Search results for: rainfall manipulation
131 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics
Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer
Abstract:
Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS
Procedia PDF Downloads 345130 Impact of Short-Term Drought on Vegetation Health Condition in the Kingdom of Saudi Arabia Using Space Data
Authors: E. Ghoneim, C. Narron, I. Iqbal, I. Hassan, E. Hammam
Abstract:
The scarcity of water is becoming a more prominent threat, especially in areas that are already arid in nature. Although the Kingdom of Saudi Arabia (KSA) is an arid country, its southwestern region offers a high variety of botanical landscapes, many of which are wooded forests, while the eastern and northern regions offer large areas of groundwater irrigated farmlands. At present, some parts of KSA, including forests and farmlands, have witnessed protracted and severe drought due to change in rainfall pattern as a result of global climate change. Such prolonged drought that last for several consecutive years is expected to cause deterioration of forested and pastured lands as well as cause crop failure in the KSA (e.g., wheat yield). An analysis to determine vegetation drought vulnerability and severity during the growing season (September-April) over a fourteen year period (2000-2014) in KSA was conducted using MODIS Terra imagery. The Vegetation Condition Index (VCI), derived from the Normalized Difference Vegetation Index (NDVI), and the Temperature Condition Index (TCI), derived from the Land Surface Temperature (LST) data was extracted from MODIS Terra Images. The VCI and TCI were then combined to compute the Vegetation Health Index (VHI). The VHI revealed the overall vegetation health for the area under investigation. A preliminary outcome of the modeled VHI over KSA, using averaged monthly vegetation data over a 14-year period, revealed that the vegetation health condition is deteriorating over time in both naturally vegetated areas and irrigated farmlands. The derived drought map for KSA indicates that both extreme and severe drought occurrences have considerably increased over the same study period. Moreover, based on the cumulative average of drought frequency in each governorate of KSA it was determined that Makkah and Jizan governorates to the east and southwest, witness the most frequency of extreme drought, whereas Tabuk to the northwest, exhibits the less extreme drought frequency. Areas where drought is extreme or severe would most likely have negative influences on agriculture, ecosystems, tourism, and even human welfare. With the drought risk map the kingdom could make informed land management decisions including were to continue with agricultural endeavors and protect forested areas and even where to develop new settlements.Keywords: drought, vegetation health condition, TCI, Saudi Arabia
Procedia PDF Downloads 386129 The Willingness to Pay of People in Taiwan for Flood Protection Standard of Regions
Authors: Takahiro Katayama, Hsueh-Sheng Chang
Abstract:
Due to the global climate change, it has increased the extreme rainfall that led to serious floods around the world. In recent years, urbanization and population growth also tend to increase the number of impervious surfaces, resulting in significant loss of life and property during floods especially for the urban areas of Taiwan. In the past, the primary governmental response to floods was structural flood control and the only flood protection standards in use were the design standards. However, these design standards of flood control facilities are generally calculated based on current hydrological conditions. In the face of future extreme events, there is a high possibility to surpass existing design standards and cause damages directly and indirectly to the public. To cope with the frequent occurrence of floods in recent years, it has been pointed out that there is a need for a different standard called FPSR (Flood Protection Standard of Regions) in Taiwan. FPSR is mainly used for disaster reduction and used to ensure that hydraulic facilities draining regional flood immediately under specific return period. FPSR could convey a level of flood risk which is useful for land use planning and reflect the disaster situations that a region can bear. However, little has been reported on FPSR and its impacts to the public in Taiwan. Hence, this study proposes a quantity procedure to evaluate the FPSR. This study aimed to examine FPSR of the region and public perceptions of and knowledge about FPSR, as well as the public’s WTP (willingness to pay) for FPSR. The research is conducted via literature review and questionnaire method. Firstly, this study will review the domestic and international research on the FPSR, and provide the theoretical framework of FPSR. Secondly, CVM (Contingent Value Method) has been employed to conduct this survey and using double-bounded dichotomous choice, close-ended format elicits households WTP for raising the protection level to understand the social costs. The samplings of this study are citizens living in Taichung city, Taiwan and 700 samplings were chosen in this study. In the end, this research will continue working on surveys, finding out which factors determining WTP, and provide some recommendations for adaption policies for floods in the future.Keywords: climate change, CVM (Contingent Value Method), FPSR (Flood Protection Standard of Regions), urban flooding
