Search results for: enhanced mechanical properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12721

Search results for: enhanced mechanical properties

3241 Compact Optical Sensors for Harsh Environments

Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi

Abstract:

Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.

Keywords: optical MEMS, temperature sensor, accelerometer, remote sensing, harsh environment

Procedia PDF Downloads 367
3240 Antioxidative Effect of Bauhinia acuminata Water Extract Consumption in Rat

Authors: Amornnat Thuppia, Pornrut Rabintossaporn, Suphaket Saenthaweesuk, Nuntiya Somparn

Abstract:

The aim of this present study was to determine the antioxidant effects and its mechanism of aqueous leaves extract of Bauhinia acuminata (BA) in rat. The extract was screened for its phytochemical contents and antioxidant activity in vitro. Moreover, the extract was studied in rats to evaluate its effects in vivo. Rats were orally administered with the extract at the dose of 50, 100 and 200 mg/kg for 28 days. Phytochemical screening of plant extracts showed the presence of saponin, alkaloid, cardiac glycosides, flavonoids, tannin and steroid compounds. The extract contained phenolic compounds 53.36 ± 1.01 mg of gallic acid equivalents per gram BA extract. The free radical scavenging activity assessed by DPPH assay gave IC50 of 44.47 ± 2.83 µg/mL, which is relatively lower than that of BHT with IC50 of 12.34 ± 1.14µg/mL. In the animals, the extract was well tolerated by the animals throughout the 28 days of study as shown by normal serum levels AST, ALP, ALT, BUN and Cr as well as normal histology of liver and pancreatic and kidney tissue. Significantly, reduction of serum oxidative stress markers malondialdehyde (MDA) was found in rat treated with BA extract compared with control. Taken together, this study provides evidence that Bauhinia acuminata (BA) exhibits direct antioxidant properties and induces cytoprotective enzyme in vivo.

Keywords: Bauhinia acuminata, antioxidant, malondialdehyde (MDA), oxidative marker

Procedia PDF Downloads 273
3239 Roasting Process of Sesame Seeds Modelling Using Gene Expression Programming: A Comparative Analysis with Response Surface Methodology

Authors: Alime Cengiz, Talip Kahyaoglu

Abstract:

Roasting process has the major importance to obtain desired aromatic taste of nuts. In this study, two kinds of roasting process were applied to hulled sesame seeds - vacuum oven and hot air roasting. Efficiency of Gene Expression Programming (GEP), a new soft computing technique of evolutionary algorithm that describes the cause and effect relationships in the data modelling system, and response surface methodology (RSM) were examined in the modelling of roasting processes over a range of temperature (120-180°C) for various times (30-60 min). Color attributes (L*, a*, b*, Browning Index (BI)), textural properties (hardness and fracturability) and moisture content were evaluated and modelled by RSM and GEP. The GEP-based formulations and RSM approach were compared with experimental results and evaluated according to correlation coefficients. The results showed that both GEP and RSM were found to be able to adequately learn the relation between roasting conditions and physical and textural parameters of roasted seeds. However, GEP had better prediction performance than the RSM with the high correlation coefficients (R2 >0.92) for the all quality parameters. This result indicates that the soft computing techniques have better capability for describing the physical changes occuring in sesame seeds during roasting process.

Keywords: genetic expression programming, response surface methodology, roasting, sesame seed

Procedia PDF Downloads 418
3238 Dynamic Software Product Lines for Customer Centric Context Aware Business Process Management

Authors: Bochra Khiari, Lamia Labed

Abstract:

In the new digital marketplace, organizations are striving for a proactive position by leveraging the great potential of disruptive technologies to seize the full opportunity of the digital revolution in order to reshape their customer value propositions. New technologies such as big data analytics, which provide prediction of future events based on real-time information, are being integrated into BPM which urges the need for additional core values like capabilities for dynamic adaptation, autonomic behavior, runtime reconfiguration and post-deployment activities to manage unforeseen scenarios at runtime in a situated and changeable context. Dynamic Software Product Lines (DSPL) is an emerging paradigm that supports these runtime variability mechanisms. However, few works exploiting DSPLs principles and techniques in the BPM domain have been proposed so far. In this paper, we propose a conceptual approach DynPL4CBPM, which integrates DSPLs concepts along with the entire related dynamic properties, to the whole BPM lifecycle in order to dynamically adapt business processes according to different context conditions in an individual environment.

Keywords: adaptive processes, context aware business process management, customer centric business process management, dynamic software product lines

Procedia PDF Downloads 161
3237 The Mechanism of Antimicrobial Activity and Antioxidant Effects of the Essential Oil and the Methanolic Extract of Carum montanum (Coss. et Dur.) Benth. Et Hook. Aerial Parts from Algeria

Authors: Meriem El Kolli, Hocine Laouer, Hayet El Kolli, Salah Akkal

Abstract:

The methanolic extract (ME) of C. montanum obtained by a hydo-alcoholic maceration and its polyphenol content was evaluated by Folin-Ciocalteu method. This extract and C. montanum essential oil were screened for antimicrobial activity against 21 microbial strains by agar diffusion method. MICs of the EO were determined by the broth micro dilution method. The mechanism of action of the EO was determined on the susceptible strains by the time kill assay and the lysis experience. Antioxidant properties were studied by both free DPPH radical scavenging and reducing power techniques. The TPC in the ME showed a high level of 101.50 ± 5.33 mg GAE /mg. B. cereus was the most sensitive strain with MIC of 55.5 µg/ml , then K. pneumoniae (111 µg/ml). A remarkable decrease in a survival rate as well as in the absorbance at 260 nm were recorded, which suggest that the cytoplasm membrane is one of the targets of the EO. Antioxidant effects were concentration dependent and IC50 values were 1.09 ± 0.37 µg/ml for the EO and 65.04 ± 0.00 µg/ml for the ME by DPPH method and a reducing power dose-dependent. In conclusion, C. montanum extracts showed potent which could be exploited in the food industry for food preservation.

