Search results for: nonlinear regression (NLR)
3549 The Impact of Simulation-based Learning on the Clinical Self-efficacy and Adherence to Infection Control Practices of Nursing Students
Authors: Raeed Alanazi
Abstract:
Introduction: Nursing students have a crucial role to play in the inhibition of infectious diseases and, therefore, must be trained in infection control and prevention modules prior to entering clinical settings. Simulations have been found to have a positive impact on infection control skills and the use of standard precautions. Aim: The purpose of this study was to use the four sources of self-efficacy in explaining the level of clinical self-efficacy and adherence to infection control practices in Saudi nursing students during simulation practice. Method: A cross-sectional design with convenience sampling was used. This study was conducted in all Saudi nursing schools, with a total number of 197 students participated in this study. Three scales were used simulation self- efficacy Scale (SSES), the four sources of self-efficacy scale (SSES), and Compliance with Standard Precautions Scale (CSPS). Multiple linear regression was used to test the use of the four sources of self-efficacy (SSES) in explaining level of clinical self-efficacy and adherence to infection control in nursing students. Results: The vicarious experience subscale (p =.044) was statistically significant. The regression model indicated that for every one unit increase in vicarious experience (observation and reflection in simulation), the participants’ adherence to infection control increased by .13 units (β =.22, t = 2.03, p =.044). In addition, the regression model indicated that for every one unit increase in education level, the participants’ adherence to infection control increased by 1.82 units (beta=.34= 3.64, p <.001). Also, the mastery experience subscale (p <.001) and vicarious experience subscale (p = .020) were shared significant associations with clinical self-efficacy. Conclusion: The findings of this research support the idea that simulation-based learning can be a valuable teaching-learning method to help nursing students develop clinical competence, which is essential in providing quality and safe nursing care.Keywords: simulation-based learning, clinical self-efficacy, infection control, nursing students
Procedia PDF Downloads 713548 Optimum Design of Alkali Activated Slag Concretes for Low Chloride Ion Permeability and Water Absorption Capacity
Authors: Müzeyyen Balçikanli, Erdoğan Özbay, Hakan Tacettin Türker, Okan Karahan, Cengiz Duran Atiş
Abstract:
In this research, effect of curing time (TC), curing temperature (CT), sodium concentration (SC) and silicate modules (SM) on the compressive strength, chloride ion permeability, and water absorption capacity of alkali activated slag (AAS) concretes were investigated. For maximization of compressive strength while for minimization of chloride ion permeability and water absorption capacity of AAS concretes, best possible combination of CT, CTime, SC and SM were determined. An experimental program was conducted by using the central composite design method. Alkali solution-slag ratio was kept constant at 0.53 in all mixture. The effects of the independent parameters were characterized and analyzed by using statistically significant quadratic regression models on the measured properties (dependent parameters). The proposed regression models are valid for AAS concretes with the SC from 0.1% to 7.5%, SM from 0.4 to 3.2, CT from 20 °C to 94 °C and TC from 1.2 hours to 25 hours. The results of test and analysis indicate that the most effective parameter for the compressive strength, chloride ion permeability and water absorption capacity is the sodium concentration.Keywords: alkali activation, slag, rapid chloride permeability, water absorption capacity
Procedia PDF Downloads 3123547 Elasto-Plastic Analysis of Structures Using Adaptive Gaussian Springs Based Applied Element Method
Authors: Mai Abdul Latif, Yuntian Feng
Abstract:
Applied Element Method (AEM) is a method that was developed to aid in the analysis of the collapse of structures. Current available methods cannot deal with structural collapse accurately; however, AEM can simulate the behavior of a structure from an initial state of no loading until collapse of the structure. The elements in AEM are connected with sets of normal and shear springs along the edges of the elements, that represent the stresses and strains of the element in that region. The elements are rigid, and the material properties are introduced through the spring stiffness. Nonlinear dynamic analysis has been widely modelled using the finite element method for analysis of progressive collapse of structures; however, difficulties in the analysis were found at the presence of excessively deformed elements with cracking or crushing, as well as having a high computational cost, and difficulties on choosing the appropriate material models for analysis. The Applied Element method is developed and coded to significantly improve the accuracy and also reduce the computational costs of the method. The scheme works for both linear elastic, and nonlinear cases, including elasto-plastic materials. This paper will focus on elastic and elasto-plastic material behaviour, where the number of springs required for an accurate analysis is tested. A steel cantilever beam is used as the structural element for the analysis. The first modification of the method is based on the Gaussian Quadrature to distribute the springs. Usually, the springs are equally distributed