Procedia PDF Downloads 249128 Reliable and Error-Free Transmission through Multimode Polymer Optical Fibers in House Networks
Authors: Tariq Ahamad, Mohammed S. Al-Kahtani, Taisir Eldos
Abstract:
Optical communications technology has made enormous and steady progress for several decades, providing the key resource in our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data carrying capacity of a single optical fiber. In this research article we have explored basic issues in terms of security and reliability for secure and reliable information transfer through the fiber infrastructure. Conspicuously, one potentially enormous source of improvement has however been left untapped in these systems: fibers can easily support hundreds of spatial modes, but today’s commercial systems (single-mode or multi-mode) make no attempt to use these as parallel channels for independent signals. Bandwidth, performance, reliability, cost efficiency, resiliency, redundancy, and security are some of the demands placed on telecommunications today. Since its initial development, fiber optic systems have had the advantage of most of these requirements over copper-based and wireless telecommunications solutions. The largest obstacle preventing most businesses from implementing fiber optic systems was cost. With the recent advancements in fiber optic technology and the ever-growing demand for more bandwidth, the cost of installing and maintaining fiber optic systems has been reduced dramatically. With so many advantages, including cost efficiency, there will continue to be an increase of fiber optic systems replacing copper-based communications. This will also lead to an increase in the expertise and the technology needed to tap into fiber optic networks by intruders. As ever before, all technologies have been subject to hacking and criminal manipulation, fiber optics is no exception. Researching fiber optic security vulnerabilities suggests that not everyone who is responsible for their networks security is aware of the different methods that intruders use to hack virtually undetected into fiber optic cables. With millions of miles of fiber optic cables stretching across the globe and carrying information including but certainly not limited to government, military, and personal information, such as, medical records, banking information, driving records, and credit card information; being aware of fiber optic security vulnerabilities is essential and critical. Many articles and research still suggest that fiber optics is expensive, impractical and hard to tap. Others argue that it is not only easily done, but also inexpensive. This paper will briefly discuss the history of fiber optics, explain the basics of fiber optic technologies and then discuss the vulnerabilities in fiber optic systems and how they can be better protected. Knowing the security risks and knowing the options available may save a company a lot embarrassment, time, and most importantly money.Keywords: in-house networks, fiber optics, security risk, money
Procedia PDF Downloads 420127 Development of Three-Dimensional Groundwater Model for Al-Corridor Well Field, Amman–Zarqa Basin
Authors: Moayyad Shawaqfah, Ibtehal Alqdah, Amjad Adaileh
Abstract:
Coridoor area (400 km2) lies to the north – east of Amman (60 km). It lies between 285-305 E longitude and 165-185 N latitude (according to Palestine Grid). It been subjected to exploitation of groundwater from new eleven wells since the 1999 with a total discharge of 11 MCM in addition to the previous discharge rate from the well field 14.7 MCM. Consequently, the aquifer balance is disturbed and a major decline in water level. Therefore, suitable groundwater resources management is required to overcome the problems of over pumping and its effect on groundwater quality. Three–dimensional groundwater flow model Processing Modeflow for Windows Pro (PMWIN PRO, 2003) has been used in order to calculate the groundwater budget, aquifer characteristics, and to predict the aquifer response under different stresses for the next 20 years (2035). The model was calibrated for steady state conditions by trial and error calibration. The calibration was performed by matching observed and calculated initial heads for year 2001. Drawdown data for period 2001-2010 were used to calibrate transient model by matching calculated with observed one, after that, the transient model was validated by using the drawdown data for the period 2011-2014. The hydraulic conductivities of the Basalt- A7/B2 aquifer System are ranging between 1.0 and 8.0 m/day. The low conductivity value was found at the north-west and south-western parts of the study area, the high conductivity value was found at north-western corner of the study area and the average storage coefficient is about 0.025. The water balance for the Basalt and B2/A7 formation at steady state condition with a discrepancy of 0.003%. The major inflows come from Jebal Al Arab through the basalt and through the limestone aquifer (B2/A7 12.28 MCMY aquifer and from excess rainfall is about 0.68 MCM/a. While the major outflows from the Basalt-B2/A7 aquifer system are toward Azraq basin with about 5.03 MCMY and leakage to A1/6 aquitard with 7.89 MCMY. Four scenarios have been performed to predict aquifer system responses under different conditions. Scenario no.2 was found to be the best one which indicates that the reduction the abstraction rates by 50% of current withdrawal rate (25.08 MCMY) to 12.54 MCMY. The maximum drawdowns were decreased to reach about, 7.67 and 8.38m in the years 2025 and 2035 respectively.Keywords: Amman/Zarqa Basin, Jordan, groundwater management, groundwater modeling, modflow