Keywords: C. montanum, Apiaceae, essential oils, antimicrobial activity, antioxidant activity, reducing power

Procedia PDF Downloads 237
3236 The Effect of Mamanet Cachibol League on Psychosomatic Symptoms, Eating Habits, and Social Support among Arab Women: A Mixed Methods Study

Authors: Karin Eines, Riki Tesler

Abstract:

Introduction: The Mamanet Cachibol League (MCL) is a community-based model developed in Israel to promote physical activity (PA) and amateur team sports among women. team sports are not just groups in the context of specific sport activity but also incorporated into a person’s sense of self and become influencing factor on sport-related behavior among the players. While in the non-Arabic sector, sport venues are available for the local authority population, the Arabic sector authorities face limited access sport facilities, with 168 sport venues and authorities with no venues at all. Within the Arab community, women participation in sports has traditionally been limited and, even more so for participation in team sports. Aims: The purpose of the study was to explore attributes of women MCL activity via: (1) assess differences between participants in the MCL and non-participants among Arab women regarding well-being level; (2) to examine among MCL participants the relationship between health maintenance characteristics and the likelihood of participating in the MCL; and (3) Use qualitative approach to shed light over the question why Arabic women participate in MCL and continue their engagement in PA. Methods: An explanatory sequential mixed-method design was employed to gain a deeper understanding of the advantages and motivations among women participating in community-based team sports. A cross-sectional survey was conducted among Israeli Arab women aged 25–59. Demographic characteristics, well-being (SRH and psychosomatic symptoms), eating habits, and social support were analyzed using two-way analyses of covariance and multiple regression models with a sequential entry of the variables. Quantitative results were further explored in qualitative in-depth interviews among 30 of the MCL participants, which shed light on additional reasons for participation in PA. Results: MCL participants reported better self-reported health (p < 0.001) and lower rates of psychosomatic symptoms (p < 0.001) compared to non-participants. Participation in MCL was also related to higher levels of well-being and healthy eating habits. Women who participated also experienced a profound sense of belonging, leading to enhanced social interactions and positivity in their personal and professional lives. They were dedicated to the group and felt empowered by the reciprocal commitment. The group promoted equality, making the women feel valued and respected, resulting in community admiration. Their involvement positively impacted their families, justifying their time commitment.

Keywords: wellbeing, obesity, community based sports, healthy eating habits, arab women

Procedia PDF Downloads 75
3235 Selection of Green Fluorescent Protein and mCherry Nanobodies Using the Yeast Surface Display Method

Authors: Lavinia Ruta, Ileana Farcasanu

Abstract:

The yeast surface display (YSD) technique enables the expression of proteins on yeast cell surfaces, facilitating the identification and isolation of proteins with targeted binding properties, such as nanobodies. Nanobodies, derived from camelid species, are single-domain antibody fragments renowned for their high affinity and specificity towards target proteins, making them valuable in research and potentially in therapeutics. Their advantages include a compact size (~15 kDa), robust stability, and the ability to target challenging epitopes. The project endeavors to establish and validate a platform for producing Green Fluorescent Protein (GFP) and mCherry nanobodies using the yeast surface display method. mCherry, a prevalent red fluorescent protein sourced from coral species, is commonly utilized as a genetic marker in biological studies due to its vibrant red fluorescence. The GFP-nanobody, a single variable domain of heavy-chain antibodies (VHH), exhibits specific binding to GFP, offering a potent means for isolating and engineering fluorescent protein fusions across various biological research domains. Both GFP and mCherry nanobodies find specific utility in cellular imaging and protein analysis applications.

Keywords: YSD, nanobodies, GFP, Saccharomyces cerevisiae

Procedia PDF Downloads 61
3234 Effect of Phosphorus Solubilizing Bacteria on Yield and Seed Quality of Camelina (Camelina sativa L.) under Drought Stress

Authors: Muhammad Naeem Chaudhry, Fahim Nawaz, Rana Nauman Shabbir

Abstract:

New strategies aimed at increasing the resilience of crop plants to the negative effects of climate change represent important research priorities of plant scientists. The use of soil microorganisms to alleviate abiotic stresses like drought has gained particular importance in recent past. A field experiment was planned to investigate the effect of phosphorous solubilizing bacteria on yield and seed quality of Camelina (Camelina sativa L.) under water deficit conditions. The study was conducted at Agronomic Research Farm, University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur, during 4th week of November, 2013. The available seeds of Camelina sativa were inoculated with two bacterial strains (pseudomonas and Bacillus spp.) and grown under various water stress levels i.e. D0, (four irrigations), D3 (three irrigation), D2 (two irrigations), and D1 (one irrigation). The results revealed that drought stress significantly reduced the plant growth and yield, consequently reducing protein contents and oil concentration in camelina. The exposure to drought stress decreased plant height (16%), plant population (27%), number of fertile branches (41-59%), number of pods per plant (35%) and seed per pod (33%). Drought stress also exerted a negative impact on yield characteristics by reducing the 1000-seed weight (65%), final seed yield (52%), biological yield (22%) and harvest index (39%) of camelina. However, the inoculation of seeds with Pseudomonas and Bacillus spp. promoted the plant growth characterized by increased plant height and enhanced plant population. It was noted that inoculation of seeds with Pseudomonas resulted in the maximum plant population (113.4 cm), primary branches (19 plant-1), and number of pods (664 plant-1), whereas Bacillus inoculation resulted in maximum plant height (113.4 cm), seeds per pod (15.9), 1000-seed weight (1.85 g), and seed yield (3378.8 kg ha-1). Moreover, the inoculation with Bacillus also significantly improved the quality attributes of camelina and gave 3.5% and 2.1% higher oil contents than Pseudomonas and control (no-inoculation), respectively. Similarly, the same strain also resulted in maximum protein contents (33.3%). Our results confirmed the hypothesis that inoculation of seeds with phosphorous solubilizing bacterial strains is an effective, viable and environment-friendly approach to improve yield and quality of camelina under water deficit conditions. However, further studies are suggested to investigate the physiological and molecular processes, stimulated by bacterial strains, for increasing drought tolerance in food crops.