along the face of the element, but it was found that using Gaussian springs, only up to 2 springs were required for perfectly elastic cases, while with equal springs at least 5 springs were required. The method runs on a Newton-Raphson iteration scheme, and quadratic convergence was obtained. The second modification is based on adapting the number of springs required depending on the elasticity of the material. After the first Newton Raphson iteration, Von Mises stress conditions were used to calculate the stresses in the springs, and the springs are classified as elastic or plastic. Then transition springs, springs located exactly between the elastic and plastic region, are interpolated between regions to strictly identify the elastic and plastic regions in the cross section. Since a rectangular cross-section was analyzed, there were two plastic regions (top and bottom), and one elastic region (middle). The results of the present study show that elasto-plastic cases require only 2 springs for the elastic region, and 2 springs for the plastic region. This showed to improve the computational cost, reducing the minimum number of springs in elasto-plastic cases to only 6 springs. All the work is done using MATLAB and the results will be compared to models of structural elements using the finite element method in ANSYS.Keywords: applied element method, elasto-plastic, Gaussian springs, nonlinear
Procedia PDF Downloads 2253546 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 1583545 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis
Authors: Meng Su
Abstract:
High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis
Procedia PDF Downloads 1083544 Using Artificial Intelligence Method to Explore the Important Factors in the Reuse of Telecare by the Elderly
Authors: Jui-Chen Huang
Abstract:
This research used artificial intelligence method to explore elderly’s opinions on the reuse of telecare, its effect on their service quality, satisfaction and the relationship between customer perceived value and intention to reuse. This study conducted a questionnaire survey on the elderly. A total of 124 valid copies of a questionnaire were obtained. It adopted Backpropagation Network (BPN) to propose an effective and feasible analysis method, which is different from the traditional method. Two third of the total samples (82 samples) were taken as the training data, and the one third of the samples (42 samples) were taken as the testing data. The training and testing data RMSE (root mean square error) are 0.022 and 0.009 in the BPN, respectively. As shown, the errors are acceptable. On the other hand, the training and testing data RMSE are 0.100 and 0.099 in the regression model, respectively. In addition, the results showed the service quality has the greatest effects on the intention to reuse, followed by the satisfaction, and perceived value. This result of the Backpropagation Network method is better than the regression analysis. This result can be used as a reference for future research.Keywords: artificial intelligence, backpropagation network (BPN), elderly, reuse, telecare
Procedia PDF Downloads 2123543 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 943542 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 1423541 Appraisal of Shipping Trade Influence on Economic Growth in Nigeria
Authors: Ikpechukwu Njoku
Abstract:
The study examined appraisal of shipping trade influence on the economic growth in Nigeria from 1981-2016 by the use of secondary data collected from the Central Bank of Nigeria. The main objectives are to examine the trend of shipping trade in Nigeria as well as determine the influence of economic growth on gross domestic product (GDP). The study employed both descriptive and influential tools. The study adopted cointegration regression method for the analysis of each of the variables (shipping trade, external reserves and external debts). The results show that there is a statistically significant relationship between GDP and external reserves with p-value 0.0190. Also the result revealed that there is a statistically significant relationship between GDP and shipping trade with p-value 0.000. However, shipping trade and external reserves contributed positively at 1% and 5% level of significance respectively while external debts impacted negatively to GDP at 5% level of significance with a long run variance of cointegration regression. Therefore, the study suggests that government should do all it can to curtail foreign dominance and repatriation of profit for a more sustainable economy as well as upgrade port facilities, prevent unnecessary delays and encourage exportable goods for maximum deployment of ships.Keywords: external debts, external reserve, GDP, shipping trade
Procedia PDF Downloads 1503540 Student Loan Debt among Students with Disabilities
Authors: Kaycee Bills
Abstract:
This study will determine if students with disabilities have higher student loan debt payments than other student populations. The hypothesis was that students with disabilities would have significantly higher student loan debt payments than other students due to the length of time they spend in school. Using the Bachelorette and Beyond Study Wave 2015/017 dataset, quantitative methods were employed. These data analysis methods included linear regression and a correlation matrix. Due to the exploratory nature of the study, the significance levels for the overall model and each variable were set at .05. The correlation matrix demonstrated that students with certain types of disabilities are more likely to fall under higher student loan payment brackets than students without disabilities. These results also varied among the different types of disabilities. The result of the overall linear regression model was statistically significant (p = .04). Despite the overall model being statistically significant, the majority of the significance values for the different types of disabilities were null. However, several other variables had statistically significant results, such as veterans, people of minority races, and people who attended private schools. Implications for how this impacts the economy, capitalism, and financial wellbeing of various students are discussed.Keywords: disability, student loan debt, higher education, social work
Procedia PDF Downloads 1683539 A Framework for Incorporating Non-Linear Degradation of Conductive Adhesive in Environmental Testing
Authors: Kedar Hardikar, Joe Varghese
Abstract:
Conductive adhesives have found wide-ranging applications in electronics industry ranging from fixing a defective conductor on printed circuit board (PCB) attaching an electronic component in an assembly to protecting electronics components by the formation of “Faraday Cage.” The reliability requirements for the conductive adhesive vary widely depending on the application and expected product lifetime. While the conductive adhesive is required to maintain the structural integrity, the electrical performance of the associated sub-assembly can be affected by the degradation of conductive adhesive. The degradation of the adhesive is dependent upon the highly varied use case. The conventional approach to assess the reliability of the sub-assembly involves subjecting it to the standard environmental test conditions such as high-temperature high humidity, thermal cycling, high-temperature exposure to name a few. In order to enable projection of test data and observed failures to predict field performance, systematic development of an acceleration factor between the test conditions and field conditions is crucial. Common acceleration factor models such as Arrhenius model are based on rate kinetics and typically rely on an assumption of linear degradation in time for a given condition and test duration. The application of interest in this work involves conductive adhesive used in an electronic circuit of a capacitive sensor. The degradation of conductive adhesive in high temperature and humidity environment is quantified by the capacitance values. Under such conditions, the use of established models such as Hallberg-Peck model or Eyring Model to predict time to failure in the field typically relies on linear degradation rate. In this particular case, it is seen that the degradation is nonlinear in time and exhibits a square root t dependence. It is also shown that for the mechanism of interest, the presence of moisture is essential, and the dominant mechanism driving the degradation is the diffusion of moisture. In this work, a framework is developed to incorporate nonlinear degradation of the conductive adhesive for the development of an acceleration factor. This method can be extended to applications where nonlinearity in degradation rate can be adequately characterized in tests. It is shown that depending on the expected product lifetime, the use of conventional linear degradation approach can overestimate or underestimate the field performance. This work provides guidelines for suitability of linear degradation approximation for such varied applicationsKeywords: conductive adhesives, nonlinear degradation, physics of failure, acceleration factor model.
Procedia PDF Downloads 1353538 Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers
Authors: Kelly F. Delgado-De Agrela, Sonia E. Ruiz, Marco A. Santos-Santiago
Abstract:
An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed.Keywords: based design, direct-displacement based design, non-linear viscous dampers, performance design
Procedia PDF Downloads 1933537 The Study of X- Bracing on Limit State Behaviour of Buckling Restrained Brace (BRB) in Steel Frames Using Pushover Analysis
Authors: Peyman Shadman Heidari, Hamid Bastani, Pouya Shadman Heidari
Abstract:
Nowadays, using energy dampers in structures is highly considered for the dissipation and absorption of earthquake energy. The main advantage of using energy damper is absorbing the earthquake energy in some sections apart from the structure frame. Among different types of dampers, hysteresis dampers are of special place because of low cost, high reliability and the lack of mechanical parts. In this paper, a special kind of hysteresis damper is considered under the name of buckling brace, which is provided with the aim of the study and investigation of cross braces in boundary behaviour of steel frames using nonlinear static analysis. In this paper, ninety three models of steel frames with cross braces of buckling type are processed with different bays and heights and their plasticity index, behaviour coefficient, distribution type and the number of plastic hinges formed were calculated. Finally, the mean behaviour coefficient was compared with standard behaviour coefficient of 2800 and the suitable mode of braces placing in improving nonlinear behaviour and suitable distribution of plastic hinges were presented. In addition, it was determined that for some placing mode of braces the behaviour coefficient will increase to 15 times of recommended 2800 standard coefficient and in some placing modes, the braced bays will show considerable difference with suggested 2800 standard behaviour coefficient relative to each other.Keywords: buckling restrained brace, plasticity index, behaviour coefficient, resistance coefficient, plastic joints