Procedia PDF Downloads 216126 Deep Injection Wells for Flood Prevention and Groundwater Management
Authors: Mohammad R. Jafari, Francois G. Bernardeau
Abstract:
With its arid climate, Qatar experiences low annual rainfall, intense storms, and high evaporation rates. However, the fast-paced rate of infrastructure development in the capital city of Doha has led to recurring instances of surface water flooding as well as rising groundwater levels. Public Work Authority (PWA/ASHGHAL) has implemented an approach to collect and discharge the flood water into a) positive gravity systems; b) Emergency Flooding Area (EFA) – Evaporation, Infiltration or Storage off-site using tankers; and c) Discharge to deep injection wells. As part of the flood prevention scheme, 21 deep injection wells have been constructed to discharge the collected surface and groundwater table in Doha city. These injection wells function as an alternative in localities that do not possess either positive gravity systems or downstream networks that can accommodate additional loads. These injection wells are 400-m deep and are constructed in a complex karstic subsurface condition with large cavities. The injection well system will discharge collected groundwater and storm surface runoff into the permeable Umm Er Radhuma Formation, which is an aquifer present throughout the Persian Gulf Region. The Umm Er Radhuma formation contains saline water that is not being used for water supply. The injection zone is separated by an impervious gypsum formation which acts as a barrier between upper and lower aquifer. State of the art drilling, grouting, and geophysical techniques have been implemented in construction of the wells to assure that the shallow aquifer would not be contaminated and impacted by injected water. Injection and pumping tests were performed to evaluate injection well functionality (injectability). The results of these tests indicated that majority of the wells can accept injection rate of 200 to 300 m3 /h (56 to 83 l/s) under gravity with average value of 250 m3 /h (70 l/s) compared to design value of 50 l/s. This paper presents design and construction process and issues associated with these injection wells, performing injection/pumping tests to determine capacity and effectiveness of the injection wells, the detailed design of collection system and conveying system into the injection wells, and the operation and maintenance process. This system is completed now and is under operation, and therefore, construction of injection wells is an effective option for flood control.Keywords: deep injection well, flood prevention scheme, geophysical tests, pumping and injection tests, wellhead assembly
Procedia PDF Downloads 119125 Estimating Estimators: An Empirical Comparison of Non-Invasive Analysis Methods
Authors: Yan Torres, Fernanda Simoes, Francisco Petrucci-Fonseca, Freddie-Jeanne Richard
Abstract:
The non-invasive samples are an alternative of collecting genetic samples directly. Non-invasive samples are collected without the manipulation of the animal (e.g., scats, feathers and hairs). Nevertheless, the use of non-invasive samples has some limitations. The main issue is degraded DNA, leading to poorer extraction efficiency and genotyping. Those errors delayed for some years a widespread use of non-invasive genetic information. Possibilities to limit genotyping errors can be done using analysis methods that can assimilate the errors and singularities of non-invasive samples. Genotype matching and population estimation algorithms can be highlighted as important analysis tools that have been adapted to deal with those errors. Although, this recent development of analysis methods there is still a lack of empirical performance comparison of them. A comparison of methods with dataset different in size and structure can be useful for future studies since non-invasive samples are a powerful tool for getting information specially for endangered and rare populations. To compare the analysis methods, four different datasets used were obtained from the Dryad digital repository were used. Three different matching algorithms (Cervus, Colony and Error Tolerant Likelihood Matching - ETLM) are used for matching genotypes and two different ones for population estimation (Capwire and BayesN). The three matching algorithms showed different patterns of results. The ETLM produced less number of unique individuals and recaptures. A similarity in the matched genotypes between Colony and Cervus was observed. That is not a surprise since the similarity between those methods on the likelihood pairwise and clustering algorithms. The matching of ETLM showed almost no similarity with the genotypes that were matched with the other methods. The different cluster algorithm system and error model of ETLM seems to lead to a more criterious selection, although the processing time and interface friendly of ETLM were the worst between the compared methods. The population estimators performed differently regarding the datasets. There was a consensus between the different estimators only for the one dataset. The BayesN showed higher and lower estimations when compared with Capwire. The BayesN