunized Ant Colony Optimization (DEIANT) in solving economic load dispatch problem with valve-point effect. Comparative studies involving DEIANT, EP and ACO are conducted on IEEE 30-Bus RTS for performance assessments. Results indicate that DEIANT is superior to the other compared methods in terms of calculating lower operating cost and power loss.

Keywords: ant colony optimization (ACO), differential evolution (DE), differential evolution immunized ant colony optimization (DEIANT), economic load dispatch (ELD)

Procedia PDF Downloads 448
4438 Mathematical Modelling of a Low Tip Speed Ratio Wind Turbine for System Design Evaluation

Authors: Amir Jalalian-Khakshour, T. N. Croft

Abstract:

Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of advantages over traditional wind turbines. The advantages are reliability, ease of transportation and manufacturing. These attributes could make these technologies useful in developing economies. The performance characteristics of a VAWT are different from a horizontal axis wind turbine, which can be attributed to the low tip speed ratio operation. To unlock the potential of these VAWT systems, the operational behaviour in a number of system topologies and environmental conditions needs to be understood. In this study, a non-linear dynamic simulation method was developed in Matlab and validated against in field data of a large scale, 8-meter rotor diameter prototype. This simulation method has been utilised to determine the performance characteristics of a number of control methods and system topologies. The motivation for this research was to develop a simulation method which accurately captures the operating behaviour and is computationally inexpensive. The model was used to evaluate the performance through parametric studies and optimisation techniques. The study gave useful insights into the applications and energy generation potential of this technology.

Keywords: power generation, renewable energy, rotordynamics, wind energy

Procedia PDF Downloads 304
4437 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach

Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou

Abstract:

The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.

Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation

Procedia PDF Downloads 171
4436 Social Media Consumption Habits within the Millennial Generation: A Comparison between U.S. And Bangladesh

Authors: Didarul Islam Manik

Abstract:

The study was conducted to determine social media usage by the Millennial/young-adult generation in the U.S. and Bangladesh. It investigated what types of social media Millennials/young-adults use in their everyday lives; for what purpose they use social media; what are the significant differences between the two cultures in terms of social media use; and how the age of the respondents correlates with differences in social media use. Among the 409 respondents, 200 were selected from the University of South Dakota and 209 from the University of Dhaka, Bangladesh. The convenience sampling method was used to select the samples. A four-page questionnaire instrument was constructed with 19 closed-ended questions that collected 87 data points. The study considered the uses and gratifications and domestication of technology models as theoretical frameworks. The study found that the Millennials spend an average of 4.5 hours on the Internet daily. They spend an average of 134 minutes on social media every day. However, the U.S. Millennials spend more time (141 minutes) on social media than the Bangladeshis (127 minutes). The U.S. Millennials use various types of social media including Facebook, Twitter, YouTube, Instagram, Pinterest, SnapChat, Reddit, Imgur, etc. In contrast, Bangladeshis use Facebook, YouTube, and Google plus+. The Bangladeshis tended to spend more time on Facebook (107 minutes) than the Americans (57 minutes). The study found that the Millennials of the two countries use Facebook to fill their free time, acquire information, seek entertainment, and maintain existing relationships. However, Bangladeshis are more likely to use Facebook for the acquisition of information, entertainment, educational purposes, and connecting with the people closest to them. Millennials also use Twitter to fill their free time, acquire information, and for entertainment. The study found a statistically significant difference between female and male social media use. It also found a significant correlation between age and using Facebook for educational purposes; age and discussing and posting religious issues; and age and meeting with new people. There is also a correlation between age and the use of Twitter for spending time and seeking entertainment.

Keywords: American study, social media, millennial generation, South Asian studies

Procedia PDF Downloads 234
4435 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
4434 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall

Authors: Sanjib Kr Pal, S. Bhattacharyya

Abstract:

Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.

