Search results for: spatial information network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16203

Search results for: spatial information network

6723 Remote Wireless Communications Lab in Real Time

Authors: El Miloudi Djelloul

Abstract:

Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable student to use expensive laboratory equipment, which is not usually available to students. In this paper, we present a method of creating a Web-based Remote Laboratory Experimentation in the master degree course “Wireless Communications Systems” which is part of “ICS (Information and Communication Systems)” and “Investment Management in Telecommunications” curriculums. This is done within the RIPLECS Project and the NI2011 FF005 Research Project “Implementation of Project-Based Learning in an Interdisciplinary Master Program”.

Keywords: remote access, remote laboratory, wireless telecommunications, external antenna-switching controller board (EASCB)

Procedia PDF Downloads 515
6722 Road Traffic Noise Mapping for Riyadh City Using GIS and Lima

Authors: Khalid A. Alsaif, Mosaad A. Foda

Abstract:

The primary objective of this study is to develop the first round of road traffic noise maps for Riyadh City using Geographical Information Systems (GIS) and software LimA 7810 predictor. The road traffic data were measured or estimated as accurate as possible in order to obtain reliable noise maps. Meanwhile, the attributes of the roads and buildings are automatically exported from GIS. The simulation results at some chosen locations are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The results show that the average error between the predicted and measured noise levels is below 3.0 dB.

Keywords: noise pollution, road traffic noise, LimA predictor, GIS

Procedia PDF Downloads 406
6721 Ground States of Structure of Even ¹⁰⁴-¹⁰⁶ Ru Isotopes

Authors: I. Hossain, Huda H. Kassim, Fadhil I. Sharrad, Said A. Mansour

Abstract:

In this conference, we apply the interacting boson model-1 (IBM-1) formula for U(5) symmetry in order to calculate the energy levels and reduced transition probabilities for a few yrast transitions in Ru with neutron N=60, 62. The neutron rich even-even isotopes of Ru are very interesting to investigate using IBM-1, because even 104,106Ru isotopes are great consequence due to excited near the magic number 50. The calculation of ground state band and B(E2) values using IBM-1 for Z=44 are not calculated to describe the valuable information of nuclear structure by U(5) limit. The parameters in the formula are deduced based on the experimental energy level and value of B(E2, 2+->0+). The yrast states and transition strength B(E2) from 1st 4+ to 1st 2+, 1st 6+ to 1st 4+ and 1st 8+ to 1st 6+ states of Ru for even N= 60, 62 were calculated. The quadrupole moments, deformation parameters and U(5) limit were discussed for those nuclei.

Keywords: B(E2), energy level, ¹⁰⁴Ru, ¹⁰⁶Ru

Procedia PDF Downloads 348
6720 Activity-Based Costing in the Hospitality Industry: A Case Study in a Hotel

Authors: Bita Mashayekhi, Mohammad Ara

Abstract:

The purpose of this study is to provide some empirical evidence about implementing Activity-Based Costing (ABC) in the hospitality industry in Iran. For this purpose, we consider the Tabriz International Hotel as our sample hotel and then gather the relevant data from its cost accounting system in 2012. Then, we use ABC as our costing method and compare the cost of each service unit with that cost which had been extracted for the traditional costing method. The results show a different cost per unit for two methods. Also, because of its more precise and detailed provided information, an ABC system facilitates the decision-making process for managers on decisions related to profitability analysis, budgeting, pricing, and so on.

Keywords: Activity-Based Costing (ABC), activity, cost driver, hospitality industry

Procedia PDF Downloads 298
6719 ICTs Knowledge as a Way of Enhancing Literacy and Lifelong Learning in Nigeria

Authors: Jame O. Ezema, Odenigbo Veronica

Abstract:

The study covers the topic Information Communication and Technology (ICTs) knowledge as a way of enhancing Literacy and Lifelong learning in Nigeria. This work delved into defining of ICTs. Types of ICTs and media technologies were also mentioned. It further explained how ICTs can be strengthened and the uses of ICTs in education was duly emphasized. The paper also enumerated some side effects of ICTs on learners while the role of ICTs in enhancing literacy was explained. The study carried out strategies to use ICTs meaningfully in Literacy Programs and also emphasized the word lifelong learning in Nigeria. Some recommendations were made towards acquiring ICTs knowledge, so as to enhance Literacy and Lifelong learning in Nigeria.