does not consider the total number of recaptures like Capwire only the recapture events. So, this makes the estimator sensitive to data heterogeneity. Heterogeneity in the sense means different capture rates between individuals. In those examples, the tolerance for homogeneity seems to be crucial for BayesN work properly. Both methods are user-friendly and have reasonable processing time. An amplified analysis with simulated genotype data can clarify the sensibility of the algorithms. The present comparison of the matching methods indicates that Colony seems to be more appropriated for general use considering a time/interface/robustness balance. The heterogeneity of the recaptures affected strongly the BayesN estimations, leading to over and underestimations population numbers. Capwire is then advisable to general use since it performs better in a wide range of situations.Keywords: algorithms, genetics, matching, population
Procedia PDF Downloads 143124 Characterization and Modelling of Groundwater Flow towards a Public Drinking Water Well Field: A Case Study of Ter Kamerenbos Well Field
Authors: Buruk Kitachew Wossenyeleh
Abstract:
Groundwater is the largest freshwater reservoir in the world. Like the other reservoirs of the hydrologic cycle, it is a finite resource. This study focused on the groundwater modeling of the Ter Kamerenbos well field to understand the groundwater flow system and the impact of different scenarios. The study area covers 68.9Km2 in the Brussels Capital Region and is situated in two river catchments, i.e., Zenne River and Woluwe Stream. The aquifer system has three layers, but in the modeling, they are considered as one layer due to their hydrogeological properties. The catchment aquifer system is replenished by direct recharge from rainfall. The groundwater recharge of the catchment is determined using the spatially distributed water balance model called WetSpass, and it varies annually from zero to 340mm. This groundwater recharge is used as the top boundary condition for the groundwater modeling of the study area. During the groundwater modeling using Processing MODFLOW, constant head boundary conditions are used in the north and south boundaries of the study area. For the east and west boundaries of the study area, head-dependent flow boundary conditions are used. The groundwater model is calibrated manually and automatically using observed hydraulic heads in 12 observation wells. The model performance evaluation showed that the root means the square error is 1.89m and that the NSE is 0.98. The head contour map of the simulated hydraulic heads indicates the flow direction in the catchment, mainly from the Woluwe to Zenne catchment. The simulated head in the study area varies from 13m to 78m. The higher hydraulic heads are found in the southwest of the study area, which has the forest as a land-use type. This calibrated model was run for the climate change scenario and well operation scenario. Climate change may cause the groundwater recharge to increase by 43% and decrease by 30% in 2100 from current conditions for the high and low climate change scenario, respectively. The groundwater head varies for a high climate change scenario from 13m to 82m, whereas for a low climate change scenario, it varies from 13m to 76m. If doubling of the pumping discharge assumed, the groundwater head varies from 13m to 76.5m. However, if the shutdown of the pumps is assumed, the head varies in the range of 13m to 79m. It is concluded that the groundwater model is done in a satisfactory way with some limitations, and the model output can be used to understand the aquifer system under steady-state conditions. Finally, some recommendations are made for the future use and improvement of the model.Keywords: Ter Kamerenbos, groundwater modelling, WetSpass, climate change, well operation
Procedia PDF Downloads 152123 Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics
Authors: Seema Paul, Jesper Oppelstrup, Roger Thunvik, Vladimir Cvetkovic
Abstract:
Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future.Keywords: bathymetry, lake flow and steady state analysis, water level validation and concentration, wind stress
Procedia PDF Downloads 227122 Storm-Runoff Simulation Approaches for External Natural Catchments of Urban Sewer Systems
Authors: Joachim F. Sartor
Abstract:
According to German guidelines, external natural catchments are greater sub-catchments without significant portions of impervious areas, which possess a surface drainage system and empty in a sewer network. Basically, such catchments should be disconnected from sewer networks, particularly from combined systems. If this is not possible due to local conditions, their flow hydrographs have to be considered at the design of sewer systems, because the impact may be significant. Since there is a lack of sufficient measurements of storm-runoff events for such catchments and hence verified simulation methods to analyze their design flows, German standards give only general advices and demands special considerations in such cases. Compared to urban sub-catchments, external natural catchments exhibit greatly different flow characteristics. With increasing area size their hydrological behavior approximates that of rural catchments, e.g. sub-surface flow may prevail and lag times are comparable long. There are few observed peak flow values and simple (mostly empirical) approaches that are offered by