Search results for: smart and affordable medical device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6686

Search results for: smart and affordable medical device

5786 Etude 3D Quantum Numerical Simulation of Performance in the HEMT

Authors: A. Boursali, A. Guen-Bouazza

Abstract:

We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/m, a peak extrinsic transconductance of 0.59S/m at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, leakage current density IFuite=1 x 10-26 A, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology.

Keywords: HEMT, silvaco, field plate, genetic algorithm, quantum

Procedia PDF Downloads 347
5785 Fabrication of Uniform Nanofibers Using Gas Dynamic Virtual Nozzle Based Microfluidic Liquid Jet System

Authors: R. Vasireddi, J. Kruse, M. Vakili, M. Trebbin

Abstract:

Here we present a gas dynamic virtual nozzle (GDVN) based microfluidic jetting devices for spinning of nano/microfibers. The device is fabricated by soft lithography techniques and is based on the principle of a GDVN for precise three-dimensional gas focusing of the spinning solution. The nozzle device is used to produce micro/nanofibers of a perfluorinated terpolymer (THV), which were collected on an aluminum substrate for scanning electron microscopy (SEM) analysis. The influences of air pressure, polymer concentration, flow rate and nozzle geometry on the fiber properties were investigated. It was revealed that surface properties are controlled by air pressure and polymer concentration while the diameter and shape of the fibers are influenced mostly by the concentration of the polymer solution and pressure. Alterations of the nozzle geometry had a negligible effect on the fiber properties, however, the jetting stability was affected. Round and flat fibers with differing surface properties from craters, grooves to smooth surfaces could be fabricated by controlling the above-mentioned parameters. Furthermore, the formation of surface roughness was attributed to the fast evaporation rate and velocity (mis)match between the polymer solution jet and the surrounding air stream. The diameter of the fibers could be tuned from ~250 nm to ~15 µm. Because of the simplicity of the setup, the precise control of the fiber properties, access to biocompatible nanofiber fabrication and the easy scale-up of parallel channels for high throughput, this method offers significant benefits compared to existing solution-based fiber production methods.

Keywords: gas dynamic virtual nozzle (GDVN) principle, microfluidic device, spinning, uniform nanofibers

Procedia PDF Downloads 148
5784 Radio-Frequency Identification (RFID) Based Smart Helmet for Coal Miners

Authors: Waheeda Jabbar, Ali Gul, Rida Noor, Sania Kurd, Saba Gulzar

Abstract:

Hundreds of miners die from mining accidents each year due to poisonous gases found underground mining areas. This paper proposed an idea to protect the precious lives of mining workers. A supervising system is designed which is based on ZigBee wireless technique along with the smart protective helmets to detect real-time surveillance and it gives early warnings on presence of different poisonous gases in order to save mineworkers from any danger caused by these poisonous gases. A wireless sensor network is established using ZigBee wireless technique by integrating sensors on the helmet, apart from this helmet have embedded heartbeat sensor to detect the pulse rate and be aware of the physical or mental strength of a mineworker to increase the potential safety. Radio frequency identification (RFID) technology is used to find the location of workers. A ZigBee based base station is set-upped to control the communication. The idea is implemented and results are verified through experiment.

Keywords: Arduino, gas sensor (MQ7), RFID, wireless ZigBee

Procedia PDF Downloads 449
5783 Evaluation and Proposal for Improvement of the Flow Measurement Equipment in the Bellavista Drinking Water System of the City of Azogues

Authors: David Quevedo, Diana Coronel

Abstract:

The present article carries out an evaluation of the drinking water system in the Bellavista sector of the city of Azogues, with the purpose of determining the appropriate equipment to record the actual consumption flows of the inhabitants in said sector. Taking into account that the study area is located in a rural and economically disadvantaged area, there is an urgent need to establish a control system for the consumption of drinking water in order to conserve and manage the vital resource in the best possible way, considering that the water source supplying this sector is approximately 9km away. The research began with the collection of cartographic, demographic, and statistical data of the sector, determining the coverage area, population projection, and a provision that guarantees the supply of drinking water to meet the water needs of the sector's inhabitants. By using hydraulic modeling through the United States Environmental Protection Agency Application for Modeling Drinking Water Distribution Systems EPANET 2.0 software, theoretical hydraulic data were obtained, which were used to design and justify the most suitable measuring equipment for the Bellavista drinking water system. Taking into account a minimum service life of the drinking water system of 30 years, future flow rates were calculated for the design of the macro-measuring device. After analyzing the network, it was evident that the Bellavista sector has an average consumption of 102.87 liters per person per day, but considering that Ecuadorian regulations recommend a provision of 180 liters per person per day for the geographical conditions of the sector, this value was used for the analysis. With all the collected and calculated information, the conclusion was reached that the Bellavista drinking water system needs to have a 125mm electromagnetic macro-measuring device for the first three quinquenniums of its service life and a 150mm diameter device for the following three quinquenniums. The importance of having equipment that provides real and reliable data will allow for the control of water consumption by the population of the sector, measured through micro-measuring devices installed at the entrance of each household, which should match the readings of the macro-measuring device placed after the water storage tank outlet, in order to control losses that may occur due to leaks in the drinking water system or illegal connections.