Keywords: Camelina, drought stress, phosphate solubilizing bacteria, seed quality

Procedia PDF Downloads 259
3233 High Order Block Implicit Multi-Step (Hobim) Methods for the Solution of Stiff Ordinary Differential Equations

Authors: J. P. Chollom, G. M. Kumleng, S. Longwap

Abstract:

The search for higher order A-stable linear multi-step methods has been the interest of many numerical analysts and has been realized through either higher derivatives of the solution or by inserting additional off step points, supper future points and the likes. These methods are suitable for the solution of stiff differential equations which exhibit characteristics that place a severe restriction on the choice of step size. It becomes necessary that only methods with large regions of absolute stability remain suitable for such equations. In this paper, high order block implicit multi-step methods of the hybrid form up to order twelve have been constructed using the multi-step collocation approach by inserting one or more off step points in the multi-step method. The accuracy and stability properties of the new methods are investigated and are shown to yield A-stable methods, a property desirable of methods suitable for the solution of stiff ODE’s. The new High Order Block Implicit Multistep methods used as block integrators are tested on stiff differential systems and the results reveal that the new methods are efficient and compete favourably with the state of the art Matlab ode23 code.

Keywords: block linear multistep methods, high order, implicit, stiff differential equations

Procedia PDF Downloads 358
3232 Analytical Tools for Multi-Residue Analysis of Some Oxygenated Metabolites of PAHs (Hydroxylated, Quinones) in Sediments

Authors: I. Berger, N. Machour, F. Portet-Koltalo

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are toxic and carcinogenic pollutants produced in majority by incomplete combustion processes in industrialized and urbanized areas. After being emitted in atmosphere, these persistent contaminants are deposited to soils or sediments. Even if persistent, some can be partially degraded (photodegradation, biodegradation, chemical oxidation) and they lead to oxygenated metabolites (oxy-PAHs) which can be more toxic than their parent PAH. Oxy-PAHs are less measured than PAHs in sediments and this study aims to compare different analytical tools in order to extract and quantify a mixture of four hydroxylated PAHs (OH-PAHs) and four carbonyl PAHs (quinones) in sediments. Methodologies: Two analytical systems – HPLC with on-line UV and fluorescence detectors (HPLC-UV-FLD) and GC coupled to a mass spectrometer (GC-MS) – were compared to separate and quantify oxy-PAHs. Microwave assisted extraction (MAE) was optimized to extract oxy-PAHs from sediments. Results: First OH-PAHs and quinones were analyzed in HPLC with on-line UV and fluorimetric detectors. OH-PAHs were detected with the sensitive FLD, but the non-fluorescent quinones were detected with UV. The limits of detection (LOD)s obtained were in the range (2-3)×10-4 mg/L for OH-PAHs and (2-3)×10-3 mg/L for quinones. Second, even if GC-MS is not well adapted to the analysis of the thermodegradable OH-PAHs and quinones without any derivatization step, it was used because of the advantages of the detector in terms of identification and of GC in terms of efficiency. Without derivatization, only two of the four quinones were detected in the range 1-10 mg/L (LODs=0.3-1.2 mg/L) and LODs were neither very satisfying for the four OH-PAHs (0.18-0.6 mg/L). So two derivatization processes were optimized, comparing to literature: one for silylation of OH-PAHs, one for acetylation of quinones. Silylation using BSTFA/TCMS 99/1 was enhanced using a mixture of catalyst solvents (pyridine/ethyle acetate) and finding the appropriate reaction duration (5-60 minutes). Acetylation was optimized at different steps of the process, including the initial volume of compounds to derivatize, the added amounts of Zn (0.1-0.25 g), the nature of the derivatization product (acetic anhydride, heptafluorobutyric acid…) and the liquid/liquid extraction at the end of the process. After derivatization, LODs were decreased by a factor 3 for OH-PAHs and by a factor 4 for quinones, all the quinones being now detected. Thereafter, quinones and OH-PAHs were extracted from spiked sediments using microwave assisted extraction (MAE) followed by GC-MS analysis. Several mixtures of solvents of different volumes (10-25 mL) and using different extraction temperatures (80-120°C) were tested to obtain the best recovery yields. Satisfactory recoveries could be obtained for quinones (70-96%) and for OH-PAHs (70-104%). Temperature was a critical factor which had to be controlled to avoid oxy-PAHs degradation during the MAE extraction process. Conclusion: Even if MAE-GC-MS was satisfactory to analyze these oxy-PAHs, MAE optimization has to be carried on to obtain a most appropriate extraction solvent mixture, allowing a direct injection in the HPLC-UV-FLD system, which is more sensitive than GC-MS and does not necessitate a previous long derivatization step.

