Search results for: data management applications
34815 “CheckPrivate”: Artificial Intelligence Powered Mobile Application to Enhance the Well-Being of Sextual Transmitted Diseases Patients in Sri Lanka under Cultural Barriers
Authors: Warnakulasuriya Arachichige Malisha Ann Rosary Fernando, Udalamatta Gamage Omila Chalanka Jinadasa, Bihini Pabasara Amandi Amarasinghe, Manul Thisuraka Mandalawatta, Uthpala Samarakoon, Manori Gamage
Abstract:
The surge in sexually transmitted diseases (STDs) has become a critical public health crisis demanding urgent attention and action. Like many other nations, Sri Lanka is grappling with a significant increase in STDs due to a lack of education and awareness regarding their dangers. Presently, the available applications for tracking and managing STDs cover only a limited number of easily detectable infections, resulting in a significant gap in effectively controlling their spread. To address this gap and combat the rising STD rates, it is essential to leverage technology and data. Employing technology to enhance the tracking and management of STDs is vital to prevent their further propagation and to enable early intervention and treatment. This requires adopting a comprehensive approach that involves raising public awareness about the perils of STDs, improving access to affordable healthcare services for early detection and treatment, and utilizing advanced technology and data analysis. The proposed mobile application aims to cater to a broad range of users, including STD patients, recovered individuals, and those unaware of their STD status. By harnessing cutting-edge technologies like image detection, symptom-based identification, prevention methods, doctor and clinic recommendations, and virtual counselor chat, the application offers a holistic approach to STD management. In conclusion, the escalating STD rates in Sri Lanka and across the globe require immediate action. The integration of technology-driven solutions, along with comprehensive education and healthcare accessibility, is the key to curbing the spread of STDs and promoting better overall public health.Keywords: STD, machine learning, NLP, artificial intelligence
Procedia PDF Downloads 8434814 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data
Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho
Abstract:
Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.Keywords: smartcard data, ANN, bus, ridership
Procedia PDF Downloads 16734813 Maximizing the Efficiency of Knowledge Management Systems
Authors: Tori Reddy Dodla, Laura Ann Jones
Abstract:
The objective of this study was to propose strategies to improve the efficiency of Knowledge Management Systems (KMS). This study highlights best practices from various industries to create an overall summary of Knowledge Management (KM) and efficiency in organizational performance. Results indicated eleven best practices for maximizing the efficiency of organizational KMS that can be divided into four categories: Designing the KMS, Identifying Case Studies, Implementing the KMS, and Promoting adoption and usage. Our findings can be used as a foundation for scholars to conduct further research on KMS efficiency.Keywords: artificial intelligence, knowledge management efficiency, knowledge management systems, organizational performance
Procedia PDF Downloads 11434812 Performance Analysis of N-Tier Grid Protocol for Resource Constrained Wireless Sensor Networks
Authors: Jai Prakash Prasad, Suresh Chandra Mohan
Abstract:
Modern wireless sensor networks (WSN) consist of small size, low cost devices which are networked through tight wireless communications. WSN fundamentally offers cooperation, coordination among sensor networks. Potential applications of wireless sensor networks are in healthcare, natural disaster prediction, data security, environmental monitoring, home appliances, entertainment etc. The design, development and deployment of WSN based on application requirements. The WSN design performance is optimized to improve network lifetime. The sensor node resources constrain such as energy and bandwidth imposes the limitation on efficient resource utilization and sensor node management. The proposed N-Tier GRID routing protocol focuses on the design of energy efficient large scale wireless sensor network for improved performance than the existing protocol.Keywords: energy efficient, network lifetime, sensor networks, wireless communication
Procedia PDF Downloads 47034811 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System
Authors: R. Ramesh, K. K. Shivaraman
Abstract:
The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management
Procedia PDF Downloads 30534810 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network
Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka
Abstract:
Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.Keywords: aggregation, consumption, data gathering, efficiency
Procedia PDF Downloads 49934809 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 7734808 Optimal Management of Internal Capital of Company
Authors: S. Sadallah
Abstract:
In this paper, dynamic programming is used to determine the optimal management of financial resources in company. Solution of the problem by consider into simpler substructures is constructed. The optimal management of internal capital of company are simulated. The tools applied in this development are based on graph theory. The software of given problems is built by using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.Keywords: management, software, optimal, greedy algorithm, graph-diagram