Keywords: macrometer, hydraulics, endowment, water

Procedia PDF Downloads 70
5782 Environmental Assessment of Roll-to-Roll Printed Smart Label

Authors: M. Torres, A. Moulay, M. Zhuldybina, M. Rozel, N. D. Trinh, C. Bois

Abstract:

Printed electronics are a fast-growing market as their applications cover a large range of industrial needs, their production cost is low, and the additive printing techniques consume less materials than subtractive manufacturing methods used in traditional electronics. With the growing demand for printed electronics, there are concerns about their harmful and irreversible contribution to the environment. Indeed, it is estimated that 80% of the environmental load of a product is determined by the choices made at the conception stage. Therefore, examination through a life cycle approach at the developing stage of a novel product is the best way to identify potential environmental issues and make proactive decisions. Life cycle analysis (LCA) is a comprehensive scientific method to assess the environmental impacts of a product in its different stages of life: extraction of raw materials, manufacture and distribution, use, and end-of-life. Impacts and major hotspots are identified and evaluated through a broad range of environmental impact categories of the ReCiPe (H) middle point method. At the conception stage, the LCA is a tool that provides an environmental point of view on the choice of materials and processes and weights-in on the balance between performance materials and eco-friendly materials. Using the life cycle approach, the current work aims to provide a cradle-to-grave life cycle assessment of a roll-to-roll hybrid printed smart label designed for the food cold chain. Furthermore, this presentation will present the environmental impact of metallic conductive inks, a comparison with promising conductive polymers, evaluation of energy vs. performance of industrial printing processes, a full assessment of the impact from the smart label applied on a cellulosic-based substrate during the recycling process and the possible recovery of precious metals and rare earth elements.

Keywords: Eco-design, label, life cycle assessment, printed electronics

Procedia PDF Downloads 159
5781 Management of Medical Equipment Maintenance

Authors: Gholamreza Madad

Abstract:

The role of medical equipment in modern advanced hospitals is irrefutable. Despite limited financial resources, developing countries have taken an uncontrollable manner to the purchase of complex and expensive equipment, although they have not taken good maintenance to keep these huge capitals. In our country, limited studies have indicated that the irregularities exist in the management of medical equipment maintenance. Research method: The research was done as a cross-sectional one, and in this study, a questionnaire was used to collect data in 10 hospitals. After distributing and collecting questionnaires in person, the collected data were analyzed using descriptive statistics and SPSS software. Research findings: According to the obtained results from the four dimensions of the management of medical equipment maintenance, only (maintenance planning) was in a moderate position and other components with a score of less than 50% were at a low level. There was a direct relationship between the total score of maintenance management and guidance points and coordination of medical equipment maintenance, and as well as the age of hospital managers. Discussion and conclusion: In sum, we can say that problems such as lack of skilled staff in medical engineering departments of hospitals, lack of funds and unaware of the authorities of medical engineering units to their duties have caused that the maintenance situation of medical equipment maintenance is in poor condition (near average). The low inexperience of the authorities of the unit has also contributed to this problem.

Keywords: equipment, maintenance, medical equipment, hospitals

Procedia PDF Downloads 158
5780 Effective, Affordable, and Accessible Treatment for Pregnancy’s Commonest Complication: Online Synchronous Interpersonal Psychotherapy for Mothers with Postpartum Depression

Authors: Vivian Polak, Lena Verdeli, Wendy Lou, Caroline Lovett

Abstract:

Postnatal depression (PND) is a common complication of childbirth that increases the risk of future depressive episodes in women, postpartum depression in partners, as well as social, emotional, behavioural, language, and cognitive problems in offspring. Although psychotherapy, and in particular Group Interpersonal Psychotherapy (IPT-G), has been proven effective in treating PND, it remains largely inaccessible. However, research has indicated that online synchronous group therapy can be equally as effective as in-person therapy and is a more affordable and accessible modality of treatment. This study aimed to ascertain whether delivering IPT-G virtually when compared to treatment as usual, could more effectively reduce depressive and anxiety symptoms, enhance mother-infant attachment, improve the couple relationship, augment social support, improve overall functioning, and enhance the quality of life for women in rural and northern Ontario who are suffering from PND. By bridging the gap in access to mental health services during the postpartum period, this study seeks to improve the well-being of mothers and their families in rural and northern Ontario, Canada. A randomized controlled trial was conducted to determine whether virtual IPT-G plus treatment as usual would be more effective than treatment as usual alone in treating women with PND in Ontario, Canada. Preliminary results indicate that women who received virtual IPT-G had a clinically and statistically significant decrease in overall depressive symptoms compared to their counterparts who received only the treatment as usual. As such, providing online synchronous IPT-G in the perinatal period not only has the potential to improve women's outcomes in the present but also to decrease future health costs, reduce the burden on the educational and justice systems, and decrease the number of disability life years lost to postnatal depression.

Keywords: family wellbeing, group psychotherapy, interpersonal psychotherapy, postnatal depression, virtual psychotherapy

Procedia PDF Downloads 63
5779 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 38
5778 Analyze the Properties of Different Surgical Sutures

Authors: Doaa H. Elgohary, Tamer F. Khalifa, Mona M. Salem, M. A. Saad, Ehab Haider Sherazy

Abstract:

Textiles have conquered new areas over the past three decades, including agriculture, transportation, filtration, military, and medicine. The use of textiles in the medical field has increased significantly in recent years and covers almost everything. Medical textiles represent a huge market as they are widely used not only in hospitals, hygiene, and healthcare but also in hotels and other environments where hygiene is required. However, not all fibers are suitable for the manufacture of medical textile products. Some special properties are required for the manufactured materials, e.g. Strength, elasticity, spinnability, etc. In addition to the usual properties of medical fibers, non-toxicity, sterilizability, biocompatibility, biodegradability, good absorbability, softness, and freedom from additives, etc., desirable properties include impurities. Stitching is one of the most common practices in the medical field. as it is a biomaterial device, either natural or synthetic, used to connect blood vessels and connect tissues. In addition to being very strong, suture material should easily dissolve in bodily fluids and lose strength as the tissue gains strength. In this work, a study to select the most used materials for sutures, it was found that silk, VICRYL and polypropylene were the most used materials in varying numbers. The research involved the analysis of 36 samples from three different materials (mostly commonly used), the tests were carried out on 36 imported samples for four different companies. Each company supplied three different materials (silk, VICRYL and polypropylene) with three different gauges (4, 3.5 and 3 metric). The results of the study were tabulated, presented, and discussed. Practical statistical science serves to support the practical analysis of experimental work products and the various relationships between variables to achieve the best sampling performance with the functional purpose generated for it. Analysis of the imported sutures shows that VICRYL sutures had the highest tensile strength, toughness, knot tensile strength and knot toughness, followed by polypropylene and silk. As yarn counts, weight and diameter increase, its tensile strength and toughness increase while its elongation and knot tension decrease. The multifilament yarn construction (silk and VICRYL) scores higher compared to the monofilament construction (polypropylene), resulting in increases in tenacity, toughness, knot tensile strength and knot toughness.

Keywords: biodegradable yarns, braided sutures, irritation, knot tying, medical textiles, surgical sutures, wound healing

Procedia PDF Downloads 55
5777 The Influence of Environmental Factors on Honey Bee Activities: A Quantitative Analysis

Authors: Hung-Jen Lin, Chien-Hao Wang, Chien-Peng Huang, Yu-Sheng Tseng, En-Cheng Yang, Joe-Air Jiang

Abstract:

Bees’ incoming and outgoing behavior is a decisive index which can indicate the health condition of a colony. Traditional methods for monitoring the behavior of honey bees (Apis mellifera) take too much time and are highly labor-intensive, and the lack of automation and synchronization disables researchers and beekeepers from obtaining real-time information of beehives. To solve these problems, this study proposes to use an Internet of Things (IoT)-based system for counting honey bees’ incoming and outgoing activities using an infrared interruption technique, while environmental factors are recorded simultaneously. The accuracy of the established system is verified by comparing the counting results with the outcomes of manual counting. Moreover, this highly -accurate device is appropriate for providing quantitative information regarding honey bees’ incoming and outgoing behavior. Different statistical analysis methods, including one-way ANOVA and two-way ANOVA, are used to investigate the influence of environmental factors, such as temperature, humidity, illumination and ambient pressure, on bees’ incoming and outgoing behavior. With the real-time data, a standard model is established using the outcomes from analyzing the relationship between environmental factors and bees’ incoming and outgoing behavior. In the future, smart control systems, such as a temperature control system, can also be combined with the proposed system to create an appropriate colony environment. It is expected that the proposed system will make a considerable contribution to the apiculture and researchers.

