Search results for: total vector error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11503

Search results for: total vector error

10603 Validation Study of Radial Aircraft Engine Model

Authors: Lukasz Grabowski, Tytus Tulwin, Michal Geca, P. Karpinski

Abstract:

This paper presents the radial aircraft engine model which has been created in AVL Boost software. This model is a one-dimensional physical model of the engine, which enables us to investigate the impact of an ignition system design on engine performance (power, torque, fuel consumption). In addition, this model allows research under variable environmental conditions to reflect varied flight conditions (altitude, humidity, cruising speed). Before the simulation research the identifying parameters and validating of model were studied. In order to verify the feasibility to take off power of gasoline radial aircraft engine model, some validation study was carried out. The first stage of the identification was completed with reference to the technical documentation provided by manufacturer of engine and the experiments on the test stand of the real engine. The second stage involved a comparison of simulation results with the results of the engine stand tests performed on a WSK ’PZL-Kalisz’. The engine was loaded by a propeller in a special test bench. Identifying the model parameters referred to a comparison of the test results to the simulation in terms of: pressure behind the throttles, pressure in the inlet pipe, and time course for pressure in the first inlet pipe, power, and specific fuel consumption. Accordingly, the required coefficients and error of simulation calculation relative to the real-object experiments were determined. Obtained the time course for pressure and its value is compatible with the experimental results. Additionally the engine power and specific fuel consumption tends to be significantly compatible with the bench tests. The mapping error does not exceed 1.5%, which verifies positively the model of combustion and allows us to predict engine performance if the process of combustion will be modified. The next conducted tests verified completely model. The maximum mapping error for the pressure behind the throttles and the inlet pipe pressure is 4 %, which proves the model of the inlet duct in the engine with the charging compressor to be correct.

Keywords: 1D-model, aircraft engine, performance, validation

Procedia PDF Downloads 336
10602 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis

Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao

Abstract:

The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.

Keywords: reliability, optimization, meta-heuristic, genetic algorithm, redundancy

Procedia PDF Downloads 337
10601 Direct CP Violation in Baryonic B-Hadron Decays

Authors: C. Q. Geng, Y. K. Hsiao

Abstract:

We study direct CP-violating asymmetries (CPAs) in the baryonic B decays of B- -> p\bar{p}M and Λb decays of Λb ®pM andΛb -> J/ΨpM with M=π-, K-,ρ-,K*- based on the generalized factorization method in the standard model (SM). In particular, we show that the CPAs in the vector modes of B-®p\bar{p}K* and Λb -> p K*- can be as large as 20%. We also discuss the simplest purely baryonic decays of Λb-> p\bar{p}n, p\bar{p}Λ, Λ\bar{p}Λ, and Λ\bar{Λ}Λ. We point out that some of CPAs are promising to be measured by the current as well as future B facilities.

Keywords: CP violation, B decays, baryonic decays, Λb decays

Procedia PDF Downloads 255
10600 Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections

Authors: Arpita Saha, Apoorv Jain, Satish Chandra, Indrajit Ghosh

Abstract:

Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle.

Keywords: delay, saturation flow, signalised intersection, vehicle composition

Procedia PDF Downloads 464
10599 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems

Authors: Jianhua Zhou, Yuwen Zhang

Abstract:

A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.

Keywords: conduction, inverse problems, conjugated gradient method, laser

Procedia PDF Downloads 369
10598 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 97
10597 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Keywords: constrained integer problems, enumerative search algorithm, Heuristic algorithm, Tunneling algorithm

Procedia PDF Downloads 325
10596 Robotic Exoskeleton Response During Infant Physiological Knee Kinematics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 118
10595 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision

Authors: Alaa El-Din Rezk

Abstract:

In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.

Keywords: autonomous robotic, Hough transform, image processing, machine vision

Procedia PDF Downloads 315
10594 Assessement of Phytochemicals and Antioxidant Activity of Lavandula antineae Maire from Algeria

Authors: Soumeya Krimat, Tahar Dob, Mohamed Toumi, Aicha Kesouri, Hafidha Metidji, Chelghoum Chabane

Abstract:

Lavandula antineae Maire is an endemic medicinal plant of Algeria which is traditionally used for the treatment of chills, bruises, oedema and rheumatism. The present study was designed to investigate the phytochemical screening, total phenolic and antioxidant activity of Lavandula antineae Maire for the first time. Phytochemical screening revealed the presence of different kind of chemical groups (anthraquinones, terpenes, saponins, flavonoids, tannins, O-heterosides, C-heterosides, phenolic acids). The amounts of total phenolics in the extracts (hydromethanolic and ethyl acetate extract) were determined spectrometrically. From the analyses, ethyl acetate extract had the highest total phenolic content (262.35 mg GA/g extract) and antioxidant activity (IC50=7.10 µg/ml) using DPPH method. The ethyl acetate extract was also more potent on reducing power compared to hydromethanolic extract. The results suggested that L. antineae could be considered as a new potential source of natural antioxidant for pharmaceuticals and food preservation.