Procedia PDF Downloads 28534807 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique
Authors: Reda Abdel Azim, Tariq Shehab
Abstract:
The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension
Procedia PDF Downloads 25634806 Dimension Free Rigid Point Set Registration in Linear Time
Authors: Jianqin Qu
Abstract:
This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.Keywords: covariant point, point matching, dimension free, rigid registration
Procedia PDF Downloads 16834805 The Role of Time Management Skills in Academic Performance of the University Lecturers
Authors: Thuduwage Lasanthika Sajeevanie
Abstract:
Success is very important, and there are many factors affecting the success of any situation or a person. In Sri Lankan Context, it is hardly possible to find an empirical study relating to time management and academic success. Globally many organizations, individuals practice time management to be effective. Hence it is very important to examine the nature of time management practice. Thus this study will fill the existing gap relating to achieving academic success through proper time management practices. The research problem of this study is what is the relationship exist among time management skills and academic success of university lecturers in state universities. The objective of this paper is to identify the impact of time management skills for academic success of university lecturers. This is a conceptual study, and it was done through a literature survey by following purposive sampling technique for the selection of literature. Most of the studies have found that time management is highly related to academic performance. However, most of them have done on the academic performance of the students, and there were very few studies relating to academic performance of the university lecturers. Hence it can be further suggested to conduct a study relating to identifying the relationship between academic performance and time management skills of university lecturers.Keywords: academic success, performance, time management skills, university lecturers
Procedia PDF Downloads 35734804 A Customize Battery Management Approach for Satellite
Authors: Muhammad Affan, Muhammad Ilyas Raza, Muhammad Harris Hashmi
Abstract:
This work is attributed to the battery management unit design of student Satellites under Pakistan National Student Satellite Program (PNSSP). The aim has been to design a customized, low-cost, efficient, reliable and less-complex battery management scheme for the Satellite. Nowadays, Lithium Ion (Li-ion) batteries have become the de-facto standard for remote applications, especially for satellites. Li-ion cells are selected for secondary storage. The design also addresses Li-ion safety requirements by monitoring, balancing and protecting cells for safe and prolonged operation. Accurate voltage measurement of individual cells was the main challenge because all the actions triggered were based on the digital voltage measurement. For this purpose, a resistive-divider network is used to maintain simplicity and cost-effectiveness. To cater the problem of insufficient i/o pins on microcontroller, fast multiplexers and de-multiplexers were used. The discrepancy inherited in the given design is the dissipation of heat due to the dissipative resistors. However, it is still considered to be the optimum adoption, considering the simple and cost-effective nature of the passive balancing technique. Furthermore, it is a completely unique solution, customized to meet specific requirements. However, there is still an option for a more advanced and expensive design.Keywords: satellite, battery module, passive balancing, dissipative
Procedia PDF Downloads 14034803 Importance of Ethics in Cloud Security
Authors: Pallavi Malhotra
Abstract:
This paper examines the importance of ethics in cloud computing. In the modern society, cloud computing is offering individuals and businesses an unlimited space for storing and processing data or information. Most of the data and information stored in the cloud by various users such as banks, doctors, architects, engineers, lawyers, consulting firms, and financial institutions among others require a high level of confidentiality and safeguard. Cloud computing offers centralized storage and processing of data, and this has immensely contributed to the growth of businesses and improved sharing of information over the internet. However, the accessibility and management of data and servers by a third party raise concerns regarding the privacy of clients’ information and the possible manipulations of the data by third parties. This document suggests the approaches various stakeholders should take to address various ethical issues involving cloud-computing services. Ethical education and training is key to all stakeholders involved in the handling of data and information stored or being processed in the cloud.Keywords: IT ethics, cloud computing technology, cloud privacy and security, ethical education
Procedia PDF Downloads 32634802 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: machine learning, imbalanced data, data mining, big data
Procedia PDF Downloads 13234801 A Qualitative Exploration of the Strategic Management of Employee Resistance to Organisational Change
Authors: Muneeb Banday, Anukriti Dixit
Abstract:
Change in organizations is viewed as a conversion process of the organizational functioning. One of the crucial elements of this conversion process is the employee resistance to organizational change. The existing literature on change resistance has generally treated resistance as a barrier or an opportunity for successful implementation of change. However, there is little empirical research exploring how resistance to change is managed. This may be partially due to difficulty in getting information on resistance to change. The top management does not divulge such information to avoid negative evaluation whereas employees face huge risk in sharing information related to resistance. The focus of the study is to understand how the organization under study dealt with the employee resistance to change. The conversion process is a story of how the organization went from one stage to another. We used narrative approach to change. Data was collected data through company visits and interviews. The interviews were transcribed, coded, and themes were identified. We focused on the strands that left huge scope for alternative interpretations than the dominant narrative of change prevalent in the organization. The study reveals that the top management strategically uses the legitimacy of leadership, roles of key employees, and rationality of change to manage resistance.Keywords: employee resistance, legitimacy of leadership, narrative analysis, organisational change
Procedia PDF Downloads 27534800 Artificial Intelligence in Enterprise Information Systems: A Review
Authors: Danah S. Alabdulmohsin
Abstract:
Due to the fast growth of organizational data as well as the emergence of new technologies such as artificial intelligence (AI), organizations tend to utilize these new technologies in their enterprise information systems (EIS) either to overcome the issues they struggle with or to enhance their functions. The aim of this paper is to review the potential role of AI technologies in EIS, namely: enterprise resource planning systems (ERP), customer relation management systems (CRM), supply chain management systems (SCM), knowledge systems (KM), and human resources management systems (HRM). The paper provided the definitions of these systems as well as the definitions of AI technologies that have been used in EIS. In addition, the paper discussed the challenges that organizations might face while integrating AI with their information systems and explained why some organizations fail in achieving successful implementations of the integration.Keywords: artificial intelligence, AI, enterprise information system, EIS, integration
Procedia PDF Downloads 9734799 Modeling Route Selection Using Real-Time Information and GPS Data
Authors: William Albeiro Alvarez, Gloria Patricia Jaramillo, Ivan Reinaldo Sarmiento
Abstract:
Understanding the behavior of individuals and the different human factors that influence the choice when faced with a complex system such as transportation is one of the most complicated aspects of measuring in the components that constitute the modeling of route choice due to that various behaviors and driving mode directly or indirectly affect the choice. During the last two decades, with the development of information and communications technologies, new data collection techniques have emerged such as GPS, geolocation with mobile phones, apps for choosing the route between origin and destination, individual service transport applications among others, where an interest has been generated to improve discrete choice models when considering the incorporation of these developments as well as psychological factors that affect decision making. This paper implements a discrete choice model that proposes and estimates a hybrid model that integrates route choice models and latent variables based on the observation on the route of a sample of public taxi drivers from the city of Medellín, Colombia in relation to its behavior, personality, socioeconomic characteristics, and driving mode. The set of choice options includes the routes generated by the individual service transport applications versus the driver's choice. The hybrid model consists of measurement equations that relate latent variables with measurement indicators and utilities with choice indicators along with structural equations that link the observable characteristics of drivers with latent variables and explanatory variables with utilities.Keywords: behavior choice model, human factors, hybrid model, real time data
Procedia PDF Downloads 15534798 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 5134797 The Effects of Agricultural Waste Compost Applications on Soil Properties
Authors: Ilker Sönmez, Mustafa Kaplan
Abstract:
The wastes that come out as a result of agricultural productions are disposed randomly and always by burning. Agricultural wastes have a great volume and agricultural wastes cause environmental pollution. Spent mushroom compost and cut flower carnation wastes have a serious potential in Turkey and especially in Antalya. One of the best evaluation methods of agricultural wastes is composting methods and so agricultural wastes transformed for a new product. In this study, agricultural wastes were evaluated the effects of compost and organic material on soil pH, EC, soil organic matter, and macro-micro nutrient contents of soil that it growth carnation. The effects of compost applications on soils were found to be statistically significant. Organic material applications have caused an increase in all physical and chemical parameters except for pH that pH decreased with compost added in soils. The best results among the compost applications were determined R1 compost that R1 compost included %75 Carnation Wastes + %25 Spent Mushroom Compost. The structural properties of soils can be improved with reusing of agricultural wastes by composting so it can be provided that decreasing the harmful effects of organic wastes on the environment.Keywords: agricultural wastes, carnation wastes, composting, organic material, spent mushroom compost