Keywords: literacy, distance-learning, life-long learning for sustainable development, e-learning

Procedia PDF Downloads 506
6718 On the Resilience of Operational Technology Devices in Penetration Tests

Authors: Marko Schuba, Florian Kessels, Niklas Reitz

Abstract:

Operational technology (OT) controls physical processes in critical infrastructures and economically important industries. With the convergence of OT with classical information technology (IT), rising cybercrime worldwide and the increasingly difficult geopolitical situation, the risks of OT infrastructures being attacked are growing. Classical penetration testing, in which testers take on the role of an attacker, has so far found little acceptance in the OT sector - the risk that a penetration test could do more harm than good seems too great. This paper examines the resilience of various OT systems using typical penetration test tools. It is shown that such a test certainly involves risks, but is also feasible in OT if a cautious approach is taken. Therefore, OT penetration testing should be considered as a tool to improve the cyber security of critical infrastructures.

Keywords: penetration testing, OT, ICS, OT security

Procedia PDF Downloads 18
6717 Influence of Driving Speed on Bearing Capacity Measurement of Intra-Urban Roads with the Traffic Speed Deflectometer(Tsd)

Authors: Pahirangan Sivapatham, Barbara Esser, Andreas Grimmel

Abstract:

In times of limited public funds and, in particular, an increased social, environmental awareness, as well as the limited availability of construction materials, sustainable and resource-saving pavement management system, is becoming more and more important. Therefore, the knowledge about the condition of the structural substances, particularly bearing capacity and its consideration while planning the maintenance measures of the subordinate network, i.e., state and municipal roads unavoidable. According to the experience, the recommended ride speed of the Traffic Speed Deflectometer (TSD) shall be higher than 40 km/h. Holding of this speed on the intra-urban roads is nearly not possible because of intersections and traffic lights as well as the speed limit. A sufficient background of experience for the evaluation of bearing capacity measurements with TSD in the range of lower speeds is not available yet. The aim of this study is to determine the possible lowest ride speed of the TSD while the bearing capacity measurement on the intra-urban roads. The manufacturer of the TSD used in this study states that the measurements can be conducted at a ride speed of higher than 5 km/h. It is well known that with decreasing ride speed, the viscous fractions in the response of the asphalt pavement increase. This must be taken into account when evaluating the bearing capacity data. In the scope of this study, several measurements were carried out at different speeds between 10 km/h and 60 km/h on the selected intra-urban roads with Pavement-Scanner of the University of Wuppertal, which is equipped with TSD. Pavement-Scanner is able to continuously determine the deflections of asphalt roads in flowing traffic at speeds of up to 80 km/h. The raw data is then aggregated to 10 m mean values so that, as a rule, a bearing capacity characteristic value can be determined for each 10 m road section. By means of analysing of obtained test results, the quality and validity of the determined data rate subject to the riding speed of TSD have been determined. Moreover, the data and pictures of the additional measuring systems of Pavement-Scanners such as High-Speed Road Monitor, Ground Penetration Radar and front cameras can be used to determine and eliminate irregularities in the pavement, which could influence the bearing capacity.

Keywords: bearing capacity measurement, traffic speed deflectometer, inter-urban roads, Pavement-Scanner, structural substance

Procedia PDF Downloads 237
6716 Effects of Global Validity of Predictive Cues upon L2 Discourse Comprehension: Evidence from Self-paced Reading

Authors: Binger Lu

Abstract:

It remains unclear whether second language (L2) speakers could use discourse context cues to predict upcoming information as native speakers do during online comprehension. Some researchers propose that L2 learners may have a reduced ability to generate predictions during discourse processing. At the same time, there is evidence that discourse-level cues are weighed more heavily in L2 processing than in L1. Previous studies showed that L1 prediction is sensitive to the global validity of predictive cues. The current study aims to explore whether and to what extent L2 learners can dynamically and strategically adjust their prediction in accord with the global validity of predictive cues in L2 discourse comprehension as native speakers do. In a self-paced reading experiment, Chinese native speakers (N=128), C-E bilinguals (N=128), and English native speakers (N=128) read high-predictable (e.g., Jimmy felt thirsty after running. He wanted to get some water from the refrigerator.) and low-predictable (e.g., Jimmy felt sick this morning. He wanted to get some water from the refrigerator.) discourses in two-sentence frames. The global validity of predictive cues was manipulated by varying the ratio of predictable (e.g., Bill stood at the door. He opened it with the key.) and unpredictable fillers (e.g., Bill stood at the door. He opened it with the card.), such that across conditions, the predictability of the final word of the fillers ranged from 100% to 0%. The dependent variable was reading time on the critical region (the target word and the following word), analyzed with linear mixed-effects models in R. C-E bilinguals showed reliable prediction across all validity conditions (β = -35.6 ms, SE = 7.74, t = -4.601, p< .001), and Chinese native speakers showed significant effect (β = -93.5 ms, SE = 7.82, t = -11.956, p< .001) in two of the four validity conditions (namely, the High-validity and MedLow conditions, where fillers ended with predictable words in 100% and 25% cases respectively), whereas English native speakers didn’t predict at all (β = -2.78 ms, SE = 7.60, t = -.365, p = .715). There was neither main effect (χ^²(3) = .256, p = .968) nor interaction (Predictability: Background: Validity, χ^²(3) = 1.229, p = .746; Predictability: Validity, χ^²(3) = 2.520, p = .472; Background: Validity, χ^²(3) = 1.281, p = .734) of Validity with speaker groups. The results suggest that prediction occurs in L2 discourse processing but to a much less extent in L1, witha significant effect in some conditions of L1 Chinese and anull effect in L1 English processing, consistent with the view that L2 speakers are more sensitive to discourse cues compared with L1 speakers. Additionally, the pattern of L1 and L2 predictive processing was not affected by the global validity of predictive cues. C-E bilinguals’ predictive processing could be partly transferred from their L1, as prior research showed that discourse information played a more significant role in L1 Chinese processing.

Keywords: bilingualism, discourse processing, global validity, prediction, self-paced reading

Procedia PDF Downloads 138
6715 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 99
6714 Geographic Mapping of Tourism in Rural Areas: A Case Study of Cumbria, United Kingdom

Authors: Emma Pope, Demos Parapanos

Abstract:

Rural tourism has become more obvious and prevalent, with tourists’ increasingly seeking authentic experiences. This movement accelerated post-Covid, putting destinations in danger of reaching levels of saturation called ‘overtourism’. Whereas the phenomenon of overtourism has been frequently discussed in the urban context by academics and practitioners over recent years, it has hardly been referred to in the context of rural tourism, where perhaps it is even more difficult to manage. Rural tourism was historically considered small-scale, marked by its traditional character and by having little impact on nature and rural society. The increasing number of rural areas experiencing overtourism, however, demonstrates the need for new approaches, especially as the impacts and enablers of overtourism are context specific. Cumbria, with approximately 47 million visitors each year, and 23,000 operational enterprises, is one of these rural areas experiencing overtourism in the UK. Using the county of Cumbria as an example, this paper aims to explore better planning and management in rural destinations by clustering the area into rural and ‘urban-rural’ tourism zones. To achieve the aim, this study uses secondary data from a variety of sources to identify variables relating to visitor economy development and demand. These data include census data relating to population and employment, tourism industry-specific data including tourism revenue, visitor activities, and accommodation stock, and big data sources such as Trip Advisor and All Trails. The combination of these data sources provides a breadth of tourism-related variables. The subsequent analysis of this data draws upon various validated models. For example, tourism and hospitality employment density, territorial tourism pressure, and accommodation density. In addition to these statistical calculations, other data are utilized to further understand the context of these zones, for example, tourist services, attractions, and activities. The data was imported into ARCGIS where the density of the different variables is visualized on maps. This study aims to provide an understanding of the geographical context of visitor economy development and tourist behavior in rural areas. The findings contribute to an understanding of the spatial dynamics of tourism within the region of Cumbria through the creation of thematized maps. Different zones of tourism industry clusters are identified, which include elements relating to attractions, enterprises, infrastructure, tourism employment and economic impact. These maps visualize hot and cold spots relating to a variety of tourism contexts. It is believed that the strategy used to provide a visual overview of tourism development and demand in Cumbria could provide a strategic tool for rural areas to better plan marketing opportunities and avoid overtourism. These findings can inform future sustainability policy and destination management strategies within the areas through an understanding of the processes behind the emergence of both hot and cold spots. It may mean that attract and disperse needs to be reviewed in terms of a strategic option. In other words, to use sector or zonal policies for the individual hot or cold areas with transitional zones dependent upon local economic, social and environmental factors.