Keywords: derivatizations for GC-MS, microwave assisted extraction, on-line HPLC-UV-FLD, oxygenated PAHs, polluted sediments

Procedia PDF Downloads 287
3231 Effects of Boiling Temperature and Time on Colour, Texture and Sensory Properties of Volutharpa ampullacea perryi Meat

Authors: Xianbao Sun, Jinlong Zhao, Shudong He, Jing Li

Abstract:

Volutharpa ampullacea perryi is a high-protein marine shellfish. However, few data are available on the effects of boiling temperatures and time on quality of the meat. In this study, colour, texture and sensory characteristics of Volutharpa ampullacea perryi meat during the boiling cooking processes (75-100 °C, 5-60 min) were investigated by colors analysis, texture profile analysis (TPA), scanning electron microscope (SEM) and sensory evaluation. The ratio of cooking loss gradually increased with the increase of temperature and time. The colour of meat became lighter and more yellower from 85 °C to 95 °C in a short time (5-20 min), but it became brown after a 30 min treatment. TPA results showed that the Volutharpa ampullacea perryi meat were more firm and less cohesive after a higher temperature (95-100 °C) treatment even in a short period (5-15 min). Based on the SEM analysis, it was easily found that the myofibrils structure was destroyed at a higher temperature (85-100 °C). Sensory data revealed that the meat cooked at 85-90 °C in 10-20 min showed higher scores in overall acceptance, as well as color, hardness and taste. Based on these results, it could be constructed that Volutharpa ampullacea perryi meat should be heated on a suitable condition (such as 85 °C 15 min or 90 °C 10 min) in the boiling cooking to be ensure a better acceptability.

Keywords: Volutharpa ampullacea perryi meat, boiling cooking, colour, sensory, texture

Procedia PDF Downloads 281
3230 Strength Investigation of Liquefied Petroleum Gas Cylinders: Dynamic Loads

Authors: Moudar Zgoul, Hashem Alkhaldi

Abstract:

A large number of transportable LPG cylinders are manufactured annually for domestic use. These LPG cylinders are manufactured from mild steel and filled maximally with 12.5 kg liquefied gas under internal pressure of 0.6 N/mm² at a temperature of 50°C. Many millions of such LPG cylinders are in daily use mainly, for purposes of space heating, water heating, and cooking. Thereby, they are imposed to severe conditions leading to their failure. Each year not less than 5000 of these LPG cylinders fail, some of those failures cause damage and loss in lives and properties. In this work, LPG cylinders were investigated; Stress calculations and deformations under dynamic (impact) loadings were carried out to simulate the effects of such loads on the cylinders while in service. Analysis of the LPG cylinders was carried out using the finite element method; shell and cylindrical elements were used at the top, bottom, and in middle (weld region), permitting elastic-plastic analysis for a thin-walled LPG cylinder. Variables such as maximum stresses and maximum deflections under the effect of impact loading were investigated in this work. Results showed that the maximum stresses reach 680 MPa when dropped from 3m-height. The maximum radial deformation occurs at the cylinder’s top in case of the top-position impact. This information should be useful for enhancing the strength of such cylinders and to for prolonging their service life.

Keywords: dynamic analysis, finite element method, impact load, LPG cylinders

Procedia PDF Downloads 324
3229 Efficiency and Performance of Legal Institutions in the Middle East in the 21st Century

Authors: Marco Khalaf Ayad Milhaail

Abstract:

In thinking about the role of legal rules and their impact on social ethics and social structures, scholars have explored many issues related to gender, power, and ideology. First, it provides a framework for defining feminist legal studies through an overview of the field's evolution in terms of equality, rights, and justice. Secondly, it encourages those interested in equality, rights, and justice regarding women's issues to participate in international comparative law research. Third, we must emphasize that those seeking solutions to disability and discrimination must be aware of the need to confront the so-called undermining of culture. Therefore, an effective way for women to solve this problem is to rely heavily on international law, which establishes basic legal principles such as gender equality, rights, and justice and can help create a domestic environment. Woman has gained many advantages by adopting the law of Divorce in the Islamic Sharea. Any Egyptian woman can get divorce by letting her rightful rights and wealth to her husband in return for her freedom.

Keywords: stability, harsh environments, techniques, thermal, properties, materials, applications, brittleness, fragility, disadvantages, bank, branches, profitability, setting prediction, effective target, measurement, evaluation, performance, commercial, business, profitability, sustainability, financial, system, banks

Procedia PDF Downloads 40
3228 Dengue Prevention and Control in Kaohsiung City

Authors: Chiu-Wen Chang, I-Yun Chang, Wei-Ting Chen, Hui-Ping Ho, Ruei-Hun Chang, Joh-Jong Huang

Abstract:

Kaohsiung City is located in the tropical region where has Aedes aegypti and Aedes albopictus distributed; once the virus invades, it’s can easily trigger local epidemic. Besides, Kaohsiung City has a world-class airport and harbor, trade and tourism are close and frequently with every country, especially with the Southeast Asian countries which also suffer from dengue. Therefore, Kaohsiung City faces the difficult challenge of dengue every year. The objectives of this study was to enhance dengue clinical care, border management and vector surveillance in Kaohsiung City by establishing an larger scale, innovatively and more coordinated dengue prevention and control strategies in 2016, including (1) Integrated medical programs: facilitated 657 contract medical institutions, widely set up NS1 rapid test in clinics, enhanced triage and referrals system, dengue case daily-monitoring management (2) Border quarantine: comprehensive NS1 screening for foreign workers and fisheries when immigration, hospitalization and isolation for suspected cases, health education for high risk groups (foreign students, other tourists) (3) Mosquito control: Widely use Gravitrap to monitor mosquito density in environment, use NS1 rapid screening test to detect community dengue virus (4) Health education: create a dengue app for people to immediately inquire the risk map and nearby medical resources, routine health education to all districts to strengthen public’s dengue knowledge, neighborhood cleaning awards program. The results showed that after new integration of dengue prevention and control strategies fully implemented in Kaohsiung City, the number of confirmed cases in 2016 declined to 342 cases, the majority of these cases are the continuation epidemic in 2015; in fact, only two cases confirmed after the 2016 summer. Besides, the dengue mortality rate successfully decreased to 0% in 2016. Moreover, according to the reporting rate from medical institutions in 2014 and 2016, it dropped from 27.07% to 19.45% from medical center, and it decreased from 36.55% to 29.79% from regional hospital; however, the reporting rate of district hospital increased from 11.88% to 15.87% and also increased from 24.51% to 34.89% in general practice clinics. Obviously, it showed that under the action of strengthening medical management, it reduced the medical center’s notification ratio and improved the notification ratio of general clinics which achieved the great effect of dengue clinical management and dengue control.

