Search results for: uncertainty and decision making
6846 Women’s Financial Literacy and Family Financial Fragility
Authors: Pepur Sandra, Bulog Ivana, Rimac Smiljanić Ana
Abstract:
During the COVID-19 pandemic, stress and family financial fragility arose worldwide. Economic and health uncertainty created new pressure on the everyday life of families. The work from home, homeschooling, and care of other family members caused an increase in unpaid work and generated a new division of intrahousehold. As many times before, women have taken the higher burden. This paper analyzes family stress and finance during the COVID-19 pandemic. We propose that women's inclusion in paid and unpaid work and their financial literacy influence family finances. We build up our assumptions according to the two theories that explain intrahousehold family decision-making: traditional and barging models. The traditional model assumes that partners specialize in their roles in line with time availability. Consequently, partners less engaged in payable working activities will spend more time on domestic activities and vice versa. According to the bargaining model, each individual has their preferences, and the one with more household bargaining power, e.g., higher income, higher level of education, better employment, or higher financial knowledge, is likely to make family decisions and avoid unpaid work. Our results are based on an anonymous and voluntary survey of 869 valid responses from women older than 18 conducted in Croatia at the beginning of 2021. We found that families who experienced delays in settling current obligations before the pandemic were in a worse financial situation during the pandemic. However, all families reported problems settling current obligations during pandemic times regardless of their financial condition before the crisis. Women from families with financial issues reported higher levels of family and personal stress during the pandemic. Furthermore, we provide evidence that more women's unpaid work negatively affects the family's financial fragility during the pandemic. In addition, in families where women have better financial literacy and are more financially independent, families cope better with finance before and during pandemics.Keywords: family financial fragility, stress, unpaid work, women's financial literacy
Procedia PDF Downloads 776845 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots
Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu
Abstract:
The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.Keywords: deep reinforcement learning, interpretation, motion control, legged robots
Procedia PDF Downloads 216844 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction
Authors: Isaac Mugume
Abstract:
Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.Keywords: bias correction, climatic projections, numerical models, representative concentration pathways
Procedia PDF Downloads 1196843 Evaluating Classification with Efficacy Metrics
Authors: Guofan Shao, Lina Tang, Hao Zhang
Abstract:
The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty
Procedia PDF Downloads 2106842 Data Collection in Protected Agriculture for Subsequent Big Data Analysis: Methodological Evaluation in Venezuela
Authors: Maria Antonieta Erna Castillo Holly
Abstract:
During the last decade, data analysis, strategic decision making, and the use of artificial intelligence (AI) tools in Latin American agriculture have been a challenge. In some countries, the availability, quality, and reliability of historical data, in addition to the current data recording methodology in the field, makes it difficult to use information systems, complete data analysis, and their support for making the right strategic decisions. This is something essential in Agriculture 4.0. where the increase in the global demand for fresh agricultural products of tropical origin, during all the seasons of the year requires a change in the production model and greater agility in the responses to the consumer market demands of quality, quantity, traceability, and sustainability –that means extensive data-. Having quality information available and updated in real-time on what, how much, how, when, where, at what cost, and the compliance with production quality standards represents the greatest challenge for sustainable and profitable agriculture in the region. The objective of this work is to present a methodological proposal for the collection of georeferenced data from the protected agriculture sector, specifically in production units (UP) with tall structures (Greenhouses), initially for Venezuela, taking the state of Mérida as the geographical framework, and horticultural products as target crops. The document presents some background information and explains the methodology and tools used in the 3 phases of the work: diagnosis, data collection, and analysis. As a result, an evaluation of the process is carried out, relevant data and dashboards are displayed, and the first satellite maps integrated with layers of information in a geographic information system are presented. Finally, some improvement proposals and tentatively recommended applications are added to the process, understanding that their objective is to provide better qualified and traceable georeferenced data for subsequent analysis of the information and more agile and accurate strategic decision making. One of the main points of this study is the lack of quality data treatment in the Latin America area and especially in the Caribbean basin, being one of the most important points how to manage the lack of complete official data. The methodology has been tested with horticultural products, but it can be extended to other tropical crops.Keywords: greenhouses, protected agriculture, data analysis, geographic information systems, Venezuela