Keywords: ANOVA, environmental factors, honey bee, incoming and outgoing behavior

Procedia PDF Downloads 362
5776 Medical Social Work: Connotation, Prospects, and Challenges in Pakistan

Authors: Syeda Mahnaz Hassan

Abstract:

Social work as a specialized field, grounded in scientific knowledge and skills, is more inclined towards problem-solving process rather than charity focused approach. Medical social work, as a primary method, deals with the bio-psychosocial-spiritual elements of an individual with a problem and assesses the pliability and strength of the patients, social support systems, and their families, to assist the patients to resolve their problems independently. The medical social worker, also known as case-worker or care-worker, has to play a substantial role in the rehabilitation and retrieval of an affected person. This paper examines the roles played and responsibilities discharged by the Medical Social Workers internationally and specifically concerning Pakistan. The capacity constraints and challenges confronted by Medical Social Workers in hospitals have also been highlighted, and some policy implications have been suggested to enhance the capabilities of Medical Social Workers for serving the patients in a befitting manner.

Keywords: medical social work, Pakistan, patients, rehabilitation

Procedia PDF Downloads 359
5775 Effect of Al on Glancing Angle Deposition Synthesized In₂O₃ Nanocolumn for Photodetector Application

Authors: Chitralekha Ngangbam, Aniruddha Mondal, Naorem Khelchand Singh

Abstract:

Aluminium (Al) doped In2O3 (Indium Oxide) nanocolumn array was synthesized by glancing angle deposition (GLAD) technique on Si (n-type) substrate for photodetector application. The sample was characterized by scanning electron microscopy (SEM). The average diameter of the nanocolumn was calculated from the top view of the SEM image and found to be ∼80 nm. The length of the nanocolumn (~500 nm) was calculated from cross sectional SEM image and it shows that the nanocolumns are perpendicular to the substrate. The EDX analysis confirmed the presence of Al (Aluminium), In (Indium), O (Oxygen) elements in the samples. The XRD patterns of the Al-doped In2O3 nanocolumn show the presence of different phases of the Al doped In2O3 nanocolumn i.e. (222) and (622). Three different peaks were observed from the PL analysis of Al doped In2O3 nanocolumn at 365 nm, 415 nm and 435 nm respectively. The peak at PL emission at 365 nm can be attributed to the near band gap transition of In2O3 whereas the peaks at 415 nm and 435 nm can be attributed to the trap state emissions due to oxygen vacancies and oxygen–indium vacancy centre in Al doped In2O3 nanocolumn. The current-voltage (I–V) characteristics of the Al doped In2O3 nanocolumn based detector was measured through the Au Schottky contact. The devices were then examined under the halogen light (20 W) illumination for photocurrent measurement. The Al-doped In2O3 nanocolumn based optical detector showed high conductivity and low turn on voltage at 0.69 V under white light illumination. A maximum photoresponsivity of 82 A/W at 380 nm was observed for the device. The device shows a high internal gain of ~267 at UV region (380 nm) and ∼127 at visible region (760 nm). Also the rise time and fall time for the device at 650 nm is 0.15 and 0.16 sec respectively which makes it suitable for fast response detector.

Keywords: glancing angle deposition, nanocolumn, semiconductor, photodetector, indium oxide

Procedia PDF Downloads 175
5774 Predicting Factors of Hearing Protection Device Use of Workers in Kaolin Mineral Dressing Factories, Thailand

Authors: Watcharapong Yaowarat, Thanee Kaewthummanukul, Waruntorn Jongrungrotsakul

Abstract:

Noise-induced hearing loss, the most significant occupational and safety problem among the working population, can be effectively prevented through hearing protection devices (HPDs) use. This study aimed to examine whether the following factors, perceived benefits, perceived barriers, perceived self-efficacy, and interpersonal and situational influences about using hearing protection could predict HPD use among 132 qualified workers in production lines at Kaolin Mineral Dressing factories, Uttaradit and Lampang provinces. Data collection was undertaken from August to September 2020 according to the interview form developed by Yaruang et al. (2010), which was assured by a panel of experts and its reliability value was at an acceptable level. Data analysis was performed using logistic regression analysis. The results revealed that only the situational factor of using hearing protection could predict HPD use, which accounted for 21.80 percent of the total variance for HPD use. It was also found that the study sample who had a score for the situational factors on using hearing protection greater than or equal to the median was 4.16 times more likely to use HPDs than those who had lower median scores. (OR = 4.16, p < .05). The results, thus, indicate that organization policies addressing worker health along with enhancing a supportive environment for HPD use, in particular, the provision of various HPDs, are of great importance. Therefore, occupational health nurses and related health teams should enhance workers’ use of HPDs effectively through knowledge dissemination by adopting strategies appropriate to the workplace context leading to an achievement of worker health policy focusing on work safety.

Keywords: predicting factors, hearing protection device, factors predicting hearing protection device use, kaolin mineral dressing factories

Procedia PDF Downloads 134
5773 BOFSC: A Blockchain Based Decentralized Framework to Ensure the Transparency of Organic Food Supply Chain

Authors: Mifta Ul Jannat, Raju Ahmed, Al Mamun, Jannatul Ferdaus, Ritu Costa, Milon Biswas

Abstract:

Blockchain is an internet-based invention that is coveted in the permanent, scumbled record for its capacity to openly accept, record, and distribute transactions. In a traditional supply chain, there are no trustworthy participants for an organic product. Yet blockchain engineering may provide confidence, transparency, and traceability. Blockchain varies in how companies get real, checked, and lasting information from their supply chain and lock in customers. In an arrangement of cryptographic squares, Blockchain digitizes each connection by sparing it. No one person may alter the documents, and any alteration within the agreement is clear to all. The coming to the record is tamper proof and unchanging, offering a complete history of the object’s life cycle and minimizing opening for extorting. The primary aim of this analysis is to identify the underlying problem that the customer faces. In this post, we will minimize the allocation of fraud data through the ’Smart Contract’ and include a certificate of quality assurance.

Keywords: blockchain technology, food supply chain, Ethereum, smart contract, quality assurance, trustability, security, transparency

Procedia PDF Downloads 148
5772 Excitation and Active Control of Charge Density Waves at Degenerately Doped PN++ Junctions

Authors: R. K. Vinnakota, D. A. Genov, Z. Dong, A. F. Briggs, L. Nordin, S. R. Bank, D. Wasserman

Abstract:

We present a semiconductor-based plasmonic electro-optic modulator based on excitation and active control of surface plasmon polaritons (SPPs) at the interface of degenerately doped In₀.₅₃Ga₀.₄₇As pn++ junctions. Set of devices, which we refer to as a surface plasmon polariton diode (SPPD), are fabricated and characterized electrically and optically. Optical characterization predicts far-field voltage-aided reflectivity modulation for mid-IR wavelengths. Numerical device characterizations using a self-consistent electro-optic multiphysics model have been performed to confirm the experimental findings were predicting data rates up to 1Gbits/s and 3dB bandwidth as high as 2GHz. Our findings also show that decreasing the device dimensions can potentially lead to data rates of more than 50Gbits/s, thus potentially providing a pathway toward fast all-semiconductor-based plasmotronic devices.

Keywords: plasmonics, optoelectronics, PN junctions, surface plasmon polaritons

Procedia PDF Downloads 106
5771 Socioeconomic Impacts of Innovative Housing Construction Technologies in Slum Upgrading: Case of Mathare Valley Nairobi, Kenya

Authors: Edmund M. Muthigani

Abstract:

Background: Adequate, decent housing is a universal human right integral component. Resources’ costs and intensified rural-urban migration have increased the demand for affordable housing in urban areas. Modern knowledge-based economy uses innovation. The construction industry uses product and process innovation to provide adequate and decent low-cost housing. Kenya adopted innovation practices in slum upgrading that used cost-effectively locally available building materials. This study objectively looked at the outcomes, social and economic impacts of innovative housing technologies construction in the Mathare valley slums upgrading project. Methods: This post-occupancy study used an exploratory-descriptive research design. Random sampling was used to sample 384 users of low-cost housing projects in Mathare Valley, Nairobi County. Research instruments included semi-structured questionnaires and interview guides. Pilot study, validity and reliability tests ensured the quality of a study. Ethical considerations included university approval and consent. Statistical package for social sciences (SPSS) software version 21 was applied to compute the descriptive and inferential statistics. Findings: Slum-upgrading had a significant-positive outcome on improved houses and community. Social impacts included communal facilities, assurance of security of tenure, and retained frameworks of establishments. Economic impacts included employment; affordable and durable units (p values <0.05). The upgrading process didn’t influence rent fees, was corrupt and led to the displacement of residents. Conclusion: Slum upgrading process impacted positively. Similar projects should consider residents in decision-making.