Keywords: dengue control, integrated control strategies, clinical management, NS1

Procedia PDF Downloads 269
3227 Stochastic Prioritization of Dependent Actuarial Risks: Preferences among Prospects

Authors: Ezgi Nevruz, Kasirga Yildirak, Ashis SenGupta

Abstract:

Comparing or ranking risks is the main motivating factor behind the human trait of making choices. Cumulative prospect theory (CPT) is a preference theory approach that evaluates perception and bias in decision making under risk and uncertainty. We aim to investigate the aggregate claims of different risk classes in terms of their comparability and amenability to ordering when the impact of risk perception is considered. For this aim, we prioritize the aggregate claims taken as actuarial risks by using various stochastic ordering relations. In order to prioritize actuarial risks, we use stochastic relations such as stochastic dominance and stop-loss dominance that are proposed in the frame of partial order theory. We take into account the dependency of the individual claims exposed to similar environmental risks. At first, we modify the zero-utility premium principle in order to obtain a solution for the stop-loss premium under CPT. Then, we propose a stochastic stop-loss dominance of the aggregate claims and find a relation between the stop-loss dominance and the first-order stochastic dominance under the dependence assumption by using properties of the familiar as well as some emerging multivariate claim distributions.

Keywords: cumulative prospect theory, partial order theory, risk perception, stochastic dominance, stop-loss dominance

Procedia PDF Downloads 321
3226 The Strategy of Orbit Avoidance for Optical Remote Sensing Satellite

Authors: Dianxun Zheng, Wuxing Jing, Lin Hetong

Abstract:

Optical remote sensing satellite, always running on the Sun-synchronous orbit, equipped laser warning equipment to alert CCD camera from laser attack. There have three ways to protect the CCD camera, closing the camera cover satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes a satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-object avoid maneuvers. On occasions of fulfilling the orbit tasks of the satellite, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. and the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to avoidance for optical remote sensing satellite when encounter the laser hostile attacks.

Keywords: optical remote sensing satellite, always running on the sun-synchronous

Procedia PDF Downloads 401
3225 Substantiate the Effects of Reactive Dyes and Aloe Vera on the Ultra Violet Protective Properties on Cotton Woven and Knitted Fabrics

Authors: Neha Singh

Abstract:

The incidence of skin cancer has been rising worldwide due to excessive exposure to sun light. Climatic changes and depletion of ozone layer allow the easy entry of UV rays on earth, resulting skin damages such as sunburn, premature skin ageing, allergies and skin cancer. Researches have suggested many modes for protection of human skin against ultraviolet radiation; avoidance to outdoor activities, using textiles for covering the skin, sunscreen and sun glasses. However, this paper gives an insight about how textile material specially woven and knitted cotton can be efficiently utilized for protecting human skin from the harmful ultraviolet radiations by combining reactive dyes with Aloe Vera. Selection of the fabric was based on their utility and suitability as per the climate condition of the country for the upper and lower garment. A standard dyeing process was used, and Aloe Vera molecules were applied by in-micro encapsulation technique. After combining vat dyes with Aloe Vera excellent UPF (Ultra violet Protective Factor) was observed. There is a significant change in the UPF of vat dyed cotton fabric after treatment with Aloe Vera.

Keywords: UV protection, aloe vera, protective clothing, reactive dyes, cotton, woven and knits

Procedia PDF Downloads 262
3224 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber

Authors: S. Dikmen Kucuk, A. Tozluoglu, Y. Guner

Abstract:

In recent years, petroleum-based polymers began to be limited due to effects on human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal and aging analyses. The aged surfaces were visually scrutinized and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose can be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, colour change or staining.

Keywords: EPDM, cellulose, green materials, nanofibrillated cellulose, TCNF, tempo-oxidized nanofiber

Procedia PDF Downloads 109
3223 Mixture of Polymers and Coating Fullerene Soft Nanoparticles

Authors: L. Bouzina, A. Bensafi, M. Duval, C. Mathis, M. Rawiso

Abstract:

We study the stability and structural properties of mixtures of model nanoparticles and non-adsorbing polymers in the 'protein limit', where the size of polymers exceeds the particle size substantially. We have synthesized in institute (Charles Sadron Strasbourg) model nanoparticles by coating fullerene C60 molecules with low molecular weight polystyrene (PS) chains (6 PS chains with a degree of polymerization close to 25 and 50 are grafted on each fullerene C60 molecule. We will present a Small Angle Neutron scattering (SANS) study of Tetrahydrofuran (THF) solutions involving long polystyrene (PS) chains and fullerene (C60) nanoparticles. Long PS chains and C60 nanoparticles with different arm lengths were synthesized either hydrogenated or deuteriated. They were characterized through Size Exclusion Chromatography (SEC) and Quasielastic Light Scattering (QLS). In this way, the solubility of the C60 nanoparticles in the usual good solvents of PS was controlled. SANS experiments were performed by use of the contrast variation method in order to measure the partial scattering functions related to both components. They allow us to obtain information about the dispersion state of the C60 nanoparticles as well as the average conformation of the long PS chains. Specifically, they show that the addition of long polymer chains leads to the existence of an additional attractive interaction in between soft nanoparticles.

