Search results for: attention network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8671

Search results for: attention network

7741 Water Resources Green Efficiency in China: Evaluation, Spatial Association Network Structure Analysis, and Influencing Factors

Authors: Tingyu Zhang

Abstract:

This paper utilizes the Super-SBM model to assess water resources green efficiency (WRGE) among provinces in China and investigate its spatial and temporal features, based on the characteristic framework of “economy-environment-society.” The social network analysis is employed to examine the network pattern and spatial interaction of WRGE. Further, the quadratic assignment procedure method is utilized for examining the influencing factors of the spatial association of WRGE regarding “relationship.” The study reveals that: (1) the spatial distribution of WRGE demonstrates a distribution pattern of Eastern>Western>Central; (2) a remarkable spatial association exists among provinces; however, no strict hierarchical structure is observed. The internal structure of the WRGE network is characterized by the feature of "Eastern strong and Western weak". The block model analysis discovers that the members of the “net spillover” and “two-way spillover” blocks are mostly in the eastern and central provinces; “broker” block, which plays an intermediary role, is mostly in the central provinces; and members of the “net beneficiary” block are mostly in the western region. (3) Differences in economic development, degree of urbanization, water use environment, and water management have significant impacts on the spatial connection of WRGE. This study is dedicated to the realization of regional linkages and synergistic enhancement of WRGE, which provides a meaningful basis for building a harmonious society of human and water coexistence.

Keywords: water resources green efficiency, super-SBM model, social network analysis, quadratic assignment procedure

Procedia PDF Downloads 59
7740 Research on Resilience-Oriented Disintegration in System-of-System

Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.

Keywords: system-of-systems, disintegration index, resilience, reinforcement learning

Procedia PDF Downloads 13
7739 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network

Authors: Hui Wei, Zheng Dong

Abstract:

Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.

Keywords: biological model, feature extraction, multi-layer neural network, object recognition

Procedia PDF Downloads 540
7738 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.

Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity

Procedia PDF Downloads 426
7737 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.

Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty

Procedia PDF Downloads 109
7736 A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories

Authors: Umesh Kumar Singh, Chanchala Joshi

Abstract:

With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks.

Keywords: CVSS score, risk level, security measurement, vulnerability category

Procedia PDF Downloads 319
7735 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 193
7734 Maximizing Coverage with Mobile Crime Cameras in a Stochastic Spatiotemporal Bipartite Network

Authors: (Ted) Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup

Abstract:

This research details a coverage measure for evaluating the effectiveness of observer node placements in a spatial bipartite network. This coverage measure can be used to optimize the configuration of stationary or mobile spatially oriented observer nodes, or a hybrid of the two, over time in order to fully utilize their capabilities. To demonstrate the practical application of this approach, we construct a SpatioTemporal Bipartite Network (STBN) using real-time crime center (RTCC) camera nodes and NOPD calls for service (CFS) event nodes from New Orleans, La (NOLA). We use the coverage measure to identify optimal placements for moving mobile RTCC camera vans to improve coverage of vulnerable areas based on temporal patterns.

Keywords: coverage measure, mobile node dynamics, Monte Carlo simulation, observer nodes, observable nodes, spatiotemporal bipartite knowledge graph, temporal spatial analysis

Procedia PDF Downloads 113
7733 Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems

Authors: S. Sudhharani

Abstract:

Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks.

Keywords: dynamic voltage restorer (DVR), power quality, distribution networks, control systems(PWM)

Procedia PDF Downloads 135
7732 Classification of IoT Traffic Security Attacks Using Deep Learning

Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem

Abstract:

The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.

Keywords: IoT, traffic security, deep learning, classification

Procedia PDF Downloads 151
7731 Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System

Authors: Heri Suryoatmojo, Adi Kurniawan, Feby A. Pamuji, Nursalim, Syaffaruddin, Herbert Innah

Abstract:

Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only.