Keywords: conjugate heat transfer, mixed convection, nano fluid, wall waviness

Procedia PDF Downloads 254
4433 Cultural Knowledge Transfer of the Inherited Karen Backstrap Weaving for the 4th Generation of a Pwo Karen Community

Authors: Suphitcha Charoen-Amornkitt, Chokeanand Bussracumpakorn

Abstract:

The tendency of the Karen backstrap weaving succession has gradually decreased due to the difficulty of weaving techniques and the relocation of the young generation. The Yang Nam Klat Nuea community, Nong Ya Plong District, Phetchaburi, is a Pwo Karen community that is seriously confronted with a lack of cultural heritage. Thus, a group of weavers was formed to revive the knowledge of weaving. However, they have been gradually confronted with culture assimilation to mainstream culture from the desire for marketing acceptance and imperative and forced the extinction of culture due to the disappearance of weaving details and techniques. Although there are practical solutions, i.e., product development, community improvement, knowledge improvement, and knowledge transfer, to inherit the Karen weaving culture, people in the community cannot fulfill their deep intention about the weaving inheritance as most solutions have focused on developing the commercial products and making the income instead of inheriting their knowledge. This research employed qualitative user research with an in-depth user interview to study communal knowledge transfer succession based on the internal involved parties, i.e., four expert weavers, three young weavers, and three 4th generation villagers. The purpose is to explore the correlation and mindset of villagers towards the culture with specific issues, including the psychology of culture, core knowledge and learning methods, cultural inheritance, and cultural engagement. As a result, the existing models of knowledge management mostly focused on tangible strategies, which can notice progress in short terms, such as direct teaching and consistent practicing. At the same time, the motivation and passion of inheritors were abolished while the research found that the young generation who profoundly connected with the textile culture will have a more significant intention to continue the culture. Therefore, this research suggests both internal and external solutions to treat the community. Regarding the internal solutions, family, weaving group, and school have an important role to participate with young villagers by encouraging activities to support the cultivating of Karen’s history, understanding their identities, and adapting the culture as a part of daily life. At the same time, collecting all of the knowledge in the archives, e.g., recorded video, instruction, and books, can crucially prevent the culture from extinction. Regarding the external solutions, this study suggests that working with social media will enhance the intimacy of textile culture, while the community should relieve the roles in marketing competition and start to drive cultural experiences to create a new market position. In conclusion, this research intends to explore the causes and motivation to support the transfer of the culture to the 4th generation villagers and to raise awareness of the diversity of culture in society. With these suggestions and the desire to improve pride and confidence in culture, the community agrees that strengthening the relationships between the young villagers and the weaving culture can bring attention and interest back to the weaving culture.

Keywords: Pwo Karen textile culture, backstrap weaving succession, cultural inheritance, knowledge transfer, knowledge management

Procedia PDF Downloads 93
4432 A Review of Current Trends in Grid Balancing Technologies

Authors: Kulkarni Rohini D.

Abstract:

While emerging as plausible sources of energy generation, new technologies, including photovoltaic (PV) solar panels, home battery energy storage systems, and electric vehicles (EVs), are exacerbating the operations of power distribution networks for distribution network operators (DNOs). Renewable energy production fluctuates, stemming in over- and under-generation energy, further complicating the issue of storing excess power and using it when necessary. Though renewable sources are non-exhausting and reoccurring, power storage of generated energy is almost as paramount as to its production process. Hence, to ensure smooth and efficient power storage at different levels, Grid balancing technologies are consequently the next theme to address in the sustainable space and growth sector. But, since hydrogen batteries were used in the earlier days to achieve this balance in power grids, new, recent advancements are more efficient and capable per unit of storage space while also being distinctive in terms of their underlying operating principles. The underlying technologies of "Flow batteries," "Gravity Solutions," and "Graphene Batteries" already have entered the market and are leading the race for efficient storage device solutions that will improve and stabilize Grid networks, followed by Grid balancing technologies.

Keywords: flow batteries, grid balancing, hydrogen batteries, power storage, solar

Procedia PDF Downloads 70
4431 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background

Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong

Abstract:

Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.

Keywords: deep learning, image fusion, image generation, layout analysis

Procedia PDF Downloads 157