Keywords: Lavandula antineae, antioxidant activity, phytochemical screening, total phenolics

Procedia PDF Downloads 521
10593 Uncertainty and Optimization Analysis Using PETREL RE

Authors: Ankur Sachan

Abstract:

The ability to make quick yet intelligent and value-added decisions to develop new fields has always been of great significance. In situations where the capital expenses and subsurface risk are high, carefully analyzing the inherent uncertainties in the reservoir and how they impact the predicted hydrocarbon accumulation and production becomes a daunting task. The problem is compounded in offshore environments, especially in the presence of heavy oils and disconnected sands where the margin for error is small. Uncertainty refers to the degree to which the data set may be in error or stray from the predicted values. To understand and quantify the uncertainties in reservoir model is important when estimating the reserves. Uncertainty parameters can be geophysical, geological, petrophysical etc. Identification of these parameters is necessary to carry out the uncertainty analysis. With so many uncertainties working at different scales, it becomes essential to have a consistent and efficient way of incorporating them into our analysis. Ranking the uncertainties based on their impact on reserves helps to prioritize/ guide future data gathering and uncertainty reduction efforts. Assigning probabilistic ranges to key uncertainties also enables the computation of probabilistic reserves. With this in mind, this paper, with the help the uncertainty and optimization process in petrel RE shows how the most influential uncertainties can be determined efficiently and how much impact so they have on the reservoir model thus helping in determining a cost effective and accurate model of the reservoir.

Keywords: uncertainty, reservoir model, parameters, optimization analysis

Procedia PDF Downloads 651
10592 Two-Phase Sampling for Estimating a Finite Population Total in Presence of Missing Values

Authors: Daniel Fundi Murithi

Abstract:

Missing data is a real bane in many surveys. To overcome the problems caused by missing data, partial deletion, and single imputation methods, among others, have been proposed. However, problems such as discarding usable data and inaccuracy in reproducing known population parameters and standard errors are associated with them. For regression and stochastic imputation, it is assumed that there is a variable with complete cases to be used as a predictor in estimating missing values in the other variable, and the relationship between the two variables is linear, which might not be realistic in practice. In this project, we estimate population total in presence of missing values in two-phase sampling. Instead of regression or stochastic models, non-parametric model based regression model is used in imputing missing values. Empirical study showed that nonparametric model-based regression imputation is better in reproducing variance of population total estimate obtained when there were no missing values compared to mean, median, regression, and stochastic imputation methods. Although regression and stochastic imputation were better than nonparametric model-based imputation in reproducing population total estimates obtained when there were no missing values in one of the sample sizes considered, nonparametric model-based imputation may be used when the relationship between outcome and predictor variables is not linear.

Keywords: finite population total, missing data, model-based imputation, two-phase sampling

Procedia PDF Downloads 131
10591 Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 83
10590 Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values

Authors: Muhammad A. Alsubaie

Abstract:

An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial.

Keywords: iterative learning control, singular values, state feedback, load disturbance

Procedia PDF Downloads 158
10589 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling

Authors: Vibha Devi, Shabina Khanam

Abstract:

Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.

Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation

Procedia PDF Downloads 141
10588 Fuzzy and Fuzzy-PI Controller for Rotor Speed of Gas Turbine

Authors: Mandar Ghodekar, Sharad Jadhav, Sangram Jadhav

Abstract:

Speed control of rotor during startup and under varying load conditions is one of the most difficult tasks of gas turbine operation. In this paper, power plant gas turbine (GE9001E) is considered for this purpose and fuzzy and fuzzy-PI rotor speed controllers are designed. The goal of the presented controllers is to keep the turbine rotor speed within predefined limits during startup condition as well as during operating condition. The fuzzy controller and fuzzy-PI controller are designed using Takagi-Sugeno method and Mamdani method, respectively. In applying the fuzzy-PI control to a gas-turbine plant, the tuning parameters (Kp and Ki) are modified online by fuzzy logic approach. Error and rate of change of error are inputs and change in fuel flow is output for both the controllers. Hence, rotor speed of gas turbine is controlled by modifying the fuel ƒflow. The identified linear ARX model of gas turbine is considered while designing the controllers. For simulations, demand power is taken as disturbance input. It is assumed that inlet guide vane (IGV) position is fixed. In addition, the constraint on the fuel flow is taken into account. The performance of the presented controllers is compared with each other as well as with H∞ robust and MPC controllers for the same operating conditions in simulations.