Procedia PDF Downloads 38534796 Normalized P-Laplacian: From Stochastic Game to Image Processing
Authors: Abderrahim Elmoataz
Abstract:
More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems
Procedia PDF Downloads 51334795 Synthesis of Nickel Oxide Nanoparticles in Presence of Sodium Dodecyl Sulphate
Authors: Fereshteh Chekin, Sepideh Sadeghi
Abstract:
Nickel nanoparticles have attracted much attention because of applications in catalysis, medical diagnostics and magnetic applications. In this work, we reported a simple and low-cost procedure to synthesize nickel oxide nanoparticles (NiO-NPs) by using sodium dodecyl sulphate (SDS) and gelatin as stabilizer. The synthesized NiO-NPs were characterized by a variety of means such as transmission electron microscope (TEM), powder X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis spectroscopy. The results show that the NiO nanoparticles with high crystalline can be obtained using this simple method. The grain size measured by TEM was 16 in presence of SDS, which agrees well with the XRD data. SDS plays an important role in the formation of the NiO nanoparticles. Moreover, the NiO nanoparticles have been used as a solid phase catalyst for the decomposition of hydrazine hydrate at room temperatures. The decomposition process has been monitored by UV–vis analysis. The present study showed that nanoparticles are not poisoned after their repeated use in decomposition of hydrazine.Keywords: nickel oxide nanoparticles, sodium dodecyl sulphate, synthesis, stabilizer
Procedia PDF Downloads 48734794 Analysis of Total Quality Management (TQM) and Six Sigma in the Aerospace Industry
Authors: Masimuddin Mohd Khaled
Abstract:
From the past couple of years, focus has been done on the quality management theories and has been pertained to various firms. The core quality management theories are Total Quality Management (TQM) and Six Sigma where a number of documents have already been presented regarding these theories. The purpose of this paper is to study in detail about these theories and how the theories are applied in the aerospace industry. A methodical literature review, comparison of TQM and Six Sigma as well as a case study of each has been carried out in this paper thus providing a clear understanding of the theories.Keywords: total quality management, six sigma, aerospace, research, innovation
Procedia PDF Downloads 37034793 Power HEMTs Transistors for Radar Applications
Authors: A. boursali, A. Guen Bouazza, M. Khaouani, Z. Kourdi, B. Bouazza
Abstract:
This paper presents the design, development and characterization of the devices simulation for X-Band Radar applications. The effect of an InAlN/GaN structure on the RF performance High Electron Mobility Transistor (HEMT) device. Systematic investigations on the small signal as well as power performance as functions of the drain biases are presented. Were improved for X-band applications. The Power Added Efficiency (PAE) was achieved over 23% for X-band. The developed devices combine two InAlN/GaN HEMTs of 30nm gate periphery and exhibited the output power of over 50W. An InAlN/GaN HEMT with 30nm gate periphery was developed and exhibited the output power of over 120W.Keywords: InAlN/GaN, HEMT, RF analyses, PAE, X-Band, radar
Procedia PDF Downloads 56034792 Open Source, Open Hardware Ground Truth for Visual Odometry and Simultaneous Localization and Mapping Applications
Authors: Janusz Bedkowski, Grzegorz Kisala, Michal Wlasiuk, Piotr Pokorski
Abstract:
Ground-truth data is essential for VO (Visual Odometry) and SLAM (Simultaneous Localization and Mapping) quantitative evaluation using e.g. ATE (Absolute Trajectory Error) and RPE (Relative Pose Error). Many open-access data sets provide raw and ground-truth data for benchmark purposes. The issue appears when one would like to validate Visual Odometry and/or SLAM approaches on data captured using the device for which the algorithm is targeted for example mobile phone and disseminate data for other researchers. For this reason, we propose an open source, open hardware groundtruth system that provides an accurate and precise trajectory with a 3D point cloud. It is based on LiDAR Livox Mid-360 with a non-repetitive scanning pattern, on-board Raspberry Pi 4B computer, battery and software for off-line calculations (camera to LiDAR calibration, LiDAR odometry, SLAM, georeferencing). We show how this system can be used for the evaluation of various the state of the art algorithms (Stella SLAM, ORB SLAM3, DSO) in typical indoor monocular VO/SLAM.Keywords: SLAM, ground truth, navigation, LiDAR, visual odometry, mapping
Procedia PDF Downloads 7634791 A Service Evaluation Exploring the Effectiveness of a Tier 3 Weight Management Programme Offering Face-To-Face and Remote Dietetic Support
Authors: Rosemary E. Huntriss, Lucy Jones
Abstract:
Obesity and excess weight continue to be significant health problems in England. Traditional weight management programmes offer face-to-face support or group education. Remote care is recognised as a viable means of support; however, its effectiveness has not previously been evaluated in a tier 3 weight management setting. This service evaluation explored the effectiveness of online coaching, telephone support, and face-to-face support as optional management strategies within a tier 3 weight management programme. Outcome data were collected for adults with a BMI ≥ 45 or ≥ 40 with complex comorbidity who were referred to a Tier 3 weight management programme from January 2018 and had been discharged before October 2018. Following an initial 45-minute consultation with a specialist weight management dietitian, patients were offered a choice of follow-up support in the form of online coaching supported by an app (8 x 15 minutes coaching), face-to-face or telephone appointments (4 x 30 minutes). All patients were invited to a final 30-minute face-to-face assessment. The planned intervention time was between 12 and 24 weeks. Patients were offered access to adjunct face-to-face or telephone psychological support. One hundred and thirty-nine patients were referred into the programme from January 2018 and discharged before October 2018. One hundred and twenty-four patients (89%) attended their initial assessment. Out of those who attended their initial assessment, 110 patients (88.0%) completed more than half of the programme and 77 patients (61.6%) completed all sessions. The average length of the completed programme (all sessions) was 17.2 (SD 4.2) weeks. Eighty-five (68.5%) patients were coached online, 28 (22.6%) patients were supported face-to-face support, and 11 (8.9%) chose telephone support. Two patients changed from online coaching to face-to-face support due to personal preference and were included in the face-to-face group for analysis. For those with data available (n=106), average weight loss across the programme was 4.85 (SD 3.49)%; average weight loss was 4.70 (SD 3.19)% for online coaching, 4.83 (SD 4.13)% for face-to-face support, and 6.28 (SD 4.15)% for telephone support. There was no significant difference between weight loss achieved with face-to-face vs. online coaching (4.83 (SD 4.13)% vs 4.70 (SD 3.19) (p=0.87) or face-to-face vs. remote support (online coaching and telephone support combined) (4.83 (SD 4.13)% vs 4.85 (SD 3.30)%) (p=0.98). Remote support has been shown to be as effective as face-to-face support provided by a dietitian in the short-term within a tier 3 weight management setting. The completion rates were high compared with another tier 3 weight management services suggesting that offering remote support as an option may improve completion rates within a weight management service.Keywords: dietitian, digital health, obesity, weight management
Procedia PDF Downloads 14234790 An Explorative Study of the Application of Project Management in German Research Projects
Authors: Marcel Randermann, Roland Jochem
Abstract:
Research activities are mostly conducted in form of projects. In fact, research projects take the highest share of all project forms combined. However, project management is very rarely applied purposefully by researchers and scientists. More specifically no project management frameworks, methods or tools are not being used to plan, execute or control research project to ensure research success or improve project quality. In this qualitative study, several interviews were conducted with scientists and research managers from German institutions to gain insights into project management activities, to determine challenges and barriers, and to evaluate premises for successful project management. The analyses show that conventional project management is not easily applicable in scientific environments and researchers’ mindsets prevent a reasonable application.Keywords: academics, project management methods, research and science projects, scientist's mindset
Procedia PDF Downloads 19834789 Financial Management Skills of Supreme Student Government Officers in the Schools Division of Quezon: Basis for Project Financial Literacy Information Program
Authors: Edmond Jaro Malihan
Abstract:
This study aimed to develop and propose Project Financial Literacy Information Program (FLIP) for the Schools Division of Quezon to improve the financial management skills of Supreme Student Government (SSG) officers across different school sizes. This employed a descriptive research design covering the participation of 424 selected SSG officers using purposive sampling procedures from the SDO-Quezon. The consultation was held with DepEd officials, budget officers, and financial advisors to validate the design of the self-made questionnaires in which the computed mean was verbally interpreted using the four-point Likert scale. The data gathered were presented and analyzed using weighted arithmetic mean and ANOVA test. Based on the findings, generally, SSG officers in the SDO-Quezon possess high financial management skills in terms of budget preparation, resource mobilization, and auditing and evaluation. The size of schools has no significant difference and does not contribute to the financial management skills of SSG officers, which they apply in implementing their mandated programs, projects, and activities (PPAs). The Project Financial Literacy Information Program (FLIP) was developed considering their general level of financial management skills and the launched PPAs by the organization. The project covered the suggested training program vital in conducting the Virtual Division Training on Financial Management Skills of the SSG officers.Keywords: financial management skills, SSG officers, school size, financial literacy information program