Keywords: innovation, technologies, slum upgrading, Mathare valley slum, social impact, economic impact

Procedia PDF Downloads 161
5770 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 343
5769 Infertility Awareness: Knowledge and Attitude of Medical & Non-Medical Moroccan Young People

Authors: Sana El Adlani, Yassir Ait Ben Kaddour, Abdelhafid Benksim, Abderraouf Soummani, Mohamed Cherkaoui

Abstract:

Background: Infertility in all countries of the word is on an increase, it’s why the World Health Organization included an investigation into young people's fertility. In this sense, it’s important to increase efforts to improve the knowledge about fertility for the young population. The aim of this study is to describe the difference between knowledge and attitude of medical and non-medical Moroccan young people. Materials and Methods: 100 medical Moroccan students (group 1) participated in the study, between 18 and 30 years, by a simple random sampling method, during 2020 and using a previously validated questionnaire. The answers were confronted to the result of our same study among 355 non-medical Moroccan young people (group 2) in 2019. Statistical analyses were performed using Statistical Package for the Social Sciences (version 10). Result: Medical students had a significantly higher level of knowledge about infertility than non-medical young people. However, both groups were aware of the impact of lifestyle on infertility. The knowledge state of the first group about infertility management was higher than the second group. Moreover, all non-medical Moroccan young people believed that it is easier to conceive if the couples had already their first baby, whereas, among medical students, only 53% had confirmed this belief. The results showed that 65% of medical students had proposed to try fertility treatments more than one time if treatment fails. Besides, the first advice of the second group was polygamy and adoption. Conclusion: Following the result of our study, the investigation of young people is the measure to optimize reproductive health. So, it’s crucial that the government increase efforts to improve the knowledge about infertility not only for medical universities but for all scholar programs.

Keywords: attitude, infertility, knowledge, medical, non-medical, young people

Procedia PDF Downloads 223
5768 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 461
5767 Mobile Device Applications in Physical Education: Investigating New Pedagogical Possibilities

Authors: Danica Vidotto

Abstract:

Digital technology is continuing to disrupt and challenge local conventions of teaching and education. As mobile devices continue to make their way into contemporary classrooms, educators need new pedagogies incorporating information communication technology to help reform the learning environment. In physical education, however, this can seem controversial as physical inactivity is often related to an excess of screen-time. This qualitative research project is an investigation on how physical educators use mobile device applications (apps) in their pedagogy and to what end. A comprehensive literature review is included to examine and engage current academic research of new pedagogies and technology, and their relevance to physical activity. Data were collected through five semi-structured interviews resulting in three overarching themes; i) changing pedagogies in physical education; ii) the perceived benefits and experienced challenges of using apps; and iii) apps, physical activity, and physical education. This study concludes with a discussion of the findings engaging the literature, discussing the implications of findings, and recommendations for future research.

Keywords: applications (apps), mobile devices, new pedagogies, physical education

Procedia PDF Downloads 192
5766 The Use of Gelatin in Biomedical Engineering: Halal Perspective

Authors: Syazwani Ramli, Norhidayu Muhamad Zain

Abstract:

Nowadays, the use of gelatin as biomaterials in tissue engineering are evolving especially in skin graft and wound dressing applications. Towards year 2018, Malaysia is in the way of planning to get the halal certification for biomedical device in order to cater the needs of Muslims and non-Muslims in Malaysia. However, the use of gelatins in tissue engineering are mostly derived from non-halal sources. Currently, gelatin production mostly comes from mammalian gelatin sources. Moreover, within these past years, just a few studies of the uses of gelatin in tissue engineering from halal perspective has been studied. Thus, this paper aims to give overview of the use of gelatin from different sources from halal perspectives. This review also discussing the current status of halal for the emerging biomedical devices. In addition, the different sources of gelatin used in tissue engineering are being identified and provides better alternatives for halal gelatin. Cold- water fish skin gelatin could be an effective alternative to substitute the mammalian sources. Therefore, this review is important because the information about the halal biomedical devices will delighted Muslim consumers and give better insight of halal gelatin in tissue engineering application.