Keywords: overtourism, rural tourism, sustainable tourism, tourism planning, tourism zones

Procedia PDF Downloads 74
6713 Semantic Data Schema Recognition

Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia

Abstract:

The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.

Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns

Procedia PDF Downloads 418
6712 Summer STEM Institute in Environmental Science and Data Sciencefor Middle and High School Students at Pace University

Authors: Lauren B. Birney

Abstract:

Summer STEM Institute for Middle and High School Students at Pace University The STEM Collaboratory NYC® Summer Fellows Institute takes place on Pace University’s New York City campus during July and provides the following key features for all participants: (i) individual meetings with Pace faculty to discuss and refine future educational goals; (ii) mentorship, guidance, and new friendships with program leaders; and (iii) guest lectures from professionals in STEM disciplines and businesses. The Summer STEM Institute allows middle school and high school students to work in teams to conceptualize, develop, and build native mobile applications that teach and reinforce skills in the sciences and mathematics. These workshops enhance students’STEM problem solving techniques and teach advanced methods of computer science and engineering. Topics include: big data and analytics at the Big Data lab at Seidenberg, Data Science focused on social and environmental advancement and betterment; Natural Disasters and their Societal Influences; Algal Blooms and Environmental Impacts; Green CitiesNYC; STEM jobs and growth opportunities for the future; renew able energy and sustainable infrastructure; and climate and the economy. In order to better align the existing Summer STEM, Institute with the CCERS model and expand the overall network, Pace is actively recruiting new content area specialists from STEM industries and private sector enterprises to participate in an enhanced summer institute in order to1) nurture student progress and connect summer learning to school year curriculum, 2) increase peer-to-peer collaboration amongst STEM professionals and private sector technologists, and 3) develop long term funding and sponsorship opportunities for corporate sector partners to support CCERS schools and programs directly.

Keywords: environmental restoration science, citizen science, data science, STEM

Procedia PDF Downloads 85
6711 Great-Grandparents: Inter and Transgenerational Relationships Involved in the Family

Authors: Emily Schuler, Cristina M. S. B. Dias

Abstract:

The increase of human aging is a phenomenon observed in world scale and allows the experience of several roles within the family. Nowadays grandparents can see their grandchildren growing up and having children, becoming great-grandparents, and thus adding another generation in the network of relationships. Consequently, more and more multigenerational families are emerging, formed by four or even five generations, and therefore more vertically. Thus, the objective of this research was to understand the role of great-grandparents, as well as the intergenerational repercussions of this role in their lives and that of their relatives. More specifically it was intended: to analyze the meaning of being great-grandparents in the family, from the perspective of each generation; identify the activities performed by their great-grandparents; identify the legacy that the great-grandparents wish to convey; characterize the needs and feelings experienced by the great-grandparents and their families; understand intergenerational relations permeated by the presence of great-grandparents among family members. It is a multiple case study with four families consisting of four generations and a family with five generations, thus totaling twenty-two participants; three great-grandmothers, two great-grandfathers, and one great-great-grandmother. As for the other generations, five children, grandchildren, great-grandchildren, and a great-great-grandchild were interviewed. As a research instrument, a semi-directed interview was used, with a specific script for each generation, as well as a questionnaire with the sociodemographic data of the participants. The data were analyzed through thematic content analysis. The main results pointed out the following: 1) As for the feelings experienced when becoming great-grandparents, they reported joy, satisfaction, and gratitude; 2) The support provided by them, most of the time, is of the emotional type; 3) The family relationship appeared quite significant, being characterized especially in the form of visits; 4) Conflicts exist, but seem to be circumvented with wisdom and much respect; 5) The legacies transmitted by them are related to faith, solidarity, education, and order; 6) The meaning of being great-grandmother is intimately linked to the feeling of transcendence, the sense of having fulfilled the purpose of life and also its continuity in grandchildren and great-grandchildren. In other generations, the appreciation of the great-grandparents, perceived as wise people, has been observed and can contribute as teachers to the new generations. It is hoped to give visibility to this generation still little studied in our country.