Keywords: gas turbine, fuzzy controller, fuzzy PI controller, power plant

Procedia PDF Downloads 334
10587 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption, and GDP for Turkey: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), carbon dioxide (CO2) emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Phillips–Perron (PP) test for stationarity, Johansen maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests negative long-run causalities from consumption of petroleum products and the direct combustion of crude oil, coal and natural gas to GDP. Conversely, positive impacts of CO2 emissions and electricity consumption on GDP are found to be significant in Turkey during the period. There exists a short-run bidirectional relationship between electricity consumption and natural gas consumption. There exists a positive unidirectional causality running from electricity consumption to natural gas consumption, while there exists a negative unidirectional causality running from natural gas consumption to electricity consumption. Moreover, GDP has a negative effect on electricity consumption in Turkey in the short run. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output but the associations can to be differed by the sources of energy in the case of Turkey over of period 1980-2010.

Keywords: CO2 emissions, energy consumption, GDP, Turkey, time series analysis

Procedia PDF Downloads 508
10586 The Composition, Abundance and Distribution of Zooplankton of Ugbogui River, Ugbogui, Edo State, Nigeria

Authors: Rich Osaretin Iyagbaye, Michael Osasele Omoigberale, Louis Aiwiegbenegbe Iyagbaye

Abstract:

Zooplankton communities of Ugbogui River at Ugbogui, Southwest Nigeria were investigated from August 2015 to April 2016. Four stations were studied from upstream to downstream with a distance of about 2 kilometres between each station. A total 10 species were identified; 5 copepods and 5 cladocerans in the following order of dominance: copepod > cladocera. A total zooplankton population of 272 individuals was recorded during the study period. Copepods and cladocera represented the predominant species (76.73% and 23.89% of the total zooplankton community respectively). Copepods and cladocera were dominated by both cycloid (77%) and bosmids (12.13%), respectively. The dominant copepod and Cladocera species were Tropocyclops prasinus and Bosmina longirostris representing 28.68% and 12.13% of the total zooplankton, respectively. The calculated diversity indices indicated that station 1 (1.992) was more diverse followed by station 4 (1.893), while zooplankton species in station 2 (1.4) were least diverse. Species richness was highest and lowest in stations 4 (2.015) and 2 (1.165) respectively. Community composition was similar at both stations 1 and 4, but varies seasonally across the four stations. Higher number and density was found during the wet season with a trend of declining proportion towards the dry months.

Keywords: abundance, diversity, population, species, Ugbogui river, zooplankton

Procedia PDF Downloads 184
10585 Analyzing the Results of Buildings Energy Audit by Using Grey Set Theory

Authors: Tooraj Karimi, Mohammadreza Sadeghi Moghadam

Abstract:

Grey set theory has the advantage of using fewer data to analyze many factors, and it is therefore more appropriate for system study rather than traditional statistical regression which require massive data, normal distribution in the data and few variant factors. So, in this paper grey clustering and entropy of coefficient vector of grey evaluations are used to analyze energy consumption in buildings of the Oil Ministry in Tehran. In fact, this article intends to analyze the results of energy audit reports and defines most favorable characteristics of system, which is energy consumption of buildings, and most favorable factors affecting these characteristics in order to modify and improve them. According to the results of the model, ‘the real Building Load Coefficient’ has been selected as the most important system characteristic and ‘uncontrolled area of the building’ has been diagnosed as the most favorable factor which has the greatest effect on energy consumption of building. Grey clustering in this study has been used for two purposes: First, all the variables of building relate to energy audit cluster in two main groups of indicators and the number of variables is reduced. Second, grey clustering with variable weights has been used to classify all buildings in three categories named ‘no standard deviation’, ‘low standard deviation’ and ‘non- standard’. Entropy of coefficient vector of Grey evaluations is calculated to investigate greyness of results. It shows that among the 38 buildings surveyed in terms of energy consumption, 3 cases are in standard group, 24 cases are in ‘low standard deviation’ group and 11 buildings are completely non-standard. In addition, clustering greyness of 13 buildings is less than 0.5 and average uncertainly of clustering results is 66%.