Procedia PDF Downloads 7434788 Instant Location Detection of Objects Moving at High Speed in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data off the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as 'signaling parameters' (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of C-OTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as a rule. This report contains describing the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.Keywords: C-OTDR-system, co-processing of signaling parameters, high-speed objects localization, multichannel monitoring systems
Procedia PDF Downloads 47234787 Paradigmatic Approach University Management from the Perspective of Strategic Management: A Research in the Marmara Region in Turkey
Authors: Recep Yücel, Cihat Kartal, Mustafa Kara
Abstract:
On the basis of strategic management, it is believed in the necessity of a number of innovations in the postmodern management approach in the management of universities in our country. In this sense, some of these requirements are the integration of public and private universities, international integration, R & D status and increasing young population will create a dynamic structure. According to the postmodern management approach, universities, in our country despite being governed by the classical approach autonomous universities; academically are thought solid, to be non-hierarchical and creative. In fact, studies that require a multidisciplinary academic environment, universities and there is a close cooperation between formal and non-formal sub-units. Moreover, terms of postmodern management approaches, the requirements specified in the direction of solving the problem of an increasing number of universities in our country is considered to be more difficult. Therefore, considering the psychological impact on the academic personnel the university organizational structure, the study are trying to aim to propose an appropriate model of university organization. In this context, the study sought to answer the question how to have an impact innovation and international integration on the academic achievement of the classical organizational structure. Finally, in the study, due to the adoption of the classical organizational structure of the university, integration is considered to be difficult, academic cooperation between universities at the international level and maintaining it. In addition, it was understood that block the efforts of this organization structure, academic motivation, development and innovation. In this study under these purposes; on the basis of the existing organization and management structure of the universities in the Marmara Region in Turkey, a study was conducted with qualitative research methods. The data have been analyzed using content analysis and assessment was based on the results obtained.Keywords: university, strategic management, postmodern management approaches, multidisciplinary studies
Procedia PDF Downloads 39634786 Knowledge Management Strategies within a Corporate Environment of Papers
Authors: Daniel J. Glauber
Abstract:
Knowledge transfer between personnel could benefit an organization’s improved competitive advantage in the marketplace from a strategic approach to knowledge management. The lack of information sharing between personnel could create knowledge transfer gaps while restricting the decision-making processes. Knowledge transfer between personnel can potentially improve information sharing based on an implemented knowledge management strategy. An organization’s capacity to gain more knowledge is aligned with the organization’s prior or existing captured knowledge. This case study attempted to understand the overall influence of a KMS within the corporate environment and knowledge exchange between personnel. The significance of this study was to help understand how organizations can improve the Return on Investment (ROI) of a knowledge management strategy within a knowledge-centric organization. A qualitative descriptive case study was the research design selected for this study. The lack of information sharing between personnel may create knowledge transfer gaps while restricting the decision-making processes. Developing a knowledge management strategy acceptable at all levels of the organization requires cooperation in support of a common organizational goal. Working with management and executive members to develop a protocol where knowledge transfer becomes a standard practice in multiple tiers of the organization. The knowledge transfer process could be measurable when focusing on specific elements of the organizational process, including personnel transition to help reduce time required understanding the job. The organization studied in this research acknowledged the need for improved knowledge management activities within the organization to help organize, retain, and distribute information throughout the workforce. Data produced from the study indicate three main themes including information management, organizational culture, and knowledge sharing within the workforce by the participants. These themes indicate a possible connection between an organizations KMS, the organizations culture, knowledge sharing, and knowledge transfer.Keywords: knowledge transfer, management, knowledge management strategies, organizational learning, codification
Procedia PDF Downloads 443