Keywords: great-grandparents, intergenerational relation, multigenerational families, transgenerational legacies

Procedia PDF Downloads 171
6710 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 94
6709 Passing-On Cultural Heritage Knowledge: Entrepreneurial Approaches for a Higher Educational Sustainability

Authors: Ioana Simina Frincu

Abstract:

As institutional initiatives often fail to provide good practices when it comes to heritage management or to adapt to the changing environment in which they function and to the audiences they address, private actions represent viable strategies for sustainable knowledge acquisition. Information dissemination to future generations is one of the key aspects in preserving cultural heritage and is successfully feasible even in the absence of original artifacts. Combined with the (re)discovery of natural landscape, open-air exploratory approaches (archeoparks) versus an enclosed monodisciplinary rigid framework (traditional museums) are more likely to 'speak the language' of a larger number of people, belonging to a variety of categories, ages, and professions. Interactive sites are efficient ways of stimulating heritage awareness and increasing the number of visitors of non-interactive/static cultural institutions owning original pieces of history, delivering specialized information, and making continuous efforts to preserve historical evidence (relics, manuscripts, etc.). It is high time entrepreneurs took over the role of promoting cultural heritage, bet it under a more commercial yet more attractive form (business). Inclusive, participatory type of activities conceived by experts from different domains/fields (history, anthropology, tourism, sociology, business management, integrative sustainability, etc.) have better chances to ensure long term cultural benefits for both adults and children, especially when and where the educational discourse fails. These unique self-experience leisure activities, which offer everyone the opportunity to recreate history by him-/her-self, to relive the ancestors’ way of living, surviving and exploring should be regarded not as pseudo-scientific approaches but as important pre-steps to museum experiences. In order to support this theory, focus will be laid on two different examples: one dynamic, in the outdoors (the Boario Terme Archeopark from Italy) and one experimental, held indoor (the reconstruction of the Neolithic sanctuary of Parta, Romania as part of a transdisciplinary academic course) and their impact on young generations. The conclusion of this study shows that the increasingly lower engagement of youth (students) in discovering and understanding history, archaeology, and heritage can be revived by entrepreneurial projects.

Keywords: archeopark, educational tourism, open air museum, Parta sanctuary, prehistory

Procedia PDF Downloads 139
6708 Dynamic Web-Based 2D Medical Image Visualization and Processing Software

Authors: Abdelhalim. N. Mohammed, Mohammed. Y. Esmail

Abstract:

In the course of recent decades, medical imaging has been dominated by the use of costly film media for review and archival of medical investigation, however due to developments in networks technologies and common acceptance of a standard digital imaging and communication in medicine (DICOM) another approach in light of World Wide Web was produced. Web technologies successfully used in telemedicine applications, the combination of web technologies together with DICOM used to design a web-based and open source DICOM viewer. The Web server allowance to inquiry and recovery of images and the images viewed/manipulated inside a Web browser without need for any preinstalling software. The dynamic site page for medical images visualization and processing created by using JavaScript and HTML5 advancements. The XAMPP ‘apache server’ is used to create a local web server for testing and deployment of the dynamic site. The web-based viewer connected to multiples devices through local area network (LAN) to distribute the images inside healthcare facilities. The system offers a few focal points over ordinary picture archiving and communication systems (PACS): easy to introduce, maintain and independently platforms that allow images to display and manipulated efficiently, the system also user-friendly and easy to integrate with an existing system that have already been making use of web technologies. The wavelet-based image compression technique on which 2-D discrete wavelet transform used to decompose the image then wavelet coefficients are transmitted by entropy encoding after threshold to decrease transmission time, stockpiling cost and capacity. The performance of compression was estimated by using images quality metrics such as mean square error ‘MSE’, peak signal to noise ratio ‘PSNR’ and compression ratio ‘CR’ that achieved (83.86%) when ‘coif3’ wavelet filter is used.