Keywords: energy storage system, frequency deviation, hybrid power generation, neural network algorithm

Procedia PDF Downloads 499
7730 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 260
7729 Multi-Scale Control Model for Network Group Behavior

Authors: Fuyuan Ma, Ying Wang, Xin Wang

Abstract:

Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.

Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior

Procedia PDF Downloads 19
7728 Flow Conservation Framework for Monitoring Software Defined Networks

Authors: Jesús Antonio Puente Fernández, Luis Javier Garcia Villalba

Abstract:

New trends on streaming videos such as series or films require a high demand of network resources. This fact results in a huge problem within traditional IP networks due to the rigidity of its architecture. In this way, Software Defined Networks (SDN) is a new concept of network architecture that intends to be more flexible and it simplifies the management in networks with respect to the existing ones. These aspects are possible due to the separation of control plane (controller) and data plane (switches). Taking the advantage of this separated control, it is easy to deploy a monitoring tool independent of device vendors since the existing ones are dependent on the installation of specialized and expensive hardware. In this paper, we propose a framework that optimizes the traffic monitoring in SDN networks that decreases the number of monitoring queries to improve the network traffic and also reduces the overload. The performed experiments (with and without the optimization) using a video streaming delivery between two hosts demonstrate the feasibility of our monitoring proposal.

Keywords: optimization, monitoring, software defined networking, statistics, query

Procedia PDF Downloads 331
7727 Understanding Social Networks in Community's Coping Capacity with Floods: A Case Study of a Community in Cambodia

Authors: Ourn Vimoil, Kallaya Suntornvongsagul

Abstract:

Cambodia is considered as one of the most disaster prone countries in South East Asia, and most of natural disasters are related to floods. Cambodia, a developing country, faces significant impacts from floods, such as environmental, social, and economic losses. Using data accessed from focus group discussions and field surveys with villagers in Ba Baong commune, prey Veng province, Cambodia, the research would like to examine roles of social networks in raising community’s coping capacity with floods. The findings indicate that social capital play crucial roles in three stages of floods, namely preparedness, response, and recovery to overcome the crisis. People shared their information and resources, and extent their assistances to one another in order to adapt to floods. The study contribute to policy makers, national and international agencies working on this issue to pay attention on social networks as one factors to accelerate flood coping capacity at community level.

Keywords: social network, community, coping capacity, flood, Cambodia

Procedia PDF Downloads 363
7726 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques

Authors: Elizabeth Malebogo Mosepele

Abstract:

Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.

Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation

Procedia PDF Downloads 432
7725 Apps Reduce the Cost of Construction

Authors: Ali Mohammadi

Abstract:

Every construction that is done, the most important part of attention for employers and contractors is its cost, and they always try to reduce costs so that they can compete in the market, so they estimate the cost of construction before starting their activities. The costs can be generally divided into four parts: the materials used, the equipment used, the manpower required, and the time required. In this article, we are trying to talk about the three items of equipment, manpower, and time, and examine how the use of apps can reduce the cost of construction, while due to various reasons, it has received less attention in the field of app design. Also, because we intend to use these apps in construction and they are used by engineers and experts, we define these apps as engineering apps because the idea of ​​their design must be by an engineer who works in that field. Also, considering that most engineers are familiar with programming during their studies, they can design the apps they need using simple programming software.

Keywords: layout, as-bilt, monitoring, maps

Procedia PDF Downloads 64
7724 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks

Authors: M. Heydari Vini

Abstract:

There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.

Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips

Procedia PDF Downloads 504
7723 Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network

Authors: Nishant Parashar, Sawan S. Sinha, Balaji Srinivasan

Abstract:

We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors.

Keywords: compressible turbulence, neural network, velocity gradient tensor, direct numerical simulation

Procedia PDF Downloads 168
7722 Expansion of Subjective Learning at Japanese Universities: Experiential Learning Based on Social Participation

Authors: Kumiko Inagaki

Abstract:

Qualitative changes to the undergraduate education have recently become the focus of attention in Japan. This is occurring against the backdrop of declining birthrate and increasing university enrollment, as well as drastic societal changes of advance toward globalization and a knowledge-based society. This paper describes the cases of Japanese universities that promoted various forms of experiential learning around the theme of social participation. The opportunity of learning through practical experience, where students turn their attention to social problems and take pains to consider means of resolving them, creates opportunities to demonstrate “human power” applicable to all sorts of activities the following graduation, thereby guaranteeing students’ continuous growth throughout their careers.