Keywords: energy audit, grey set theory, grey incidence matrixes, grey clustering, Iran oil ministry

Procedia PDF Downloads 373
10584 Exploring the Effect of Accounting Information on Systematic Risk: An Empirical Evidence of Tehran Stock Exchange

Authors: Mojtaba Rezaei, Elham Heydari

Abstract:

This paper highlights the empirical results of analyzing the correlation between accounting information and systematic risk. This association is analyzed among financial ratios and systematic risk by considering the financial statement of 39 companies listed on the Tehran Stock Exchange (TSE) for five years (2014-2018). Financial ratios have been categorized into four groups and to describe the special features, as representative of accounting information we selected: Return on Asset (ROA), Debt Ratio (Total Debt to Total Asset), Current Ratio (current assets to current debt), Asset Turnover (Net sales to Total assets), and Total Assets. The hypotheses were tested through simple and multiple linear regression and T-student test. The findings illustrate that there is no significant relationship between accounting information and market risk. This indicates that in the selected sample, historical accounting information does not fully reflect the price of stocks.

Keywords: accounting information, market risk, systematic risk, stock return, efficient market hypothesis, EMH, Tehran stock exchange, TSE

Procedia PDF Downloads 133
10583 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models

Authors: Ramin Vafadary, Maryam Khanbaghi

Abstract:

Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.

Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series

Procedia PDF Downloads 95
10582 The Use of Technology in Mathematics Learning (1995-2024): A Bibliometric Analysis

Authors: Rahma Adinda Sartika

Abstract:

The use of technology in learning mathematics has received a positive response from both students and teachers, so many researchers have conducted research on this theme. Based on the findings carried out in this study, 807 documents relevant to this theme have been published in Scopus from 1995-2024. After going through the stages of identification, screening, eligibility, and including, the documents that meet the criteria are 227 documents. These documents are then analyzed using the bibliometric method so that it can be seen that the most published documents in the Scopus database occurred in 2020, with 38 documents, and the lowest was from 1996 to 2000 and 2004 to 2007, namely, no documents published. The highest number of citations is in documents published in 2018, with a total of 349 citations, so the h-index is higher than the others. The country that published the most documents relevant to this theme is Indonesia with a total of 91 documents. The second largest is the United States, with a total of 28 published documents, and the third largest is China, with a total of 15 documents. Indonesia and the United States have the most working relationships between countries compared to other countries. The focus of research related to this theme is 1) mathematics learning, 2) learning systems, 3) engineering education, 4) technology and 5) mathematical concepts.

Keywords: technology, bibliometric, mathematics learning, mathematical concepts

Procedia PDF Downloads 56
10581 Continuous Blood Pressure Measurement from Pulse Transit Time Techniques

Authors: Chien-Lin Wang, Cha-Ling Ko, Tainsong Chen

Abstract:

Pulse Blood pressure (BP) is one of the vital signs, and is an index that helps determining the stability of life. In this respect, some spinal cord injury patients need to take the tilt table test. While doing the test, the posture changes abruptly, and may cause a patient’s BP to change abnormally. This may cause patients to feel discomfort, and even feel as though their life is threatened. Therefore, if a continuous non-invasive BP assessment system were built, it could help to alert health care professionals in the process of rehabilitation when the BP value is out of range. In our research, BP assessed by the pulse transit time technique was developed. In the system, we use a self-made photoplethysmograph (PPG) sensor and filter circuit to detect two PPG signals and to calculate the time difference. The BP can immediately be assessed by the trend line. According to the results of this study, the relationship between the systolic BP and PTT has a highly negative linear correlation (R2=0.8). Further, we used the trend line to assess the value of the BP and compared it to a commercial sphygmomanometer (Omron MX3); the error rate of the system was found to be in the range of ±10%, which is within the permissible error range of a commercial sphygmomanometer. The continue blood pressure measurement from pulse transit time technique may have potential to become a convenience method for clinical rehabilitation.