Keywords: biomedical device, gelatin, halal, skin graft, tissue engineering

Procedia PDF Downloads 268
5765 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 42
5764 Importance of New Policies of Process Management for Internet of Things Based on Forensic Investigation

Authors: Venkata Venugopal Rao Gudlur

Abstract:

The Proposed Policies referred to as “SOP”, on the Internet of Things (IoT) based Forensic Investigation into Process Management is the latest revolution to save time and quick solution for investigators. The forensic investigation process has been developed over many years from time to time it has been given the required information with no policies in investigation processes. This research reveals that the current IoT based forensic investigation into Process Management based is more connected to devices which is the latest revolution and policies. All future development in real-time information on gathering monitoring is evolved with smart sensor-based technologies connected directly to IoT. This paper present conceptual framework on process management. The smart devices are leading the way in terms of automated forensic models and frameworks established by different scholars. These models and frameworks were mostly focused on offering a roadmap for performing forensic operations with no policies in place. These initiatives would bring a tremendous benefit to process management and IoT forensic investigators proposing policies. The forensic investigation process may enhance more security and reduced data losses and vulnerabilities.

Keywords: Internet of Things, Process Management, Forensic Investigation, M2M Framework

Procedia PDF Downloads 97
5763 Providing Tailored as a Human Rights Obligation: Feminist Lawyering as an Alternative Practice to Address Gender-Based Violence Against Women Refugees

Authors: Maelle Noir

Abstract:

International Human rights norms prescribe the obligation to protect refugee women against violence which requires, inter alia, state provision of justiciable, accessible, affordable and non-discriminatory access to justice. However, the interpretation and application of the law still lack gender sensitivity, intersectionality and a trauma-informed approach. Consequently, many refugee survivors face important structural obstacles preventing access to justice and often experience secondary traumatisation when navigating the legal system. This paper argues that the unique nature of the experiences of refugees with gender-based violence against women exacerbated throughout the migration journey calls for a tailored practice of the law to ensure adequate access to justice. The argument developed here is that the obligation to provide survivors with justiciable, accessible, affordable and non-discriminatory access to justice implies radically transforming the practice of the law altogether. This paper, therefore, proposes feminist lawyering as an alternative approach to the practice of the law when addressing gender-based violence against women refugees. First, this paper discusses the specific nature of gender-based violence against refugees with a particular focus on two aspects of the power-violence nexus: the analysis of the shift in gender roles and expectations following displacement as one of the causes of gender-based violence against women refugees and the argument that the asylum situation itself constitutes a form of state-sponsored and institutional violence. Second, the re-traumatising and re-victimising nature of the legal system is explored with the objective to demonstrate States’ failure to comply with their legal obligation to provide refugee women with effective access to justice. Third, this paper discusses some key practical strategies that have been proposed and implemented to transform the practice of the law when dealing with gender-based violence outside of the refugee context. Lastly, this analysis is applied to the specificities of the experiences of refugee survivors of gender-based violence.

Keywords: feminist lawyering, feminist legal theory, gender-based violence, human rights law, intersectionality, refugee protection

Procedia PDF Downloads 180
5762 Mobile Microscope for the Detection of Pathogenic Cells Using Image Processing

Authors: P. S. Surya Meghana, K. Lingeshwaran, C. Kannan, V. Raghavendran, C. Priya

Abstract:

One of the most basic and powerful tools in all of science and medicine is the light microscope, the fundamental device for laboratory as well as research purposes. With the improving technology, the need for portable, economic and user-friendly instruments is in high demand. The conventional microscope fails to live up to the emerging trend. Also, adequate access to healthcare is not widely available, especially in developing countries. The most basic step towards the curing of a malady is the diagnosis of the disease itself. The main aim of this paper is to diagnose Malaria with the most common device, cell phones, which prove to be the immediate solution for most of the modern day needs with the development of wireless infrastructure allowing to compute and communicate on the move. This opened up the opportunity to develop novel imaging, sensing, and diagnostics platforms using mobile phones as an underlying platform to address the global demand for accurate, sensitive, cost-effective, and field-portable measurement devices for use in remote and resource-limited settings around the world.

Keywords: cellular, hand-held, health care, image processing, malarial parasites, microscope

Procedia PDF Downloads 262
5761 Implementation of ALD in Product Development: Study of ROPS to Improve Energy Absorption Performance Using Absorption Part

Authors: Zefry Darmawan, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

Product development is a big issue in the industrial competition and takes a serious part in development of technology. Product development process could adapt high changes of market needs and transform into engineering concept in order to produce high-quality product. One of the latest methods in product development is Analysis-Led-Design (ALD). It utilizes digital engineering design tools with finite analysis to perform product robust analysis and valuable for product reliability assurance. Heavy machinery which operates under severe condition should maintain safety to the customer when faced with potential hazard. Cab frame should able to absorb the energy while collision. Through ALD, a series of improvement of cab frame to increase energy absorption was made and analyzed. Improvement was made by modifying shapes of frame and-or install absorption device in certain areas. Simulation result showed that install absorption device could increase absorption energy than modifying shape.