Procedia PDF Downloads 5133536 Analysis of Active Compounds in Thai Herbs by near Infrared Spectroscopy
Authors: Chaluntorn Vichasilp, Sutee Wangtueai
Abstract:
This study aims to develop a new method to detect active compounds in Thai herbs (1-deoxynojirimycin (DNJ) in mulberry leave, anthocyanin in Mao and curcumin in turmeric) using near infrared spectroscopy (NIRs). NIRs is non-destructive technique that rapid, non-chemical involved and low-cost determination. By NIRs and chemometrics technique, it was found that the DNJ prediction equation conducted with partial least square regression with cross-validation had low accuracy R2 (0.42) and SEP (31.87 mg/100g). On the other hand, the anthocyanin prediction equation showed moderate good results (R2 and SEP of 0.78 and 0.51 mg/g) with Multiplication scattering correction at wavelength of 2000-2200 nm. The high absorption could be observed at wavelength of 2047 nm and this model could be used as screening level. For curcumin prediction, the good result was obtained when applied original spectra with smoothing technique. The wavelength of 1400-2500 nm was created regression model with R2 (0.68) and SEP (0.17 mg/g). This model had high NIRs absorption at a wavelength of 1476, 1665, 1986 and 2395 nm, respectively. NIRs showed prospective technique for detection of some active compounds in Thai herbs.Keywords: anthocyanin, curcumin, 1-deoxynojirimycin (DNJ), near infrared spectroscopy (NIRs)
Procedia PDF Downloads 3823535 Investigation on Correlation of Earthquake Intensity Parameters with Seismic Response of Reinforced Concrete Structures
Authors: Semra Sirin Kiris
Abstract:
Nonlinear dynamic analysis is permitted to be used for structures without any restrictions. The important issue is the selection of the design earthquake to conduct the analyses since quite different response may be obtained using ground motion records at the same general area even resulting from the same earthquake. In seismic design codes, the method requires scaling earthquake records based on site response spectrum to a specified hazard level. Many researches have indicated that this limitation about selection can cause a large scatter in response and other charecteristics of ground motion obtained in different manner may demonstrate better correlation with peak seismic response. For this reason influence of eleven different ground motion parameters on the peak displacement of reinforced concrete systems is examined in this paper. From conducting 7020 nonlinear time history analyses for single degree of freedom systems, the most effective earthquake parameters are given for the range of the initial periods and strength ratios of the structures. In this study, a hysteresis model for reinforced concrete called Q-hyst is used not taken into account strength and stiffness degradation. The post-yielding to elastic stiffness ratio is considered as 0.15. The range of initial period, T is from 0.1s to 0.9s with 0.1s time interval and three different strength ratios for structures are used. The magnitude of 260 earthquake records selected is higher than earthquake magnitude, M=6. The earthquake parameters related to the energy content, duration or peak values of ground motion records are PGA(Peak Ground Acceleration), PGV (Peak Ground Velocity), PGD (Peak Ground Displacement), MIV (Maximum Increamental Velocity), EPA(Effective Peak Acceleration), EPV (Effective Peak Velocity), teff (Effective Duration), A95 (Arias Intensity-based Parameter), SPGA (Significant Peak Ground Acceleration), ID (Damage Factor) and Sa (Spectral Response Spectrum).Observing the correlation coefficients between the ground motion parameters and the peak displacement of structures, different earthquake parameters play role in peak displacement demand related to the ranges formed by the different periods and the strength ratio of a reinforced concrete systems. The influence of the Sa tends to decrease for the high values of strength ratio and T=0.3s-0.6s. The ID and PGD is not evaluated as a measure of earthquake effect since high correlation with displacement demand is not observed. The influence of the A95 is high for T=0.1 but low related to the higher values of T and strength ratio. The correlation of PGA, EPA and SPGA shows the highest correlation for T=0.1s but their effectiveness decreases with high T. Considering all range of structural parameters, the MIV is the most effective parameter.Keywords: earthquake parameters, earthquake resistant design, nonlinear analysis, reinforced concrete
Procedia PDF Downloads 1513534 Probability Model Accidents of Motorcyclist Based on Driver's Personality
Authors: Margareth E. Bolla, Ludfi Djakfar, Achmad Wicaksono
Abstract:
The increase in the number of motorcycle users in Indonesia is in line with the increase in accidents involving motorcycles. Several previous studies have shown that humans are the biggest factor causing accidents, and the driver's personality factor will affect his behavior on the road. This study was conducted to see how a person's personality traits will affect the probability of having an accident while driving. The Big Five Inventory (BFI) questionnaire and the Honda Riding Trainer (HRT) simulator were used as measuring tools, while the analysis carried out was logistic regression analysis. The results of the descriptive analysis of the respondent's personality based on the BFI show that the majority of drivers have the dominant character of neuroticism (34%), while the smallest group is the driver with the dominant type of openness character (6%). The percentage of motorists who were not involved in an accident was 54%. The results of the logistic regression analysis form a mathematical model as follows Y = -3.852 - 0.288 X1 + 0.596 X2 + 0.429 X3 - 0.386 X4 - 0.094 X5 + 0.436 X6 + 0.162 X7, where the results of hypothesis testing indicate that the variables openness, conscientiousness, extraversion, agreeableness, neuroticism, history of traffic accidents and age at starting driving did not have a significant effect on the probability of a motorcyclist being involved in an accident.Keywords: accidents, BFI, probability, simulator