Keywords: fulleren nanoparticles, polymer, small angle neutron scattering, solubility

Procedia PDF Downloads 375
3222 Effect of Black Cumin (Nigella sativa) Extract on Damaged Brain Cells

Authors: Batul Kagalwala

Abstract:

The nervous system is made up of complex delicate structures such as the spinal cord, peripheral nerves and the brain. These are prone to various types of injury ranging from neurodegenerative diseases to trauma leading to diseases like Parkinson's, Alzheimer's, multiple sclerosis, amyotrophic lateral sclerosis (ALS), multiple system atrophy etc. Unfortunately, because of the complicated structure of nervous system, spontaneous regeneration, repair and healing is seldom seen due to which brain damage, peripheral nerve damage and paralysis from spinal cord injury are often permanent and incapacitating. Hence, innovative and standardized approach is required for advance treatment of neurological injury. Nigella sativa (N. sativa), an annual flowering plant native to regions of southern Europe and Asia; has been suggested to have neuroprotective and anti-seizures properties. Neuroregeneration is found to occur in damaged cells when treated using extract of N. sativa. Due to its proven health benefits, lots of experiments are being conducted to extract all the benefits from the plant. The flowers are delicate and are usually pale blue and white in color with small black seeds. These seeds are the source of active components such as 30–40% fixed oils, 0.5–1.5% essential oils, pharmacologically active components containing thymoquinone (TQ), ditimoquinone (DTQ) and nigellin. In traditional medicine, this herb was identified to have healing properties and was extensively used Middle East and Far East for treating diseases such as head ache, back pain, asthma, infections, dysentery, hypertension, obesity and gastrointestinal problems. Literature studies have confirmed the extract of N. sativa seeds and TQ have inhibitory effects on inducible nitric oxide synthase and production of nitric oxide as well as anti-inflammatory and anticancer activities. Experimental investigation will be conducted to understand which ingredient of N. sativa causes neuroregeneration and roots to its healing property. An aqueous/ alcoholic extract of N. sativa will be made. Seed oil is also found to have used by researchers to prepare such extracts. For the alcoholic extracts, the seeds need to be powdered and soaked in alcohol for a period of time and the alcohol must be evaporated using rotary evaporator. For aqueous extracts, the powder must be dissolved in distilled water to obtain a pure extract. The mobile phase will be the extract while the suitable stationary phase (substance that is a good adsorbent e.g. silica gels, alumina, cellulose etc.) will be selected. Different ingredients of N. sativa will be separated using High Performance Liquid Chromatography (HPLC) for treating damaged cells. Damaged brain cells will be treated individually and in different combinations of 2 or 3 compounds for different intervals of time. The most suitable compound or a combination of compounds for the regeneration of cells will be determined using DOE methodology. Later the gene will also be determined and using Polymerase Chain Reaction (PCR) it will be replicated in a plasmid vector. This plasmid vector shall be inserted in the brain of the organism used and replicated within. The gene insertion can also be done by the gene gun method. The gene in question can be coated on a micro bullet of tungsten and bombarded in the area of interest and gene replication and coding shall be studied. Investigation on whether the gene replicates in the organism or not will be examined.

Keywords: black cumin, brain cells, damage, extract, neuroregeneration, PCR, plasmids, vectors

Procedia PDF Downloads 657
3221 Biorefinery as Extension to Sugar Mills: Sustainability and Social Upliftment in the Green Economy

Authors: Asfaw Gezae Daful, Mohsen Alimandagari, Kathleen Haigh, Somayeh Farzad, Eugene Van Rensburg, Johann F. Görgens

Abstract:

The sugar industry has to 're-invent' itself to ensure long-term economic survival and opportunities for job creation and enhanced community-level impacts, given increasing pressure from fluctuating and low global sugar prices, increasing energy prices and sustainability demands. We propose biorefineries for re-vitalisation of the sugar industry using low value lignocellulosic biomass (sugarcane bagasse, leaves, and tops) annexed to existing sugar mills, producing a spectrum of high value platform chemicals along with biofuel, bioenergy, and electricity. Opportunity is presented for greener products, to mitigate climate change and overcome economic challenges. Xylose from labile hemicellulose remains largely underutilized and the conversion to value-add products a major challenge. Insight is required on pretreatment and/or extraction to optimize production of cellulosic ethanol together with lactic acid, furfural or biopolymers from sugarcane bagasse, leaves, and tops. Experimental conditions for alkaline and pressurized hot water extraction dilute acid and steam explosion pretreatment of sugarcane bagasse and harvest residues were investigated to serve as a basis for developing various process scenarios under a sugarcane biorefinery scheme. Dilute acid and steam explosion pretreatment were optimized for maximum hemicellulose recovery, combined sugar yield and solids digestibility. An optimal range of conditions for alkaline and liquid hot water extraction of hemicellulosic biopolymers, as well as conditions for acceptable enzymatic digestibility of the solid residue, after such extraction was established. Using data from the above, a series of energy efficient biorefinery scenarios are under development and modeled using Aspen Plus® software, to simulate potential factories to better understand the biorefinery processes and estimate the CAPEX and OPEX, environmental impacts, and overall viability. Rigorous and detailed sustainability assessment methodology was formulated to address all pillars of sustainability. This work is ongoing and to date, models have been developed for some of the processes which can ultimately be combined into biorefinery scenarios. This will allow systematic comparison of a series of biorefinery scenarios to assess the potential to reduce negative impacts on and maximize the benefits of social, economic, and environmental factors on a lifecycle basis.