Keywords: continous blood pressure measurement, PPG, time transit time, transit velocity

Procedia PDF Downloads 354
10580 Antioxidant Activity, Total Phenol and Pigments Content of Seaweeds Collected from, Rameshwaram, Gulf of Mannar, Southeast Coast of India

Authors: Suparna Roy, P. Anantharaman

Abstract:

The aim of this work is to estimate some in-vitro antioxidant activities and total phenols of various extracts such as aqueous, acetone, ethanol, methanol extract of seaweeds and pigments content by Spectrophotometric method. The seaweeds were collected during 2016 from Rameshwaram, southeast coast of India. Among four different extracts, aqueous extracts from all seaweeds had minimum activity than acetone, methanol and ethanol. The Rhodophyta and Phaeophyta had high antioxidant activity in comparing to Chlorophyta. The highest total antioxidant activity was found in acetone extract fromTurbinaria decurrens (98.97±0.00%), followed by its methanol extract (98.81±0.60%) and ethanol extract (98.58±0.53%). The highest reducing power and H2O2 scavenging activity were found in acetone extract of Caulerpa racemosa (383.25±1.04%), and methanol extract from Caulerpa racemosa var. macrophysa (24.91±0.49%). The methanol extract from Caulerpa scalpelliformis contained the highest total phenol (85.23±0.12%). The Chloro-a and Chloro-b contents were the highest in Gracilaria foliifera (13.69±0.38% mg/gm dry wt.) and Caulerpa racemosa var. macrophysa (9.12 ±0.12% mg/gm dry wt.) likewise carotenoid was also the highest in Gracilaria foliifera (0.054±0.0003% mg/gm dry wt.) and Caulerpa racemosa var. macrophysa (0.04 ±0.002% mg/gm dry wt.). It can be concluded from this study that some seaweed extract can be used for natural antioxidant production, after further characterization to negotiate the side effect of synthetic, market available antioxidants.

Keywords: seaweeds, antioxidant, total phenol, pigment, Olaikuda, Vadakkadu, Rameshwaram

Procedia PDF Downloads 266
10579 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
10578 Antioxidant Activity Of Gracilaria Fisheri Extract

Authors: Paam Bidaya

Abstract:

The red seaweed Gracilaria fisheri, widely distributed along Thailand's southern coastlines, has been discovered to be edible. Sulfated polysaccharides from G. fisheri were extracted in low-temperature (25 °C) water. Seaweed polysaccharides (SPs) have been shown to have various advantageous biological effects. This study aims to investigate total phenolic content and antioxidant capacity of G. fisheri extract. The total phenolic content of G. fisheri extract was determined using Folin-Cioucalteu method and calculated as gallic acid equivalents (GAE). The antioxidant activity of G. fisheri extract was performed via 2, 2-diphenyl-1- picrylhydrazyl (DPPH) free radical scavenging assay and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, DPPH and ABTS assays showed that G. fisheri extract showed antioxidant activities as a concentration-dependent manner. The IC50 values of G. fisheri extract were 902.19 μg/mL ± 0.785 and 727.98 μg/mL ± 0.822 for DPPH and ABTS, respectively. Vitamin C was used as a positive control in DPPH assay, while Trolox was used as a positive control in ABTS assay. To conclude, G. fisheri extract consists of a high amount of total phenolic content, which exhibit a significant antioxidant activity. However, further investigation regarding antioxidant activity should be performed in order to identify the mechanism of Gracilaria fisheri action.

Keywords: ABTS assay, DPPH assay, sulfated polysaccharides, total phenolic content

Procedia PDF Downloads 197
10577 In vitro α-Amylase and α-Glucosidase Inhibitory Activities of Bitter Melon (Momordica charantia) with Different Stage of Maturity

Authors: P. S. Percin, O. Inanli, S. Karakaya

Abstract:

Bitter melon (Momordica charantia) is a medicinal vegetable, which is used traditionally to remedy diabetes. Bitter melon contains several classes of primary and secondary metabolites. In traditional Turkish medicine bitter melon is used for wound healing and treatment of peptic ulcers. Nowadays, bitter melon is used for the treatment of diabetes and ulcerative colitis in many countries. The main constituents of bitter melon, which are responsible for the anti-diabetic effects, are triterpene, protein, steroid, alkaloid and phenolic compounds. In this study total phenolics, total carotenoids and β-carotene contents of mature and immature bitter melons were determined. In addition, in vitro α-amylase and α-glucosidase activities of mature and immature bitter melons were studied. Total phenolic contents of immature and mature bitter melon were 74 and 123 mg CE/g bitter melon respectively. Although total phenolics of mature bitter melon was higher than that of immature bitter melon, this difference was not found statistically significant (p > 0.05). Carotenoids, a diverse group of more than 600 naturally occurring red, orange and yellow pigments, play important roles in many physiological processes both in plants and humans. The total carotenoid content of mature bitter melon was 4.36 fold higher than the total carotenoid content of immature bitter melon. The compounds that have hypoglycaemic effect of bitter melon are steroidal saponins known as charantin, insulin-like peptides and alkaloids. α-Amylase is one of the main enzymes in human that is responsible for the breakdown of starch to more simple sugars. Therefore, the inhibitors of this enzyme can delay the carbohydrate digestion and reduce the rate of glucose absorption. The immature bitter melon extract showed α-amylase and α-glucosidase inhibitory activities in vitro. α-Amylase inhibitory activity was higher than that of α-glucosidase inhibitory activity when IC50 values were compared. In conclusion, the present results provide evidence that aqueous extract of bitter melon may have an inhibitory effect on carbohydrate breakdown enzymes.