Keywords: career education, experiential learning, subjective learning, university education

Procedia PDF Downloads 308
7721 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images

Authors: Khitem Amiri, Mohamed Farah

Abstract:

Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.

Keywords: hyperspectral images, deep belief network, radiometric indices, image classification

Procedia PDF Downloads 278
7720 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: landslide, limit analysis, artificial neural network, soil properties

Procedia PDF Downloads 207
7719 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body

Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi

Abstract:

The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.

Keywords: Accu-Check, diabetes, neural network, pattern recognition

Procedia PDF Downloads 144
7718 Bayesian Network and Feature Selection for Rank Deficient Inverse Problem

Authors: Kyugneun Lee, Ikjin Lee

Abstract:

Parameter estimation with inverse problem often suffers from unfavorable conditions in the real world. Useless data and many input parameters make the problem complicated or insoluble. Data refinement and reformulation of the problem can solve that kind of difficulties. In this research, a method to solve the rank deficient inverse problem is suggested. A multi-physics system which has rank deficiency caused by response correlation is treated. Impeditive information is removed and the problem is reformulated to sequential estimations using Bayesian network (BN) and subset groups. At first, subset grouping of the responses is performed. Feature selection with singular value decomposition (SVD) is used for the grouping. Next, BN inference is used for sequential conditional estimation according to the group hierarchy. Directed acyclic graph (DAG) structure is organized to maximize the estimation ability. Variance ratio of response to noise is used to pairing the estimable parameters by each response.

Keywords: Bayesian network, feature selection, rank deficiency, statistical inverse analysis

Procedia PDF Downloads 312
7717 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications

Authors: Jacob Wahl, Jane Zhang

Abstract:

This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.

Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming

Procedia PDF Downloads 137
7716 An Algorithm Based on Control Indexes to Increase the Quality of Service on Cellular Networks

Authors: Rahman Mofidi, Sina Rahimi, Farnoosh Darban

Abstract:

Communication plays a key role in today’s world, and to support it, the quality of service has the highest priority. It is very important to differentiate between traffic based on priority level. Some traffic classes should be a higher priority than other classes. It is also necessary to give high priority to customers who have more payment for better service, however, without influence on other customers. So to realize that, we will require effective quality of service methods. To ensure the optimal performance of the network in accordance with the quality of service is an important goal for all operators in the mobile network. In this work, we propose an algorithm based on control parameters which it’s based on user feedback that aims at minimizing the access to system transmit power and thus improving the network key performance indicators and increasing the quality of service. This feedback that is known as channel quality indicator (CQI) indicates the received signal level of the user. We aim at proposing an algorithm in control parameter criterion to study improving the quality of service and throughput in a cellular network at the simulated environment. In this work we tried to parameter values have close to their actual level. Simulation results show that the proposed algorithm improves the system throughput and thus satisfies users' throughput and improves service to set up a successful call.

Keywords: quality of service, key performance indicators, control parameter, channel quality indicator

Procedia PDF Downloads 201
7715 Detecting Geographically Dispersed Overlay Communities Using Community Networks

Authors: Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan

Abstract:

Community detection is an extremely useful technique in understanding the structure and function of a social network. Louvain algorithm, which is based on Newman-Girman modularity optimization technique, is extensively used as a computationally efficient method extract the communities in social networks. It has been suggested that the nodes that are in close geographical proximity have a higher tendency of forming communities. Variants of the Newman-Girman modularity measure such as dist-modularity try to normalize the effect of geographical proximity to extract geographically dispersed communities, at the expense of losing the information about the geographically proximate communities. In this work, we propose a method to extract geographically dispersed communities while preserving the information about the geographically proximate communities, by analyzing the ‘community network’, where the centroids of communities would be considered as network nodes. We suggest that the inter-community link strengths, which are normalized over the community sizes, may be used to identify and extract the ‘overlay communities’. The overlay communities would have relatively higher link strengths, despite being relatively apart in their spatial distribution. We apply this method to the Gowalla online social network, which contains the geographical signatures of its users, and identify the overlay communities within it.