Procedia PDF Downloads 1316841 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management
Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige
Abstract:
Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.Keywords: discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability
Procedia PDF Downloads 2796840 Factors Affecting Women's Participation in Social, Political and Economic Decision-Making Positions at Kelemwollega Zone, Western Ethiopia
Abstract:
In spite of social, political, and economic marginalization, women are still considered as the backbone of Ethiopia, one of the least developed countries in the world. The general purpose of this study was to assess factors that affect participation of women in politics, social and economic decisions at Kelem-Wollega Administrative Zone of Oromia Regional State, Ethiopia. Data used in this paper is mainly primary, and a few secondary data were incorporated. Respondents were selected using a systematic random sampling method and were placed questionnaires containing open-ended and closed-ended. Focus group discussion was also used for the study subjects in two offices. According to the information collected from the KWAZ Development and Social Service Office, a total of 18,473 tax-paying employees are present in the Zone, which is 14% of the total population of the Zone. Among the total number of employees in the Zone, 2,617 have been recruited for this study based on the criteria stated. This showed 1.8% of them were comprised of several churches and religious owned integrated development projects in the KWAZ. The 2,103 (80.34%) study participants responded personally, and they completed and returned the questionnaire to the researchers. The study revealed that in public institutions existed in KWAZ, the majority of women were having an educational status of diploma and lower, practicing lower non-decision making and leadership positions. Conclusion: Major barriers hindering women include: Socio-cultural attitudes, lack of necessary experience, education, the burden of domestic responsibilities, and lack of role models of women leaders in the Zone. Empowerment of women via social organizations, critical involvement of the government, and Affirmative action for women is critical. Further research is needed on the scope and challenges in implementing the strategies.Keywords: women, affirmative action, leadership, empowerment, Ethiopia
Procedia PDF Downloads 1966839 Investigate the Current Performance of Burger King Ho Chi Minh City in Terms of the Controllable Variables of the Overall Retail Strategy
Authors: Nhi Ngoc Thien
Abstract:
Franchising is a popular trend in Vietnam retail industry, especially in fast food industry. Several famous foreign fast food brands such as KFC, Lotteria, Jollibee or Pizza Hut invested on this potential market since the 1990s. Following this trend, in 2011, Burger King - the second largest fast food hamburger chain all over the world - entered Vietnam with its first store located in Tan Son Nhat International Airport, with the expectation to become the leading brand in the country. However, the business performance of Burger King was not going well in the first few years making it questioned about its strategy. The given assumption was that its business performance was affected negatively by its store location selection strategy. This research aims to investigate the current performance of Burger King Vietnam in terms of the controllable variables like store location as well as to explore the key factors influencing customer decision to choose Burger King. Therefore, a case study research method was conducted to approach deeply on the opinions and evaluations of 10 Burger King’s customers, Burger King's staffs and other fast food experts on Burger King’s performance through in-depth interview, direct observation and documentary analysis. Findings show that there are 8 determinants affecting the decision-making of Burger King’s customers, which are store location, quality of food, service quality, store atmosphere, price, promotion, menu and brand reputation. Moreover, findings present that Burger King’s staffs and fast food experts also mentioned the main problems of Burger King, which are about store location and food quality. As a result, there are some recommendations for Burger King Vietnam to improve its performance in the market and attract more Vietnamese target customers by giving suitable promotional activities among its customers and being differentiated itself from other fast food brands.Keywords: overall retail strategy, controllable variables, store location, quality of food
Procedia PDF Downloads 3446838 Objective Assessment of the Evolution of Microplastic Contamination in Sediments from a Vast Coastal Area
Authors: Vanessa Morgado, Ricardo Bettencourt da Silva, Carla Palma
Abstract:
The environmental pollution by microplastics is well recognized. Microplastics were already detected in various matrices from distinct environmental compartments worldwide, some from remote areas. Various methodologies and techniques have been used to determine microplastic in such matrices, for instance, sediment samples from the ocean bottom. In order to determine microplastics in a sediment matrix, the sample is typically sieved through a 5 mm mesh, digested to remove the organic matter, and density separated to isolate microplastics from the denser part of the sediment. The physical analysis of microplastic consists of visual analysis under a stereomicroscope to determine particle size, colour, and shape. The chemical analysis is performed by an infrared spectrometer coupled to a microscope (micro-FTIR), allowing to the identification of the chemical composition of microplastic, i.e., the type of polymer. Creating legislation and policies to control and manage (micro)plastic pollution is essential to protect the environment, namely the coastal areas. The regulation is defined from the known relevance and trends of the pollution type. This work discusses the assessment of contamination trends of a 700 km² oceanic area affected by contamination heterogeneity, sampling representativeness, and the uncertainty of the analysis of collected samples. The methodology developed consists of objectively identifying meaningful variations of microplastic contamination by the Monte Carlo simulation of all uncertainty sources. This work allowed us to unequivocally conclude that the contamination level of the studied area did not vary significantly between two consecutive years (2018 and 2019) and that PET microplastics are the major type of polymer. The comparison of contamination levels was performed for a 99% confidence level. The developed know-how is crucial for the objective and binding determination of microplastic contamination in relevant environmental compartments.Keywords: measurement uncertainty, micro-ATR-FTIR, microplastics, ocean contamination, sampling uncertainty
Procedia PDF Downloads 896837 The Effect of Tacit Knowledge for Intelligence Cycle
Authors: Bahadir Aydin
Abstract:
It is difficult to access accurate knowledge because of mass data. This huge data make environment more and more caotic. Data are main piller of intelligence. The affiliation between intelligence and knowledge is quite significant to understand underlying truths. The data gathered from different sources can be modified, interpreted and classified by using intelligence cycle process. This process is applied in order to progress to wisdom as well as intelligence. Within this process the effect of tacit knowledge is crucial. Knowledge which is classified as explicit and tacit knowledge is the key element for any purpose. Tacit knowledge can be seen as "the tip of the iceberg”. This tacit knowledge accounts for much more than we guess in all intelligence cycle. If the concept of intelligence cycle is scrutinized, it can be seen that it contains risks, threats as well as success. The main purpose of all organizations is to be successful by eliminating risks and threats. Therefore, there is a need to connect or fuse existing information and the processes which can be used to develop it. Thanks to this process the decision-makers can be presented with a clear holistic understanding, as early as possible in the decision making process. Altering from the current traditional reactive approach to a proactive intelligence cycle approach would reduce extensive duplication of work in the organization. Applying new result-oriented cycle and tacit knowledge intelligence can be procured and utilized more effectively and timely.Keywords: information, intelligence cycle, knowledge, tacit Knowledge
Procedia PDF Downloads 5146836 IoT Based Information Processing and Computing
Authors: Mannan Ahmad Rasheed, Sawera Kanwal, Mansoor Ahmad Rasheed
Abstract:
The Internet of Things (IoT) has revolutionized the way we collect and process information, making it possible to gather data from a wide range of connected devices and sensors. This has led to the development of IoT-based information processing and computing systems that are capable of handling large amounts of data in real time. This paper provides a comprehensive overview of the current state of IoT-based information processing and computing, as well as the key challenges and gaps that need to be addressed. This paper discusses the potential benefits of IoT-based information processing and computing, such as improved efficiency, enhanced decision-making, and cost savings. Despite the numerous benefits of IoT-based information processing and computing, several challenges need to be addressed to realize the full potential of these systems. These challenges include security and privacy concerns, interoperability issues, scalability and reliability of IoT devices, and the need for standardization and regulation of IoT technologies. Moreover, this paper identifies several gaps in the current research related to IoT-based information processing and computing. One major gap is the lack of a comprehensive framework for designing and implementing IoT-based information processing and computing systems.Keywords: IoT, computing, information processing, Iot computing
Procedia PDF Downloads 1886835 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States
Authors: Angela Meyer
Abstract:
The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines
Procedia PDF Downloads 1676834 Design and Development of Data Mining Application for Medical Centers in Remote Areas
Authors: Grace Omowunmi Soyebi
Abstract:
Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.Keywords: data mining, medical record system, systems programming, computing
Procedia PDF Downloads 2096833 Confirming the Factors of Professional Readiness in Athletic Training
Authors: Philip A. Szlosek, M. Susan Guyer, Mary G. Barnum, Elizabeth M. Mullin
Abstract:
In the United States, athletic training is a healthcare profession that encompasses the prevention, examination, diagnosis, treatment, and rehabilitation of injuries and medical conditions. Athletic trainers work under the direction of or in collaboration with a physician and are recognized by the American Medical Association as allied healthcare professionals. Internationally, this profession is often known as athletic therapy. As healthcare professionals, athletic trainers must be prepared for autonomous practice immediately after graduation. However, new athletic trainers have been shown to have clinical areas of strength and weakness.To better assess professional readiness and improve the preparedness of new athletic trainers, the factors of athletic training professional readiness must be defined. Limited research exists defining the holistic aspects of professional readiness needed for athletic trainers. Confirming the factors of professional readiness in athletic training could enhance the professional preparation of athletic trainers and result in more highly prepared new professionals. The objective of this study was to further explore and confirm the factors of professional readiness in athletic training. Authors useda qualitative design based in grounded theory. Participants included athletic trainers with greater than 24 months of experience from a variety of work settings from each district of the National Athletic Trainer’s Association. Participants took the demographic questionnaire electronically using Qualtrics Survey Software (Provo UT). After completing the demographic questionnaire, 20 participants were selected to complete one-on-one interviews using GoToMeeting audiovisual web conferencing software. IBM Statistical Package for the Social Sciences (SPSS, v. 21.0) was used to calculate descriptive statistics for participant demographics. The first author transcribed all interviews verbatim and utilized a grounded theory approach during qualitative data analysis. Data were analyzed using a constant comparative analysis and open and axial coding. Trustworthiness was established using reflexivity, member checks, and peer reviews. Analysis revealed four overarching themes, including management, interpersonal relations, clinical decision-making, and confidence. Management was categorized as athletic training services not involving direct patient care and was divided into three subthemes, including administration skills, advocacy, and time management. Interpersonal Relations was categorized as the need and ability of the athletic trainer to properly interact with others. Interpersonal relations was divided into three subthemes, including personality traits, communication, and collaborative practice. Clinical decision-making was categorized as the skills and attributes required by the athletic trainer whenmaking clinical decisions related to patient care. Clinical decision-making was divided into three subthemes including clinical skills, continuing education, and reflective practice. The final theme was confidence. Participants discussed the importance of confidence regarding relationships building, clinical and administrative duties, and clinical decision-making. Overall, participants explained the value of a well-rounded athletic trainer and emphasized that athletic trainers need communication and organizational skills, the ability to collaborate, and must value self-reflection and continuing education in addition to having clinical expertise. Future research should finalize a comprehensive model of professional readiness for athletic training, develop a holistic assessment instrument for athletic training professional readiness, and explore the preparedness of new athletic trainers.Keywords: autonomous practice, newly certified athletic trainer, preparedness for professional practice, transition to practice skills
Procedia PDF Downloads 1496832 Location Uncertainty – A Probablistic Solution for Automatic Train Control
Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland
Abstract:
New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.Keywords: ERTMS, CBTC, ATP, ATO
Procedia PDF Downloads 4106831 A New Model for Production Forecasting in ERP
Authors: S. F. Wong, W. I. Ho, B. Lin, Q. Huang
Abstract:
ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting.Keywords: ERP, grey system, LSSVM, production forecasting
Procedia PDF Downloads 4636830 Planning of Construction Material Flow Using Hybrid Simulation Modeling
Authors: A. M. Naraghi, V. Gonzalez, M. O'Sullivan, C. G. Walker, M. Poshdar, F. Ying, M. Abdelmegid
Abstract:
Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management.Keywords: construction supply-chain management, simulation modeling, decision-support tools, hybrid simulation
Procedia PDF Downloads 2076829 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)
Authors: Javad Abdi, Azam Famil Khalili
Abstract:
Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning
Procedia PDF Downloads 4336828 A Mathematical Model to Select Shipbrokers
Authors: Y. Smirlis, G. Koronakos, S. Plitsos
Abstract:
Shipbrokers assist the ship companies in chartering or selling and buying vessels, acting as intermediates between them and the market. They facilitate deals, providing their expertise, negotiating skills, and knowledge about ship market bargains. Their role is very important as it affects the profitability and market position of a shipping company. Due to their significant contribution, the shipping companies have to employ systematic procedures to evaluate the shipbrokers’ services in order to select the best and, consequently, to achieve the best deals. Towards this, in this paper, we consider shipbrokers as financial service providers, and we formulate the problem of evaluating and selecting shipbrokers’ services as a multi-criteria decision making (MCDM) procedure. The proposed methodology comprises a first normalization step to adjust different scales and orientations of the criteria and a second step that includes the mathematical model to evaluate the performance of the shipbrokers’ services involved in the assessment. The criteria along which the shipbrokers