Keywords: biomass, biorefinery, green economy, sustainability

Procedia PDF Downloads 514
3220 A Marxist Analysis of Toni Morrison's Novel, The Bluest Eye

Authors: Irfan Mehmood

Abstract:

The goal of this study is to examine The Bluest Eye (1979) by Toni Morrison from a Marxist perspective, a literary theory developed by Louis Althusser, which emphasizes capitalism and class conflict in the modern world. Marxist literary philosophy holds that the absence of opportunities for lower-class people to own and earn properties and resources of production is the main cause of their repression. In The Communist Manifesto (1848), Karl Marx divided society into two main classes, the proletariat (the lowest class) and the bourgeois (the ruling class). Marx contends that the proletarian class has been brutally exploited by the bourgeois class in all facets of existence. The exploitation of the lower class by means of hegemony and capitalism is covered by Toni Morrison in her first novel, The Bluest Eye (1979). The goal of this study is to determine how Morrison's chosen work highlights the struggle of oppressed African Americans against entrenched systems of hegemony, interpellation, and state apparatuses. This study will look more closely at the claim that all of the miseries experienced by Afro-Americans are mostly the result of the capitalist class structure and that they can also enjoy the blessings of life through unity, hard work, and economic stability.

Keywords: class conflict; African American culture; hegemony; interpellation; state apparatuses

Procedia PDF Downloads 77
3219 Conductometric Methanol Microsensor Based on Electrospun PVC-Nickel Phthalocyanine Composite Nanofiber Technology

Authors: Ibrahim Musa, Guy Raffin, Marie Hangouet, Nadia Zine, Nicole Jaffrezic-Renault, Abdelhamid Errachid

Abstract:

Due to its application in different domains, such as fuel cell configuration and adulteration of alcoholic beverages, a miniaturized sensor for methanol detection is urgently required. A conductometric microsensor for measuring volatile organic compounds (VOC) was conceived, based on electrospun composite nanofibers of polyvinyl chloride (PVC) doped with nickel phthalocyanine(NiPc) deposited on interdigitated electrodes (IDEs) used transducers. The nanofiber's shape, structure, percent atomic content and thermal properties were studied using analytical techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), respectively. The methanol sensor showed good sensitivity (505µS/cm(v/v) ⁻¹), low LOD (15 ppm), short response time (13 s), and short recovery time (15 s). The sensor was 4 times more sensitive to methanol than to ethanol and 19 times more sensitive to methanol than to acetone. Furthermore, the sensor response was unaffected by the interfering water vapor, making it more suitable for VOC sensing in the presence of humidity. The sensor was applied for conductometric detection of methanol in rubbing alcohol.

Keywords: composite, methanol, conductometric sensor, electrospun, nanofiber, nickel phthalocyanine, PVC

Procedia PDF Downloads 23
3218 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 234
3217 Effect of Plant Growth Regulators on in vitro Biosynthesis of Antioxidative Compounds in Callus Culture and Regenerated Plantlets Derived from Taraxacum officinale

Authors: Neha Sahu, Awantika Singh, Brijesh Kumar, K. R. Arya

Abstract:

Taraxacum officinale Weber or dandelion (Asteraceae) is an important Indian traditional herb used to treat liver detoxification, digestive problems, spleen, hepatic and kidney disorders, etc. The plant is well known to possess important phenolic and flavonoids to serve as a potential source of antioxidative and chemoprotective agents. Biosynthesis of bioactive compounds through in vitro cultures is a requisite for natural resource conservation and to provide an alternative source for pharmaceutical applications. Thus an efficient and reproducible protocol was developed for in vitro biosynthesis of bioactive antioxidative compounds from leaf derived callus and in vitro regenerated cultures of Taraxacum officinale using MS media fortified with various combinations of auxins and cytokinins. MS media containing 0.25 mg/l 2, 4-D (2, 4-Dichloro phenoxyacetic acid) with 0.05 mg/l 2-iP [N6-(2-Isopentenyl adenine)] was found as an effective combination for the establishment of callus with 92 % callus induction frequency. Moreover, 2.5 mg/l NAA (α-Naphthalene acetic acid) with 0.5 mg/l BAP (6-Benzyl aminopurine) and 1.5 mg/l NAA showed the optimal response for in vitro plant regeneration with 80 % regeneration frequency and rooting respectively. In vitro regenerated plantlets were further transferred to soil and acclimatized. Quantitative variability of accumulated bioactive compounds in cultures (in vitro callus, plantlets and acclimatized) were determined through UPLC-MS/MS (ultra-performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry) and compared with wild plants. The phytochemical determination of in vitro and wild grown samples showed the accumulation of 6 compounds. In in vitro callus cultures and regenerated plantlets, two major antioxidative compounds i.e. chlorogenic acid (14950.0 µg/g and 4086.67 µg/g) and umbelliferone (10400.00 µg/g and 2541.67 µg/g) were found respectively. Scopoletin was found to be highest in vitro regenerated plants (83.11 µg/g) as compared to wild plants (52.75 µg/g). Notably, scopoletin is not detected in callus and acclimatized plants, but quinic acid (6433.33 µg/g) and protocatechuic acid (92.33 µg/g) were accumulated at the highest level in acclimatized plants as compared to other samples. Wild grown plants contained highest content (948.33 µg/g) of flavonoid glycoside i.e. luteolin-7-O-glucoside. Our data suggests that in vitro callus and regenerated plants biosynthesized higher content of antioxidative compounds in controlled conditions when compared to wild grown plants. These standardized cultural conditions may be explored as a sustainable source of plant materials for enhanced production and adequate supply of oxidative polyphenols.