Keywords: DICOM, discrete wavelet transform, PACS, HIS, LAN

Procedia PDF Downloads 160
6707 Fair Value Accounting and Evolution of the Ohlson Model

Authors: Mohamed Zaher Bouaziz

Abstract:

Our study examines the Ohlson Model, which links a company's market value to its equity and net earnings, in the context of the evolution of the Canadian accounting model, characterized by more extensive use of fair value and a broader measure of performance after IFRS adoption. Our hypothesis is that if equity is reported at its fair value, this valuation is closely linked to market capitalization, so the weight of earnings weakens or even disappears in the Ohlson Model. Drawing on Canada's adoption of the International Financial Reporting Standards (IFRS), our results support our hypothesis that equity appears to include most of the relevant information for investors, while earnings have become less important. However, the predictive power of earnings does not disappear.

Keywords: fair value accounting, Ohlson model, IFRS adoption, value-relevance of equity and earnings

Procedia PDF Downloads 190
6706 Efficacy and Mechanisms of Acupuncture for Depression: A Meta-Analysis of Clinical and Preclinical Evidence

Authors: Yimeng Zhang

Abstract:

Major depressive disorder (MDD) is a prevalent mental health condition with a substantial economic impact and limited treatment options. Acupuncture has gained attention as a promising non-pharmacological intervention for alleviating depressive symptoms. However, its mechanisms and clinical effectiveness remain incompletely understood. This meta-analysis aims to (1) synthesize existing evidence on the mechanisms and clinical effectiveness of acupuncture for depression and (2) compare these findings with pharmacological interventions, providing insights for future research. Evidence from animal models and clinical studies indicates that acupuncture may enhance hippocampal and network neuroplasticity and reduce brain inflammation, potentially alleviating depressive disorders. Clinical studies suggest that acupuncture can effectively relieve primary depression, particularly in milder cases, and is beneficial in managing post-stroke depression, pain-related depression, and postpartum depression, both as a standalone and adjunctive treatment. Notably, combining acupuncture with antidepressant pharmacotherapy appears to enhance treatment outcomes and reduce medication side effects, addressing a critical issue in conventional drug therapy's high dropout rates. This meta-analysis, encompassing 12 studies and 710 participants, draws data from eight digital databases (PubMed, EMBASE, Web of Science, EBSCOhost, CNKI, CBM, Wangfang, and CQVIP) covering the period from 2012 to 2022. Utilizing Stata software 15.0, the meta-analysis employed random-effects and fixed-effects models to assess the distribution of depression in Traditional Chinese Medicine (TCM). The results underscore the substantial evidence supporting acupuncture's beneficial effects on depression. However, the small sample sizes of many clinical trials raise concerns about the generalizability of the findings, indicating a need for further research to validate these outcomes and optimize acupuncture's role in treating depression.

Keywords: Chinese medicine, acupuncture, depression, meta-analysis

Procedia PDF Downloads 35
6705 Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency

Authors: Shagufta Tabassum, V. P. Pawar, jr., G. N. Shinde

Abstract:

The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.

Keywords: excess properties, relaxation time, static dielectric constant, and time domain reflectometry technique

Procedia PDF Downloads 155
6704 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 316
6703 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model

Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis

Abstract:

Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).

Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry

Procedia PDF Downloads 225
6702 Influence of Ammonia Emissions on Aerosol Formation in Northern and Central Europe

Authors: A. Aulinger, A. M. Backes, J. Bieser, V. Matthias, M. Quante

Abstract:

High concentrations of particles pose a threat to human health. Thus, legal maximum concentrations of PM10 and PM2.5 in ambient air have been steadily decreased over the years. In central Europe, the inorganic species ammonium sulphate and ammonium nitrate make up a large fraction of fine particles. Many studies investigate the influence of emission reductions of sulfur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. While emissions of sulphate and nitrogen oxides are quite well known, ammonia emissions are subject to high uncertainty. This is due to the uncertainty of location, amount, time of fertilizer application in agriculture, and the storage and treatment of manure from animal husbandry. For this study, we implemented a crop growth model into the SMOKE emission model. Depending on temperature, local legislation, and crop type individual temporal profiles for fertilizer and manure application are calculated for each model grid cell. Additionally, the diffusion from soils and plants and the direct release from open and closed barns are determined. The emission data was used as input for the Community Multiscale Air Quality (CMAQ) model. Comparisons to observations from the EMEP measurement network indicate that the new ammonia emission module leads to a better agreement of model and observation (for both ammonia and ammonium). Finally, the ammonia emission model was used to create emission scenarios. This includes emissions based on future European legislation, as well as a dynamic evaluation of the influence of different agricultural sectors on particle formation. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of total PM2.5 concentrations during winter time in the model domain. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year.