are assessed may refer to their size and reputation, the potential efficiency of the services, the terms and conditions imposed, the expenses (e.g., commission – brokerage), the expected time to accomplish a chartering or selling/buying task, etc. and according to our modelling approach these criteria may be assigned different importance. The mathematical programming model performs a comparative assessment and estimates for the shipbrokers involved in the evaluation, a relative score that ranks the shipbrokers in terms of their potential performance. To illustrate the proposed methodology, we present a case study in which a shipping company evaluates and selects the most suitable among a number of sale and purchase (S&P) brokers. Acknowledgment: This study is supported by the OptiShip project, implemented within the framework of the National Recovery Plan and Resilience “Greece 2.0” and funded by the European Union – NextGenerationEU programme.Keywords: shipbrokers, multi-criteria decision making, mathematical programming, service-provider selection
Procedia PDF Downloads 886827 Adopting New Knowledge and Approaches to Sustainable Urban Drainage in Saudi Arabia
Authors: Ali Alahmari
Abstract:
Urban drainage in Saudi Arabia is an increasingly challenging issue due to factors such as climate change and rapid urban expansion. The existing infrastructure, based on traditional drainage systems, is not always able to cope with the increased precipitation, sometimes leading to rainwater runoff and floods causing disturbances and damage to property. Therefore, there is a need to find new ways of managing drainage, such as Sustainable Urban Drainage Systems (SUDS). The research has highlighted the main driving forces behind the need for change, revealed by the participants, to the need to adopt new ideas and approaches for urban drainage. However, while moving towards this, certain factors that may hinder the aim of using the experiences of other countries and taking advantage of innovative solutions. The research illustrates an initial conceptual model for these factors emerging from the analysis. It identifies some of the fundamental issues affecting the resistance to change towards the adoption of the concept of sustainability in Saudi Arabia, with Riyadh city as a case study. This was by using a qualitative approach, whereby, through two phases of fieldwork during 2013 and 2014, twenty-six semi-structured interviews were conducted with a number of representative officials and professionals from key government departments and organisations related to urban drainage management. Grounded Theory approach was followed to analyse the qualitative data obtained. Resistance to change was classified to: firstly: individual inertia (e.g. familiarity with the conventional solutions and approaches, lack of awareness, and considering sustainability as a marginal matter in urban planning). This resulted in not paying the desired attention, and impact on planning and setting priorities for development. Secondly: institutionalised inertia (e.g. lack of technical and design specifications for other unconventional drainage solutions, lack of consideration by decision makers in other disciplines such as contributions from environmental and geographical studies, and routine work and bureaucracy). This contributes to the weakness of decision-making, weakness in the role of research, and a lack of human resources. It seems that attitudes towards change may have reduced the ability to move forward towards sustainable development, in addition to contributing towards difficulties in some aspects of the decision-making process. Thus, the chapter provides insights into the current situation in Saudi Arabia and contributes to understanding the decisions that are made regarding change.Keywords: climate change, new knowledge and approaches, resistance to change, Saudi Arabia, SUDS, urban drainage, urban expansion
Procedia PDF Downloads 1746826 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties
Authors: Riku Hayashida, Tomoaki Hashimoto
Abstract:
This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.Keywords: robust control, stabilization method, underwater robot, parameter uncertainty
Procedia PDF Downloads 1606825 Analysis of the Factors of Local Acceptance of Wind Power Generation Facilities
Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim
Abstract:
The government that declared 'de-nuclearization' pushes up renewable energy policies such as solar power and wind power as an alternative to nuclear power generation. However, local residents who are concerned about the development and natural disasters have been hit by opposition, and related businesses around the country are experiencing difficulties. There is also a voice saying that installing a large wind power generator will cause landslides, low frequencies and noise, which will have a bad influence. Renewal is only a harmful and disgusting facility for the residents. In this way, it is expected that extreme social conflicts will occur in the decision making process related to the locally unwanted land-use (LULU). The government's efforts to solve this problem have been steadily progressing, but the systematic methodology for bringing in active participation and opinion gathering of the residents has not yet been established except for the simple opinion poll or referendum. Therefore, it is time to identify the factors that concern the local residents about the wind power generation facilities, and to find ways to make policy decision-making possible. In this study, we analyze the perception of people about offshore and onshore wind power facilities through questionnaires or interviews, and examine quantitative and qualitative precedent studies to analyze them. In addition, the study evaluates what factors affect the local acceptance of wind power facilities. As a result of the factor analysis of the questionnaire items, factors affecting the residents' acceptance of the wind power facility were extracted from four factors such as environmental, economic, risk, social, and management factor. The study also found that the influence of the determinants of local acceptance on the regional acceptability differs according to the demographic characteristics such as gender and income level. This study will contribute to minimizing the conflict on the installation of wind power facilities through communication among the local residents.Keywords: factor analysis, local acceptance, locally unwanted land-use, LULU, wind power generation facilities