Procedia PDF Downloads 1463533 Growth Pattern and Condition Factor of Oreochromis niloticus and Sarotherodon galilaeus in Epe Lagoon, Lagos State, Nigeria
Authors: Ahmed Bolaji Alarape, Oluwatobi Damilola Aba
Abstract:
The growth pattern of Oreochromis niloticus and Sarotherodon galilaeus in Epe Lagoon Lagos State was investigated. One hundred (100) samples of each species were collected from fishermen at the landing site. They were transported to the Fisheries Laboratory of National Institute of Oceanography for identification, sexing morphometric measurement. The results showed that 58.0% and 56.0 % of the O.niloticus and S.galilaeus were female respectively while 42.0% and 44.0% were male respectively. The length-weight relationship of O.niloticus showed a strong regression coefficient (r = 0.944) (p<0.05) for the combined sex, (r =0.901) (p<0.05) for female and (r=0.985) (p<.05) for male with b-value of 2.5, 3.1 and 2.8 respectively. The S.galilaeus also showed a regression coefficient of r=0.970; p<0.05 for the combined sex, r=0.953; p<0.05 for the female and r= 0.979; p<0.05 for the male with b-value of 3.4, 3.1 and 3.6 respectively. O.niloticus showed an isometric growth pattern both in male and female. The condition factor in O.niloticus are 1.93 and 1.95 for male and female respectively while that of S.galilaeus is 1.95 for both sexes. Positive allometric was observed in both species except the male O.niloticus that showed negative allometric growth pattern. From the results of this study, the growth pattern of the two species indicated a good healthy environment.Keywords: Epe Lagoon, length-weight relationship, Oreochromis niloticus, Sarotherodon galilaeus
Procedia PDF Downloads 1463532 Cognitive Function and Coping Behavior in the Elderly: A Population-Based Cross-Sectional Study
Authors: Ryo Shikimoto, Hidehito Niimura, Hisashi Kida, Kota Suzuki, Yukiko Miyasaka, Masaru Mimura
Abstract:
Introduction: In Japan, the most aged country in the world, it is important to explore predictive factors of cognitive function among the elderly. Coping behavior relieves chronic stress and improves lifestyle, and consequently may reduce the risk of cognitive impairment. One of the most widely investigated frameworks evaluated in previous studies is approach-oriented and avoidance-oriented coping strategies. The purpose of this study is to investigate the relationship between cognitive function and coping strategies among elderly residents in urban areas of Japan. Method: This is a part of the cross-sectional Arakawa geriatric cohort study for 1,099 residents (aged 65 to 86 years; mean [SD] = 72.9 [5.2]). Participants were assessed for cognitive function using the Mini-Mental State Examination (MMSE) and diagnosed by psychiatrists in face-to-face interviews. They were then investigated for their each coping behaviors and coping strategies (approach- and avoidance-oriented coping) using stress and coping inventory. A multiple regression analysis was used to investigate the relationship between MMSE score and each coping strategy. Results: Of the 1,099 patients, the mean MMSE score of the study participants was 27.2 (SD = 2.7), and the numbers of the diagnosis of normal, mild cognitive impairment (MCI), and dementia were 815 (74.2%), 248 (22.6%), and 14 (1.3%), respectively. Approach-oriented coping score was significantly associated with MMSE score (B [partial regression coefficient] = 0.12, 95% confidence interval = 0.05 to 0.19) after adjusting for confounding factors including age, sex, and education. Avoidance-oriented coping did not show a significant association with MMSE score (B [partial regression coefficient] = -0.02, 95% confidence interval = -0.09 to 0.06). Conclusion: Approach-oriented coping was clearly associated with neurocognitive function in the Japanese population. A future longitudinal trial is warranted to investigate the protective effects of coping behavior on cognitive function.Keywords: approach-oriented coping, cognitive impairment, coping behavior, dementia
Procedia PDF Downloads 1293531 On the Well-Posedness of Darcy–Forchheimer Power Model Equation
Authors: Johnson Audu, Faisal Fairag
Abstract:
In a bounded subset of R^d, d=2 or 3, we consider the Darcy-Forchheimer power model with the exponent 1 < m ≤ 2 for a single-phase strong-inertia fluid flow in a porous medium. Under necessary compatibility condition, and some mild regularity assumptions on the interior and the boundary data, we prove the existence and uniqueness of solution (u, p) in L^(m+1 ) (Ω)^d X (W^(1,(m+1)/m) (Ω)^d ⋂L_0^2 (Ω)^d) and its stability.Keywords: porous media, power law, strong inertia, nonlinear, monotone type
Procedia PDF Downloads 3173530 Artificial Neural Network Regression Modelling of GC/MS Retention of Terpenes Present in Satureja montana Extracts Obtained by Supercritical Carbon Dioxide