Keywords: ammonia, ammonia abatement strategies, ctm, seasonal impact, secondary aerosol formation

Procedia PDF Downloads 351
6701 Health Transformation Program and Effects on Health Expenditures

Authors: Zeynep Karacor, Rahime Hulya Ozturk

Abstract:

In recent years, the rise of population density and the problem of aging population took attention to the health expenditures. In Turkey, some regulations and infrastructure changes in health sector have occurred. These changes are called Health Transformation Program. The productivity of health services, patient satisfaction, quality of services are tried to be improved with this program. Some radical changes are applied in Turkish economy in this context. The aim of this paper is to present the effects of Health Transformation Program on health expenditures. In the first part of the paper, some information’s about health system and applications in Turkey are discussed. In the second part, the aims of Health Transformation Program are explained. And in the third part the effects of Health Transformation Program on health expenditures are examined.

Keywords: health transformation program, Turkey, health services, health expenditures

Procedia PDF Downloads 395
6700 Female Entrepreneurship in Transitional Economies: An In-Depth Comparative Study about Challenges Facing Female Entrepreneurs in Nigeria and Egypt

Authors: Dina Mohamed Ayman, Rafieu Akin

Abstract:

In an attempt to increase the female total entrepreneurial activities (TEA) within Egypt and Nigeria, this paper aims to investigate the challenges facing female entrepreneurs operating in Egypt, in relative to Nigeria. In this regard, both researchers undertook a qualitative approach due to the scarcity of the literature reviewed on the topic; in those particular countries, and as an in-depth comparative mode. Therefore, ten Egyptian entrepreneurs in relative to ten Nigerian entrepreneurs were in-depth investigated. The research findings prove that female entrepreneurs face complex problems for being both gender and country-specific. Regarding the gender-specific obstacles, the work/life imbalance due to the scarcity of child-care nurseries and the prevalence of the gender-role division while performing the house chores rather than the concept of co-operation, acted as a main source of cultural challenge because women are considered mostly as 'housewives'. However, interestingly, this specific gender-discrimination challenge is proven to have no grounded effect in terms of the business-establishment and daily dealings neither in Egypt nor Nigeria, as one of the sample exclaimed 'as long as you pay, then no gender difference is set on the table'. Other country-specific challenges facing female entrepreneurs, lied in, the aggregate weak entrepreneurial framework governing both countries, also, women faced the difficulty of access to financial institutions with collateral requirements that are usually "hardly to be met", besides, the absence of the "micro-credit-Grameen-banks" concept. As well, the scarcity of incubators and business training centers providing network, consultancy and well-trained workforce to female entrepreneurs constitute a major hurdle for women entrepreneurs operating in both countries. Finally, this paper will conclude the research by offering a set of public-policy recommendations to pave the way for females to choose self-employment as a career path.

Keywords: entrepreneurship, female entrepreneurship, obstacles, framework conditions, culture, micro-credit

Procedia PDF Downloads 371
6699 RAPD Analysis of Genetic Diversity of Castor Bean

Authors: M. Vivodík, Ž. Balážová, Z. Gálová

Abstract:

The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses.

Keywords: dendrogram, polymorphism, RAPD technique, Ricinus communis L.

Procedia PDF Downloads 471
6698 Representations of Childcare Robots as a Controversial Issue

Authors: Raya A. Jones

Abstract:

This paper interrogates online representations of robot companions for children, including promotional material by manufacturers, media articles and technology blogs. The significance of the study lies in its contribution to understanding attitudes to robots. The prospect of childcare robots is particularly controversial ethically, and is associated with emotive arguments. The sampled material is restricted to relatively recent posts (the past three years) though the analysis identifies both continuous and changing themes across the past decade. The method extrapolates social representations theory towards examining the ways in which information about robotic products is provided for the general public. Implications for social acceptance of robot companions for the home and robot ethics are considered.