Keywords: ALD, ROPS, energy absorption, cab frame

Procedia PDF Downloads 369
5760 Reimagining the Potential of Street Lighting Infrastructure in Nairobi City

Authors: Clifford Otieno Ochieng, Nsenda Lukumwena

Abstract:

Cities worldwide and most notably those in the global south, including Nairobi City are experiencing accelerated population growth and urban sprawl, accompanied with multiple socioeconomic challenges’ which in turn increase the pressure on already limited infrastructure such as public lighting and on limited financial resources. Based on this premise, through reimaging the value of street lighting infrastructure, the study attempts to highlight the affordance and affordability of streetlights and suggests them as a tool to optimally address limited financial resources that characterize cities in the global south. As a methodology, the paper reviews and analyzes literature available online including Nairobi city budgets; reports from Kenya Power, World Health Organization and United Nations; and articles on enterprise level Internet of Things (IoT) solutions. In conclusion, this study illustrates that streetlights can go well beyond their traditional roles of illuminating cities at night. They can be as suggested in this paper charging stations, communication network terminals and disease prevention nodes.

Keywords: affordance, Nairobi, developing economies, IoT, smart street lights, smart cities

Procedia PDF Downloads 178
5759 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.

Keywords: artificial intelligence, neurofinance, neuropsychology, risk management

Procedia PDF Downloads 135
5758 Cooperative Agents to Prevent and Mitigate Distributed Denial of Service Attacks of Internet of Things Devices in Transportation Systems

Authors: Borhan Marzougui

Abstract:

Road and Transport Authority (RTA) is moving ahead with the implementation of the leader’s vision in exploring all avenues that may bring better security and safety services to the community. Smart transport means using smart technologies such as IoT (Internet of Things). This technology continues to affirm its important role in the context of Information and Transportation Systems. In fact, IoT is a network of Internet-connected objects able to collect and exchange different data using embedded sensors. With the growth of IoT, Distributed Denial of Service (DDoS) attacks is also growing exponentially. DDoS attacks are the major and a real threat to various transportation services. Currently, the defense mechanisms are mainly passive in nature, and there is a need to develop a smart technique to handle them. In fact, new IoT devices are being used into a botnet for DDoS attackers to accumulate for attacker purposes. The aim of this paper is to provide a relevant understanding of dangerous types of DDoS attack related to IoT and to provide valuable guidance for the future IoT security method. Our methodology is based on development of the distributed algorithm. This algorithm manipulates dedicated intelligent and cooperative agents to prevent and to mitigate DDOS attacks. The proposed technique ensure a preventive action when a malicious packets start to be distributed through the connected node (Network of IoT devices). In addition, the devices such as camera and radio frequency identification (RFID) are connected within the secured network, and the data generated by it are analyzed in real time by intelligent and cooperative agents. The proposed security system is based on a multi-agent system. The obtained result has shown a significant reduction of a number of infected devices and enhanced the capabilities of different security dispositives.

Keywords: IoT, DDoS, attacks, botnet, security, agents

Procedia PDF Downloads 137
5757 A Tagging Algorithm in Augmented Reality for Mobile Device Screens

Authors: Doga Erisik, Ahmet Karaman, Gulfem Alptekin, Ozlem Durmaz Incel

Abstract:

Augmented reality (AR) is a type of virtual reality aiming to duplicate real world’s environment on a computer’s video feed. The mobile application, which is built for this project (called SARAS), enables annotating real world point of interests (POIs) that are located near mobile user. In this paper, we aim at introducing a robust and simple algorithm for placing labels in an augmented reality system. The system places labels of the POIs on the mobile device screen whose GPS coordinates are given. The proposed algorithm is compared to an existing one in terms of energy consumption and accuracy. The results show that the proposed algorithm gives better results in energy consumption and accuracy while standing still, and acceptably accurate results when driving. The technique provides benefits to AR browsers with its open access algorithm. Going forward, the algorithm will be improved to more rapidly react to position changes while driving.

Keywords: accurate tagging algorithm, augmented reality, localization, location-based AR

Procedia PDF Downloads 369