Keywords: social networks, community detection, modularity optimization, geographically dispersed communities

Procedia PDF Downloads 234
7714 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 202
7713 O-LEACH: The Problem of Orphan Nodes in the LEACH of Routing Protocol for Wireless Sensor Networks

Authors: Wassim Jerbi, Abderrahmen Guermazi, Hafedh Trabelsi

Abstract:

The optimum use of coverage in wireless sensor networks (WSNs) is very important. LEACH protocol called Low Energy Adaptive Clustering Hierarchy, presents a hierarchical clustering algorithm for wireless sensor networks. LEACH is a protocol that allows the formation of distributed cluster. In each cluster, LEACH randomly selects some sensor nodes called cluster heads (CHs). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node joins a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus, several sensor nodes cannot reach any CH. to solve this problem. We created an O-LEACH Orphan nodes protocol, its role is to reduce the sensor nodes which do not belong the cluster. The cluster member called Gateway receives messages from neighboring orphan nodes. The gateway informs CH having the neighboring nodes that not belong to any group. However, Gateway called (CH') attaches the orphaned nodes to the cluster and then collected the data. O-Leach enables the formation of a new method of cluster, leads to a long life and minimal energy consumption. Orphan nodes possess enough energy and seeks to be covered by the network. The principal novel contribution of the proposed work is O-LEACH protocol which provides coverage of the whole network with a minimum number of orphaned nodes and has a very high connectivity rates.As a result, the WSN application receives data from the entire network including orphan nodes. The proper functioning of the Application requires, therefore, management of intelligent resources present within each the network sensor. The simulation results show that O-LEACH performs better than LEACH in terms of coverage, connectivity rate, energy and scalability.

Keywords: WSNs; routing; LEACH; O-LEACH; Orphan nodes; sub-cluster; gateway; CH’

Procedia PDF Downloads 370
7712 Computerized Cognitive Training and Psychological Resiliency among Adolescents with Learning Disabilities

Authors: Verd Shomrom, Gilat Trabelsi

Abstract:

The goal of the study was to examine the effects of Computerized Cognitive Training (CCT) with and without cognitive mediation on Executive Function (EF) (planning and self- regulation) and on psychological resiliency among adolescents with Attention Deficits Hyperactive Disorder (ADHD) with or without Learning Disabilities (LD). Adolescents diagnosed with Attention Deficit Disorder and / or Learning Disabilities have multidimensional impairments that result from neurological damage. This work explored the possibility of influencing cognitive aspects in the field of Executive Functions (specifically: patterns of planning and self-regulation) among adolescents with a diagnosis of Attention Deficit Disorder and / or Learning Disabilities who study for a 10-12 grades. 46 adolescents with ADHD and/or with LD were randomly applied to experimental and control groups. All the participants were tested (BRC- research version, Resiliency quaternaries) before and after the intervention: mediated/ non-mediated Computerized Cognitive Training (MINDRI). The results indicated significant effects of cognitive modification in the experimental group, between pre and post Phases, in comparison to control group, especially in self- regulation (BRC- research version, Resiliency quaternaries), and on process analysis of Computerized Cognitive Training (MINDRI). The main conclusion was that even short- term mediation synchronized with CCT could greatly enhance the performance of executive functions demands. Theoretical implications for the positive effects of MLE in combination with CCT indicate the ability for cognitive change. The practical implication is the awareness and understanding of efficient intervention processes to enhance EF, learning awareness, resiliency and self-esteem of adolescents in their academic and daily routine.

Keywords: attention deficits hyperactive disorder, computerized cognitive training, executive function, mediated learning experience, learning disabilities

Procedia PDF Downloads 150