Keywords: acceptance of robots, childcare robots, ethics, social representations

Procedia PDF Downloads 252
6697 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
6696 Escalation of Commitment and Turnover in Top Management Teams

Authors: Dmitriy V. Chulkov

Abstract:

Escalation of commitment is defined as continuation of a project after receiving negative information about it. While literature in management and psychology identified various factors contributing to escalation behavior, this phenomenon has received little analysis in economics, potentially due to the apparent irrationality of escalation. In this study, we present an economic model of escalation with asymmetric information in a principal-agent setup where the agents are responsible for a project selection decision and discover the outcome of the project before the principal. Our theoretical model complements the existing literature on several accounts. First, we link the incentive to escalate commitment to a project with the turnover decision by the manager. When a manager learns the outcome of the project and stops it that reveals that a mistake was made. There is an incentive to continue failing projects and avoid admitting the mistake. This incentive is enhanced when the agent may voluntarily resign from the firm before the outcome of the failing project is revealed, and thus not bear the full extent of reputation damage due to project failure. As long as some successful managers leave the firm for extraneous reasons, outside firms find it difficult to link failing projects with certainty to managers that left a firm. Second, we demonstrate that non-CEO managers have reputation concerns separate from those of the CEO, and thus may escalate commitment to projects they oversee, when such escalation can attenuate damage to reputation from impending project failure. Such incentive for escalation will be present for non-CEO managers if the CEO delegates responsibility for a project to a non-CEO executive. If reputation matters for promotion to the CEO, the incentive for a rising executive to escalate in order to protect reputation is distinct from that of a CEO. Third, our theoretical model is supported by empirical analysis of changes in the firm’s operations measured by the presence of discontinued operations at the time of turnover among the top four members of the top management team. Discontinued operations are indicative of termination of failing projects at a firm. The empirical results demonstrate that in a large dataset of over three thousand publicly traded U.S. firms for a period from 1993 to 2014 turnover by top executives significantly increases the likelihood that the firm discontinues operations. Furthermore, the type of turnover matters as this effect is strongest when at least one non-CEO member of the top management team leaves the firm and when the CEO departure is due to a voluntary resignation and not to a retirement or illness. Empirical results are consistent with the predictions of the theoretical model and suggest that escalation of commitment is primarily observed in decisions by non-CEO members of the top management team.

Keywords: discontinued operations, escalation of commitment, executive turnover, top management teams

Procedia PDF Downloads 365
6695 Assessment and Analysis of Literary Criticism and Consumer Research

Authors: Mohammad Mirzaei

Abstract:

This article proposes literary criticism as a source of insight into consumer behavior, provides an extensive overview of literary criticism, provides concrete illustrative analysis, and offers suggestions for further research. To do, a literary analysis of advertising copy identifies elements that provide additional information to consumer researchers and discusses the contribution of literary criticism to consumer research. Important post-war critical schools of thought are reviewed, and relevant theoretical concepts are summarized. Ivory Flakes' advertisements are analyzed using a variety of concepts drawn from literary schools, primarily sociocultural and reader responses. Suggestions for further research on content analysis, image analysis, and consumption history are presented.

Keywords: consumer behaviour, consumer research, consumption history, criticism

Procedia PDF Downloads 100
6694 Heart Murmurs and Heart Sounds Extraction Using an Algorithm Process Separation

Authors: Fatima Mokeddem

Abstract:

The phonocardiogram signal (PCG) is a physiological signal that reflects heart mechanical activity, is a promising tool for curious researchers in this field because it is full of indications and useful information for medical diagnosis. PCG segmentation is a basic step to benefit from this signal. Therefore, this paper presents an algorithm that serves the separation of heart sounds and heart murmurs in case they exist in order to use them in several applications and heart sounds analysis. The separation process presents here is founded on three essential steps filtering, envelope detection, and heart sounds segmentation. The algorithm separates the PCG signal into S1 and S2 and extract cardiac murmurs.

Keywords: phonocardiogram signal, filtering, Envelope, Detection, murmurs, heart sounds

Procedia PDF Downloads 141