Keywords: anti-oxidative compounds, in vitro cultures, Taraxacum officinale, UPLC-MS/MS

Procedia PDF Downloads 201
3216 Half-Metallic Ferromagnetism in Ternary Zinc Blende Fe/In0.5Ga0.5 as/in Psuperlattice: First-Principles Study

Authors: N. Berrouachedi, M. Bouslama, S. Rioual, B. Lescop, J. Langlois

Abstract:

Using first-principles calculations within the LSDA (Local Spin Density Approximation) method based on density functional theory (DFT), the electronic structure and magnetic properties of zinc blende Fe/In0.5Ga0.5As/InPsuperlattice are investigated. This compound are found to be half -metallic ferromagnets with a total magnetic moment of 2.25μB per Fe. In addition to this, we reported the DRX measurements of the thick iron sample before and after annealing. One should note, after the annealing treatment at a higher temperature, the disappearance of the peak associated to the Fe(001) plane. In contrast to this report, we observed after the annealing at low temperature the additional peaks attributed to the presence of indium and Fe2As. This suggests a subsequent process consisting in a strong migration of atoms followed with crystallization at the higher temperature.To investigate the origin of magnetism and electronic structure in these zb compounds, we calculated the total and partial DOS of FeInP.One can see that µtotal=4.24µBand µFe=3.27µB in contrast µIn=0.021µB and µP=0.049µB.These results predicted that FeInP compound do belong to the class of zb half metallic HM ferromagnetswith a pseudo gap= 0.93 eVare more promising materials for spintronics devices.

Keywords: zincblend structure, half metallic ferromagnet, spin moments, total and partial DOS, DRX, Wien2k

Procedia PDF Downloads 272
3215 The Predicted Values of the California Bearing Ratio (CBR) by Using the Measurements of the Soil Resistivity Method (DC)

Authors: Fathi Ali Swaid

Abstract:

The CBR test is widely used in the assessment of granular materials in base, subbase and subgrade layers of road and airfield pavements. Despite the success of this method, but it depends on a limited numbers of soil samples. This limitation do not adequately account for the spatial variability of soil properties. Thus, assessment is derived using these cursory soil data are likely to contain errors and thus make interpretation and soil characterization difficult. On the other hand quantitative methods of soil inventory at the field scale involve the design and adoption of sampling regimes and laboratory analysis that are time consuming and costly. In the latter case new technologies are required to efficiently sample and observe the soil in the field. This is particularly the case where soil bearing capacity is prevalent, and detailed quantitative information for determining its cause is required. In this paper, an electrical resistivity method DC is described and its application in Elg'deem Dirt road, located in Gasser Ahmad - Misurata, Libya. Results from the DC instrument were found to be correlated with the CBR values (r2 = 0.89). Finally, it is noticed that, the correlation can be used with experience for determining CBR value using basic soil electrical resistivity measurements and checked by few CBR test representing a similar range of CBR.

Keywords: California bearing ratio, basic soil electrical resistivity, CBR, soil, subgrade, new technologies

Procedia PDF Downloads 448
3214 Data Driven Infrastructure Planning for Offshore Wind farms

Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree

Abstract:

The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.

Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data

Procedia PDF Downloads 86
3213 Assessment of Some Local Clay Minerals Used for the Production of Floor Tiles: Panacea for Economic Growth

Authors: Ekenyem Stan Chinweike

Abstract:

The suitability of some clay deposits in south eastern Nigeria (Unwana, Ekebedi and Nsu) as materials for the production of floor tiles was investigated. The clay samples were analyzed using wet classical method to determine their chemical composition. Floor tile test specimens were produced using standard method. The test specimens were tested for physical properties such as compressive strength and porosity at 1050◦c and 1150◦c temperature levels. The chemical analysis showed the following results: Unwana (5102 52.24%, AL2o3, 27.20%, Fe2o3 7%, T102 (1.52%), Ekebedi (S102 (58.53%), Al2o3 28.42%, Fe2o3 7%, Ti o2 (1.12%),NSU SIo2 (58.16%), Al2O3 (28.42%), Fe2O3 1.89%, T102 (0.82%) The compressive strength of Unwana, Ekebedi and Nsu clays at 1050◦c are respectively: 15MPa, 13.75MPa and 13.5MPa. At 1150◦c, the values are 16.2MPa and 16.0MPa for Ekebedi and Nsu clays respectively. The porosity of Unwana, Ekebedi and Nsu clays at 1050◦c are respectively31.57%, 23.15% and 24.21%. At 1150◦c, the values are 23.65% and 24.75% for Ekebedi and Nsu respectively. The three clays can be used for production of tiles but Ekebedi has the highest compressive strength which makes it the most suitable clay for the production of floor tiles when compared with floor tiles of the same nominal size stipulated by ASTM standard.

Keywords: feldspar, quartz, porosity, compressive strength, clay minerals

Procedia PDF Downloads 383
3212 Preparation and Characterization of Maltodextrin Microcapsules Containing Walnut Green Husk Extract

Authors: Fatemeh Cheraghali, Saeedeh Shojaee-Aliabadi, Seyede Marzieh Hosseini, Leila Mirmoghtadaie

Abstract:

In recent years, the field of natural antimicrobial and antioxidant compounds is one of the main research topics in the food industry. Application of agricultural residues is mainly cheap, and available resources are receiving increased attention. Walnut green husk is one of the agricultural residues that is considered as natural compounds with biological properties because of phenolic compounds. In this study, maltodextrin 10% was used for microencapsulation of walnut green husk extract. At first, the extract was examined to consider extraction yield, total phenolic compounds, and antioxidant activation. The results showed the extraction yield of 81.43%, total phenolic compounds of 3997 [mg GAE/100 g], antioxidant activity [DPPH] of 84.85% for walnut green husk extract. Antioxidant activity is about 75%-81% and by DPPH. At the next stage, microencapsulation was done by spry-drying method. The microencapsulation efficiency was 72%-79%. The results of SEM tests confirmed this microencapsulation process. In addition, microencapsulated and free extract was more effective on gram-positive bacteria’s rather than the gram-negative ones. According to the study, walnut green husk can be used as a cheap antioxidant and antimicrobial compounds due to sufficient value of phenolic compounds.

Keywords: biopolymer, microencapsulation, spray-drying, walnut green husk

Procedia PDF Downloads 161