Keywords: bitter melon, in vitro antidiabetic activity, total carotenoids, total phenols

Procedia PDF Downloads 241
10576 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 142
10575 Understanding Health-Related Properties of Grapes by Pharmacokinetic Modelling of Intestinal Absorption

Authors: Sophie N. Selby-Pham, Yudie Wang, Louise Bennett

Abstract:

Consumption of grapes promotes health and reduces the risk of chronic diseases due to the action of grape phytochemicals in regulation of Oxidative Stress and Inflammation (OSI). The bioefficacy of phytochemicals depends on their absorption in the human body. The time required for phytochemicals to achieve maximal plasma concentration (Tₘₐₓ) after oral intake reflects the time window of maximal bioefficacy of phytochemicals, with Tₘₐₓ dependent on physicochemical properties of phytochemicals. This research collated physicochemical properties of grape phytochemicals from white and red grapes to predict their Tₘₐₓ using pharmacokinetic modelling. The predicted values of Tₘₐₓ were then compared to the measured Tₘₐₓ collected from clinical studies to determine the accuracy of prediction. In both liquid and solid intake forms, white grapes exhibit a shorter Tₘₐₓ range (0.5-2.5 h) versus red grapes (1.5-5h). The prediction accuracy of Tₘₐₓ for grape phytochemicals was 33.3% total error of prediction compared to the mean, indicating high prediction accuracy. Pharmacokinetic modelling allows prediction of Tₘₐₓ without costly clinical trials, informing dosing frequency for sustained presence of phytochemicals in the body to optimize the health benefits of phytochemicals.

Keywords: absorption kinetics, phytochemical, phytochemical absorption prediction model, Vitis vinifera

Procedia PDF Downloads 148
10574 Dynamic Modeling of the Impact of Chlorine on Aquatic Species in Urban Lake Ecosystem

Authors: Zhiqiang Yan, Chen Fan, Yafei Wang, Beicheng Xia

Abstract:

Urban lakes play an invaluable role in urban water systems such as flood control, water supply, and public recreation. However, over 38% of the urban lakes have suffered from severe eutrophication in China. Chlorine that could remarkably inhibit the growth of phytoplankton in eutrophic, has been widely used in the agricultural, aquaculture and industry in the recent past. However, little information has been reported regarding the effects of chlorine on the lake ecosystem, especially on the main aquatic species.To investigate the ecological response of main aquatic species and system stability to chlorine interference in shallow urban lakes, a mini system dynamic model was developed based on the competition and predation of main aquatic species and total phosphorus circulation. The main species of submerged macrophyte, phytoplankton, zooplankton, benthos, spiroggra and total phosphorus in water and sediment were used as variables in the model,while the interference of chlorine on phytoplankton was represented by an exponential attenuation equation. Furthermore, the eco-exergy expressing the development degree of ecosystem was used to quantify the complexity of the shallow urban lake. The model was validated using the data collected in the Lotus Lake in Guangzhoufrom1 October 2015 to 31 January 2016.The correlation coefficient (R), root mean square error-observations standard deviation ratio (RSR) and index of agreement (IOA) were calculated to evaluate accuracy and reliability of the model.The simulated values showed good qualitative agreement with the measured values of all components. The model results showed that chlorine had a notable inhibitory effect on Microcystis aeruginos,Rachionus plicatilis, Diaphanosoma brachyurum Liévin and Mesocyclops leuckarti (Claus).The outbreak of Spiroggra.spp. inhibited the growth of Vallisneria natans (Lour.) Hara, leading to a gradual decrease of eco-exergy and the breakdown of ecosystem internal equilibria. This study gives important insight into using chlorine to achieve eutrophication control and understand mechanism process.

Keywords: system dynamic model, urban lake, chlorine, eco-exergy

Procedia PDF Downloads 234