Procedia PDF Downloads 1566824 Uncertainty Quantification of Fuel Compositions on Premixed Bio-Syngas Combustion at High-Pressure
Abstract:
Effect of fuel variabilities on premixed combustion of bio-syngas mixtures is of great importance in bio-syngas utilisation. The uncertainties of concentrations of fuel constituents such as H2, CO and CH4 may lead to unpredictable combustion performances, combustion instabilities and hot spots which may deteriorate and damage the combustion hardware. Numerical modelling and simulations can assist in understanding the behaviour of bio-syngas combustion with pre-defined species concentrations, while the evaluation of variabilities of concentrations is expensive. To be more specific, questions such as ‘what is the burning velocity of bio-syngas at specific equivalence ratio?’ have been answered either experimentally or numerically, while questions such as ‘what is the likelihood of burning velocity when precise concentrations of bio-syngas compositions are unknown, but the concentration ranges are pre-described?’ have not yet been answered. Uncertainty quantification (UQ) methods can be used to tackle such questions and assess the effects of fuel compositions. An efficient probabilistic UQ method based on Polynomial Chaos Expansion (PCE) techniques is employed in this study. The method relies on representing random variables (combustion performances) with orthogonal polynomials such as Legendre or Gaussian polynomials. The constructed PCE via Galerkin Projection provides easy access to global sensitivities such as main, joint and total Sobol indices. In this study, impacts of fuel compositions on combustion (adiabatic flame temperature and laminar flame speed) of bio-syngas fuel mixtures are presented invoking this PCE technique at several equivalence ratios. High-pressure effects on bio-syngas combustion instability are obtained using detailed chemical mechanism - the San Diego Mechanism. Guidance on reducing combustion instability from upstream biomass gasification process is provided by quantifying the significant contributions of composition variations to variance of physicochemical properties of bio-syngas combustion. It was found that flame speed is very sensitive to hydrogen variability in bio-syngas, and reducing hydrogen uncertainty from upstream biomass gasification processes can greatly reduce bio-syngas combustion instability. Variation of methane concentration, although thought to be important, has limited impacts on laminar flame instabilities especially for lean combustion. Further studies on the UQ of percentage concentration of hydrogen in bio-syngas can be conducted to guide the safer use of bio-syngas.Keywords: bio-syngas combustion, clean energy utilisation, fuel variability, PCE, targeted uncertainty reduction, uncertainty quantification
Procedia PDF Downloads 2756823 The Potential Factors Relating to the Decision of Return Migration of Myanmar Migrant Workers: A Case Study in Prachuap Khiri Khan Province
Authors: Musthaya Patchanee
Abstract:
The aim of this research is to study potential factors relating to the decision of return migration of Myanmar migrant workers in Prachuap Khiri Khan Province by conducting a random sampling of 400 people aged between 15-59 who migrated from Myanmar. The information collected through interviews was analyzed to find a percentage and mean using the Stepwise Multiple Regression Analysis. The results have shown that 33.25% of Myanmar migrant workers want to return to their home country within the next 1-5 years, 46.25%, in 6-10 years and the rest, in over 10 years. The factors relating to such decision can be concluded that the scale of the decision of return migration has a positive relationship with a statistical significance at 0.05 with a conformity with friends and relatives (r=0.886), a relationship with family and community (r=0.782), possession of land in hometown (r=0.756) and educational level (r=0.699). However, the factor of property possession in Prachuap Khiri Khan is the only factor with a high negative relationship (r=0.-537). From the Stepwise Multiple Regression Analysis, the results have shown that the conformity with friends and relatives and educational level factors are influential to the decision of return migration of Myanmar migrant workers in Prachuap Khiri Khan Province, which can predict the decision at 86.60% and the multiple regression equation from the analysis is Y= 6.744+1.198 conformity + 0.647 education.Keywords: decision of return migration, factors of return migration, Myanmar migrant workers, Prachuap Khiri Khan Province
Procedia PDF Downloads 5416822 Ta(l)king Pictures: Development of an Educational Program (SELVEs) for Adolescents Combining Social-Emotional Learning and Photography Taking
Authors: Adi Gielgun-Katz, Alina S. Rusu
Abstract:
In the last two decades, education systems worldwide have integrated new pedagogical methods and strategies in lesson plans, such as innovative technologies, social-emotional learning (SEL), gamification, mixed learning, multiple literacies, and many others. Visual language, such as photographs, is known to transcend cultures and languages, and it is commonly used by youth to express positions and affective states in social networks. Therefore, visual language needs more educational attention as a linguistic and communicative component that can create connectedness among the students and their teachers. Nowadays, when SEL is gaining more and more space and meaning in the area of academic improvement in relation to social well-being, and taking and sharing pictures is part of the everyday life of the majority of people, it becomes natural to add the visual language to SEL approach as a reinforcement strategy for connecting education to the contemporary culture and language of the youth. This article presents a program conducted in a high school class in Israel, which combines the five SEL with photography techniques, i.e., Social-Emotional Learning Visual Empowerments (SELVEs) program (experimental group). Another class of students from the same institution represents the control group, which is participating in the SEL program without the photography component. The SEL component of the programs addresses skills such as: troubleshooting, uncertainty, personal strengths and collaboration, accepting others, control of impulses, communication, self-perception, and conflict resolution. The aim of the study is to examine the effects of programs on the level of the five SEL aspects in the two groups of high school students: Self-Awareness, Social Awareness, Self-Management, Responsible Decision Making, and Relationship Skills. The study presents a quantitative assessment of the SEL programs’ impact on the students. The main hypothesis is that the students’ questionnaires' analysis will reveal a better understanding and improvement of the five aspects of the SEL in the group of students involved in the photography-enhanced SEL program.Keywords: social-emotional learning, photography, education program, adolescents
Procedia PDF Downloads 846821 Modeling of International Financial Integration: A Multicriteria Decision
Authors: Zouari Ezzeddine, Tarchoun Monaem
Abstract:
Despite the multiplicity of advanced approaches, the concept of financial integration couldn’t be an explicit analysis. Indeed, empirical studies appear that the measures of international financial integration are one-dimensional analyses. For the ambivalence of the concept and its multiple determinants, it must be analyzed in multidimensional level. The interest of this research is a proposal of a decision support by multicriteria approach for determining the positions of countries according to their international and financial dependencies links with the behavior of financial actors (trying to make governance decisions or diversification strategies of international portfolio ...Keywords: financial integration, decision support, behavior, multicriteria approach, governance and diversification
Procedia PDF Downloads 5276820 Optimizing The Residential Design Process Using Automated Technologies
Authors: Martin Georgiev, Milena Nanova, Damyan Damov
Abstract:
Architects, engineers, and developers need to analyse and implement a wide spectrum of data in different formats, if they want to produce viable residential developments. Usually, this data comes from a number of different sources and is not well structured. The main objective of this research project is to provide parametric tools working with real geodesic data that can generate residential solutions. Various codes, regulations and design constraints are described by variables and prioritized. In this way, we establish a common workflow for architects, geodesists, and other professionals involved in the building and investment process. This collaborative medium ensures that the generated design variants conform to various requirements, contributing to a more streamlined and informed decision-making process. The quantification of distinctive characteristics inherent to typical residential structures allows a systematic evaluation of the generated variants, focusing on factors crucial to designers, such as daylight simulation, circulation analysis, space utilization, view orientation, etc. Integrating real geodesic data offers a holistic view of the built environment, enhancing the accuracy and relevance of the design solutions. The use of generative algorithms and parametric models offers high productivity and flexibility of the design variants. It can be implemented in more conventional CAD and BIM workflow. Experts from different specialties can join their efforts, sharing a common digital workspace. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the building investment during its entire lifecycle.Keywords: architectural design, residential buildings, urban development, geodesic data, generative design, parametric models, workflow optimization
Procedia PDF Downloads 526819 ECE Teachers’ Evolving Pedagogical Documentation in MAFApp: ICT Integration for Collective Online Thinking in Early Childhood Education
Authors: Cynthia Adlerstein-Grimberg, Andrea Bralic-Echeverría
Abstract:
An extensive and controversial research debate discusses pedagogical documentation (PD) within early childhood education (ECE) as integral to ECE teachers' professional development. The literature converges in acknowledging that ICT integration in PD can be fundamental for children's and teachers' collaborative learning by making their processes visible and open to reflection. Controversial issues about PD emerge around ICT integration and the use of multimedia applications and platforms, displacing the physical experience involved in this pedagogical practice. Authors argue that online platforms make PD become a passive device to demonstrate accountability and performance. Furthermore, ICT integration would make educators inform children and families of pedagogical processes, positioning them more as consumers instead of involving them in collective thinking and pedagogical decision-making. This article analyses how pedagogical documentation mediated by a multimedia application (MAFApp) allows for the positive strengthening of an ECE pedagogical online community that thinks collectively about learning environments. In doing so, the paper shows how ICT integration supports ECE teachers' collective online thinking, enabling them to move from the controversial version of online PD, where they only act as informers of children's learning and assume a voyeuristic perspective, towards a collective online thinking that builds professional development and supports pedagogical decision-making about learning environments. This article answers How ECE teachers' pedagogical documentation evolves with ICT integration using the MAFApp multimedia application in a national ECE online community. From a posthumanist stance, this paper draws on an 18-month collaborative ethnographic immersion in Chile's unique public ECE online PD community. It develops a unique case study of an online ECE pedagogical community mediated by a multimedia application called MAFApp. This ECE online community includes 32 Chilean public kindergartens, 45 ECE teachers, and 72 assistants, who produced 534 pedagogical documentation. Fieldwork included 35 in-depth interviews, 13 discussion groups, and the constant comparison method for the PD coding. Findings show ICT integration in PD builds collective online thinking that evolves through four moments of growing complexity: 1) teachernalism of built environments, 2) onlookerism of children's anecdotes in learning environments; 3) storytelling of children's place-making, and 4) empowering pedagogies for co-creating learning environments. ICT integration through the MAFApp multimedia application enabled ECE teachers to build collective online thinking, making pedagogies of place visible and engaging children in co-constructing learning environments. This online PD is a continuous professional learning space for ECE teachers, empowering pedagogies of place. In conclusion, ICT integration into PD progressively empowers pedagogies of place in Chilean public ECE. Strengthening collective online thinking using the MAFApp multimedia application sharply contrasts with some recent PD research findings. ICT integration to PD enabled strong collective online thinking. Doing so makes PD operate as a place of professional development, pedagogical reflective encounters, and experimentation while inhabiting their own learning environments with children.Keywords: early childhood education, ICT integration, multimedia application, online collective thinking, pedagogical documentation, professional development
Procedia PDF Downloads 716818 A Quantitative Model for Replacement of Medical Equipment Based on Technical and Environmental Factors
Authors: Ghadeer Mohammad Said El-Sheikh, Samer Mohamad Shalhoob
Abstract:
Medical equipment operation state is a valid reflection of health care organizations' performance, where such equipment highly contributes to the quality of healthcare services on several levels in which quality improvement has become an intrinsic part of the discourse and activities of health care services. In healthcare organizations, clinical and biomedical engineering departments play an essential role in maintaining the safety and efficiency of such equipment. One of the most challenging topics when it comes to such sophisticated equipment is the lifespan of medical equipment, where many factors will impact such characteristics of medical equipment through its life cycle. So far, many attempts have been made in order to address this issue where most of the approaches are kind of arbitrary approaches and one of the criticisms of existing approaches trying to estimate and understand the lifetime of a medical equipment lies under the inquiry of what are the environmental factors that can play into such a critical characteristic of a medical equipment. In an attempt to address this shortcoming, the purpose of our study rises where in addition to the standard technical factors taken into consideration through the decision-making process by a clinical engineer in case of medical equipment failure, the dimension of environmental factors shall be added. The investigations, researches and studies applied for the purpose of supporting the decision making process by a clinical engineers and assessing the lifespan of healthcare equipment’s in the Lebanese society was highly dependent on the identification of technical criteria’s that impacts the lifespan of a medical equipment where the affecting environmental factors didn’t receive the proper attention. The objective of our study is based on the need for introducing a new well-designed plan for evaluating medical equipment depending on two dimensions. According to this approach, the equipment that should be replaced or repaired will be classified based on a systematic method taking into account two essential criteria; the standard identified technical criteria and the added environmental criteria.Keywords: technical, environmental, healthcare, characteristic of medical equipment
Procedia PDF Downloads 1556817 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction
Procedia PDF Downloads 559