Authors: Strahinja Kovačević, Jelena Vladić, Senka Vidović, Zoran Zeković, Lidija Jevrić, Sanja Podunavac Kuzmanović
Abstract:
Supercritical extracts of highly valuated medicinal plant Satureja montana were prepared by application of supercritical carbon dioxide extraction in the carbon dioxide pressure range from 125 to 350 bar and temperature range from 40 to 60°C. Using GC/MS method of analysis chemical profiles (aromatic constituents) of S. montana extracts were obtained. Self-training artificial neural networks were applied to predict the retention time of the analyzed terpenes in GC/MS system. The best ANN model obtained was multilayer perceptron (MLP 11-11-1). Hidden activation was tanh and output activation was identity with Broyden–Fletcher–Goldfarb–Shanno training algorithm. Correlation measures of the obtained network were the following: R(training) = 0.9975, R(test) = 0.9971 and R(validation) = 0.9999. The comparison of the experimental and predicted retention times of the analyzed compounds showed very high correlation (R = 0.9913) and significant predictive power of the established neural network.Keywords: ANN regression, GC/MS, Satureja montana, terpenes
Procedia PDF Downloads 4523529 Analysis of Photic Zone’s Summer Period-Dissolved Oxygen and Temperature as an Early Warning System of Fish Mass Mortality in Sampaloc Lake in San Pablo, Laguna
Authors: Al Romano, Jeryl C. Hije, Mechaela Marie O. Tabiolo
Abstract:
The decline in water quality is a major factor in aquatic disease outbreaks and can lead to significant mortality among aquatic organisms. Understanding the relationship between dissolved oxygen (DO) and water temperature is crucial, as these variables directly impact the health, behavior, and survival of fish populations. This study investigated how DO levels, water temperature, and atmospheric temperature interact in Sampaloc Lake to assess the risk of fish mortality. By employing a combination of linear regression models and machine learning techniques, researchers developed predictive models to forecast DO concentrations at various depths. The results indicate that while DO levels generally decrease with depth, the predicted concentrations are sufficient to support the survival of common fish species in Sampaloc Lake during March, April, and May 2025.Keywords: aquaculture, dissolved oxygen, water temperature, regression analysis, machine learning, fish mass mortality, early warning system
Procedia PDF Downloads 353528 Factors Affecting Students' Performance in the Examination
Authors: Amylyn F. Labasano
Abstract:
A significant number of empirical studies are carried out to investigate factors affecting college students’ performance in the academic examination. With a wide-array of literature-and studies-supported findings, this study is limited only on the students’ probability of passing periodical exams which is associated with students’ gender, absences in the class, use of reference book, and hours of study. Binary logistic regression was the technique used in the analysis. The research is based on the students’ record and data collected through survey. The result reveals that gender, use of reference book and hours of study are significant predictors of passing an examination while students’ absenteeism is an insignificant predictor. Females have 45% likelihood of passing the exam than their male classmates. Students who use and read their reference book are 38 times more likely pass the exam than those who do not use and read their reference book. Those who spent more than 3 hours in studying are four (4) times more likely pass the exam than those who spent only 3 hours or less in studying.Keywords: absences, binary logistic regression, gender, hours of study prediction-causation method, periodical exams, random sampling, reference book
Procedia PDF Downloads 3123527 An Internet of Things-Based Weight Monitoring System for Honey
Authors: Zheng-Yan Ruan, Chien-Hao Wang, Hong-Jen Lin, Chien-Peng Huang, Ying-Hao Chen, En-Cheng Yang, Chwan-Lu Tseng, Joe-Air Jiang
Abstract:
Bees play a vital role in pollination. This paper focuses on the weighing process of honey. Honey is usually stored at the comb in a hive. Bee farmers brush bees away from the comb and then collect honey, and the collected honey is weighed afterward. However, such a process brings strong negative influences on bees and even leads to the death of bees. This paper therefore presents an Internet of Things-based weight monitoring system which uses weight sensors to measure the weight of honey and simplifies the whole weighing procedure. To verify the system, the weight measured by the system is compared to the weight of standard weights used for calibration by employing a linear regression model. The R2 of the regression model is 0.9788, which suggests that the weighing system is highly reliable and is able to be applied to obtain actual weight of honey. In the future, the weight data of honey can be used to find the relationship between honey production and different ecological parameters, such as bees’ foraging behavior and weather conditions. It is expected that the findings can serve as critical information for honey production improvement.Keywords: internet of things, weight, honey, bee
Procedia PDF Downloads 4593526 Evaluating Factors Influencing Information Quality in Large Firms
Authors: B. E. Narkhede, S. K. Mahajan, B. T. Patil, R. D. Raut
Abstract:
Information quality is a major performance measure for an Enterprise Resource Planning (ERP) system of any firm. This study identifies various critical success factors of information quality. The effect of various critical success factors like project management, reengineering efforts and interdepartmental communications on information quality is analyzed using a multiple regression model. Here quantitative data are collected from respondents from various firms through structured questionnaire for assessment of the information quality, project management, reengineering efforts and interdepartmental communications. The validity and reliability of the data are ensured using techniques like factor analysis, computing of Cronbach’s alpha. This study gives relative importance of each of the critical success factors. The findings suggest that among the various factors influencing information quality careful reengineering efforts are the most influencing factor. This paper gives clear insight to managers and practitioners regarding the relative importance of critical success factors influencing information quality so that they can formulate a strategy at the beginning of ERP system implementation.Keywords: Enterprise Resource Planning (ERP), information systems (IS), multiple regression, information quality
Procedia PDF Downloads 3333525 Psycholgical Contract Violation and Its Impact on Job Satisfaction Level: A Study on Subordinate Employees in Enterprises of Hanoi, Vietnam
Authors: Quangyen Tran, YeZhuang Tian, Chengfeng Li
Abstract:
Psychological contract violations may lead to damaging an organization through losing its potential employees; it is a very significant concept in understanding the employment relationships. The authors selected contents of psychological contract violation scale based on the nine areas of violation most relevant to managerial samples (High pay, training, job security, career development, pay based on performance, promotion, feedback, expertise and quality of co-workers and support with personal problems), using regression analysis, the degree of psychological contract violations was measured by an adaptation of a multiplicative scale with Cronbach’s alpha as a measure of reliability. Through the regression analysis, psychological contract violations was found have a positive impact on employees’ job satisfaction, the frequency of psychological contract violations was more intense among male employees particularly in terms of training, job security and pay based on performance. Job dissatisfaction will lead to a lowering of employee commitment in the job, enterprises in Hanoi, Vietnam should therefore offer lucrative jobs in terms of salary and other emoluments to their employees.Keywords: psychological contract, psychological contract violation, job satisfaction, subordinate employees, employers’ obligation
Procedia PDF Downloads 3253524 Accounting Knowledge Management and Value Creation of SME in Chatuchak Market: Case Study Ceramics Product
Authors: Runglaksamee Rodkam
Abstract:
The purpose of this research was to study the influence of accountants’ potential performance on their working process, a case study of Government Savings Banks in the northeast of Thailand. The independent variables included accounting knowledge, accounting skill, accounting value, accounting ethics, and accounting attitude, while the dependent variable included the success of the working process. A total of 155 accountants working for Government Savings Banks were selected by random sampling. A questionnaire was used as a tool for collecting data. Descriptive statistics in this research included percentage, mean, and multiple regression analyses. The findings revealed that the majority of accountants were female with an age between 35-40 years old. Most of the respondents had an undergraduate degree with ten years of experience. Moreover, the factors of accounting knowledge, accounting skill, accounting a value and accounting ethics and accounting attitude were rated at a high level. The findings from regression analysis of observation data revealed a causal relationship in that the observation data could explain at least 51 percent of the success in the accountants’ working process.Keywords: influence, potential performance, success, working process
Procedia PDF Downloads 2563523 Myers-Briggs Type Index Personality Type Classification Based on an Individual’s Spotify Playlists
Authors: Sefik Can Karakaya, Ibrahim Demir
Abstract:
In this study, the relationship between musical preferences and personality traits has been investigated in terms of Spotify audio analysis features. The aim of this paper is to build such a classifier capable of segmenting people into their Myers-Briggs Type Index (MBTI) personality type based on their Spotify playlists. Music takes an important place in the lives of people all over the world and online music streaming platforms make it easier to reach musical contents. In this context, the motivation to build such a classifier is allowing people to gain access to their MBTI personality type and perhaps for more reliably and more quickly. For this purpose, logistic regression and deep neural networks have been selected for classifier and their performances are compared. In conclusion, it has been found that musical preferences differ statistically between personality traits, and evaluated models are able to distinguish personality types based on given musical data structure with over %60 accuracy rate.Keywords: myers-briggs type indicator, music psychology, Spotify, behavioural user profiling, deep neural networks, logistic regression
Procedia PDF Downloads 1443522 Optical Breather in Phosphorene Monolayer
Authors: Guram Adamashvili
Abstract:
Surface plasmon polariton is a surface optical wave which undergoes a strong enhancement and spatial confinement of its wave amplitude near an interface of two-dimensional layered structures. Phosphorene (single-layer black phosphorus) and other two-dimensional anisotropic phosphorene-like materials are recognized as promising materials for potential future applications of surface plasmon polariton. A theory of an optical breather of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene is developed. A theory of an optical soliton of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene have been investigated earlier Starting from the optical nonlinear wave equation for surface TM-modes interacting with a two-dimensional layer of atomic systems or semiconductor quantum dots and a phosphorene monolayer (or other two-dimensional anisotropic material), we have obtained the evolution equations for the electric field of the breather. In this case, one finds that the evolution of these pulses become described by the damped Bloch-Maxwell equations. For surface plasmon polariton fields, breathers are found to occur. Explicit relations of the dependence of breathers on the local media, phosphorene anisotropic conductivity, transition layer properties and transverse structures of the SPP, are obtained and will be given. It is shown that the phosphorene conductivity reduces exponentially the amplitude of the surface breather of SIT in the process of propagation. The direction of propagation corresponding to the maximum and minimum damping of the amplitude are assigned along the armchair and zigzag directions of black phosphorus nano-film, respectively. The most rapid damping of the intensity occurs when the polarization of breather is along the armchair direction.Keywords: breathers, nonlinear waves, solitons, surface plasmon polaritons
Procedia PDF Downloads 1493521 Work Engagement Reducing Employee Turnover Intentions in Telecommunication Sector: The Moderator Role of Human Resource Development Climate between Work Engagement and Turnover Intentions
Authors: Pirzada Sami Ullah Sabri
Abstract:
The present study examines the relationship between work engagement (WE) and employee turnover intentions (TI) in telecommunication sector using human resource development climate (HRDC) as a moderator. Based on 538 employees of telecommunication sector Hierarchal regression analysis is employed to examine the influence of HRDC on the relationship of work engagement and turnover intentions. The result indicates the negative correlation between work engagement and turnover intentions; HRD climate support as a powerful moderator increases the work engagement and lessens the turnover intentions. The study shows the importance of favorable and supportive HRD climate which foster the work engagement of the employees in the organization. By understanding the importance of human resource development climate and work engagement in reducing the turnover intentions can increase the productivity and performance of the organization.Keywords: turnover intentions, work engagement, human resource development, climate, hierarchal regression analysis, telecommunication sector
Procedia PDF Downloads 4323520 Reproducibility of Shear Strength Parameters Determined from CU Triaxial Tests: Evaluation of Results from Regression of Different Failure Stress Combinations
Authors: Henok Marie Shiferaw, Barbara Schneider-Muntau
Abstract:
Test repeatability and data reproducibility are a concern in many geotechnical laboratory tests due to inherent soil variability, inhomogeneous sample preparation and measurement inaccuracy. Test results on comparable test specimens vary to a considerable extent. Thus, also the derived shear strength parameters from triaxial tests are affected. In this contribution, we present the reproducibility of effective shear strength parameters from consolidated undrained triaxial tests on plain soil and cement-treated soil specimens. Six remolded test specimens were prepared for the plain soil and for the cement-treated soil. Conventional three levels of consolidation pressure testing were considered with an effective consolidation pressure of 100 kPa, 200 kPa and 300 kPa, respectively. At each effective consolidation pressure, two tests were done on comparable test specimens. Focus was laid on the same mean dry density and same water content during sample preparation for the two specimens. The cement-treated specimens were tested after 28 days of curing. Shearing of test specimens was carried out at a deformation rate of 0.4 mm/min after sample saturation at a back pressure of 900 kPa, followed by consolidation. The effective peak and residual shear strength parameters were then estimated from regression analysis of 21 different combinations of the failure stresses from the six tests conducted for both the plain soil and cement-treated soil samples. The 21 different stress combinations were constructed by picking three, four, five and six failure tresses at once at different combinations. Results indicate that the effective shear strength parameters estimated from the regression of different combinations of the failure stresses vary. Effective critical friction angle was found to be more consistent than effective peak friction angle with a smaller standard deviation. The reproducibility of the shear strength parameters for the cement-treated specimens was even lower than that of the untreated specimens.Keywords: shear strength parameters, test repeatability, data reproducibility, triaxial soil testing, cement improvement of soils
Procedia PDF Downloads 33