literature for Central Europe. Most of them are at least helpful to crosscheck results that are achieved by simulation lacking calibration. Using storm-runoff data from five monitored rural watersheds in the west of Germany with catchment areas between 0.33 and 1.07 km2 , the author investigated by multiple event simulation three different approaches to determine the rainfall excess. These are the modified SCS variable run-off coefficient methods by Lutz and Zaiß as well as the soil moisture model by Ostrowski. Selection criteria for storm events from continuous precipitation data were taken from recommendations of M 165 and the runoff concentration method (parallel cascades of linear reservoirs) from a DWA working report to which the author had contributed. In general, the two run-off coefficient methods showed results that are of sufficient accuracy for most practical purposes. The soil moisture model showed no significant better results, at least not to such a degree that it would justify the additional data collection that its parameter determination requires. Particularly typical convective summer events after long dry periods, that are often decisive for sewer networks (not so much for rivers), showed discrepancies between simulated and measured flow hydrographs.Keywords: external natural catchments, sewer network design, storm-runoff modelling, urban drainage
Procedia PDF Downloads 151121 Journey to Inclusive School: Description of Crucial Sensitive Concepts in the Context of Situational Analysis
Authors: Denisa Denglerova, Radim Sip
Abstract:
Academic sources as well as international agreements and national documents define inclusion in terms of several criteria: equal opportunities, fulfilling individual needs, development of human resources, community participation. In order for these criteria to be met, the community must be cohesive. Community cohesion, which is a relatively new concept, is not determined by homogeneity, but by the acceptance of diversity among the community members and utilisation of its positive potential. This brings us to a central category of inclusion - appreciating diversity and using it to a positive effect. However, school diversity is a real phenomenon, which schools need to tackle more and more often. This is also indicated by the number of publications focused on diversity in schools. These sources present recent analyses of using identity as a tool of coping with the demands of a diversified society. The aim of this study is to identify and describe in detail the processes taking place in selected schools, which contribute to their pro-inclusive character. The research is designed around a multiple case study of three pro-inclusive schools. Paradigmatically speaking, the research is rooted in situational epistemology. This is also related to the overall framework of interpretation, for which we are going to use innovative methods of situational analysis. In terms of specific research outcomes this will manifest itself in replacing the idea of “objective theory” by the idea of “detailed cartography of a social world”. The cartographic approach directs both the logic of data collection and the choice of methods of their analysis and interpretation. The research results include detection of the following sensitive concepts: Key persons. All participants can contribute to promoting an inclusion-friendly environment; however, some do so with greater motivation than others. These could include school management, teachers with a strong vision of equality, or school counsellors. They have a significant effect on the transformation of the school, and are themselves deeply convinced that inclusion is necessary. Accordingly, they select suitable co-workers; they also inspire some of the other co-workers to make changes, leading by example. Employees with strongly opposing views gradually leave the school, and new members of staff are introduced to the concept of inclusion and openness from the beginning. Manifestations of school openness in working with diversity on all important levels. By this we mean positive manipulation with diversity both in the relationships between “traditional” school participants (directors, teachers, pupils) and school-parent relationships, or relationships between schools and the broader community, in terms of teaching methods as well as ways how the school culture affects the school environment. Other important detected concepts significantly helping to form a pro-inclusive environment in the school are individual and parallel classes; freedom and responsibility of both pupils and teachers, manifested on the didactic level by tendencies towards an open curriculum; ways of asserting discipline in the school environment.Keywords: inclusion, diversity, education, sensitive concept, situational analysis
Procedia PDF Downloads 197120 The Impact of Climate Change on Typical Material Degradation Criteria over Timurid Historical Heritage
Authors: Hamed Hedayatnia, Nathan Van Den Bossche
Abstract:
Understanding the ways in which climate change accelerates or slows down the process of material deterioration is the first step towards assessing adaptive approaches for the conservation of historical heritage. Analysis of the climate change effects on the degradation risk assessment parameters like freeze-thaw cycles and wind erosion is also a key parameter when considering mitigating actions. Due to the vulnerability of cultural heritage to climate change, the impact of this phenomenon on material degradation criteria with the focus on brick masonry walls in Timurid heritage, located in Iran, was studied. The Timurids were the final great dynasty to emerge from the Central Asian steppe. Through their patronage, the eastern Islamic world in northwestern of Iran, especially in Mashhad and Herat, became a prominent cultural center. Goharshad Mosque is a mosque in Mashhad of the Razavi Khorasan Province, Iran. It was built by order of Empress Goharshad, the wife of Shah Rukh of the Timurid dynasty in 1418 CE. Choosing an appropriate regional climate model was the first step. The outputs of two different climate model: the 'ALARO-0' and 'REMO,' were analyzed to find out which model is more adopted to the area. For validating the quality of the models, a comparison between model data and observations was done in 4 different climate zones in Iran for a period of 30 years. The impacts of the projected climate change were evaluated until 2100. To determine the material specification of Timurid bricks, standard brick samples from a Timurid mosque were studied. Determination of water absorption coefficient, defining the diffusion properties and determination of real density, and total porosity tests were performed to characterize the specifications of brick masonry walls, which is needed for running HAM-simulations. Results from the analysis showed that the threatening factors in each climate zone are almost different, but the most effective factor around Iran is the extreme temperature increase and erosion. In the north-western region of Iran, one of the key factors is wind erosion. In the north, rainfall erosion and mold growth risk are the key factors. In the north-eastern part, in which our case study is located, the important parameter is wind erosion.Keywords: brick, climate change, degradation criteria, heritage, Timurid period
Procedia PDF Downloads 119119 History of Russian Women: The Historical Overview of the Images and Roles of Women in Old and Modern Russia
Authors: Elena Chernyak
Abstract:
The status of Russian women has changed dramatically over the course of Russian history and under different leadership and economic, political, and social conditions. The perception of women, their submissive roles, and low social status cause gender conflict that affects society: demographical issues, increased numbers of divorces, alcoholism, drug abuse, and crime. Despite the fact that around the world women are becoming more independent, protected by law, and play more important roles in society, Russian women are still dependent on men financially, socially, and psychologically. This paper critically explores the experience of Russian women over the course of over a thousand year of Russian history and how the position and image of women changed in Russian Empire, Soviet and post-Soviet Russia and what role women play in contemporary Russia. This paper is a result of deep examination of historical and religious literature, mass media, internet sources, and documents. This analysis shows that throughout history, the role and image of women in society have repeatedly varied depending on ideological and social conditions. In particular, the history of Russian women may be divided into five main periods. The first was the period of paganism, when almost all areas of life were open for women and when women were almost equal in social roles with men. During the second period, starting with the beginning of the Mongol invasion in the 13th century, the position of women was diminishing due to social transformation to the patriarchal society in which women started playing subordinate role in family and society. The third period – the period from the fourteenth through the sixteenth centuries - is a period of the total seclusion of Russian women from each part of social life. The fourth, Soviet period started after the Revolution of 1917. During that time, the position of women was drastically changed due to the transformation of traditional gender roles under the Bolshevik government. Woman's role was seen as worker-mothers who had a double duty: a worker and a mother. The final period began after the collapse of the Soviet Union. The restructuring (Perestroika) and post-Restructuring periods have had contradictory consequences and tremendous impact on Russian society. The image of women as partners and equal to men, which was promoted during the Soviet regime, has been replaced with the traditional functionalist views on family and the role of women, in which men and women have different but supposedly complementary roles. Modern Russia, despite publicly stating its commitment to equal rights, during last two decades has been reverting to an older social model with its emphasis on traditional gender roles, patriarchal ideas of dominant masculinity, and adverse attitudes to women, which are further supported and reinforced by the reviving Russian Orthodox Church. As demonstrated in this review, Russian women have never possessed the same rights as men and have always been subordinate to men. During all period of Russian history, patriarchal ideology maintained and reinforced in Russian society has always subjected women to manipulation, oppression, and victimization and portrayed women as not a ‘full human being’.Keywords: women, Russia, patriarchy, religion, Russian Orthodox Church
Procedia PDF Downloads 167118 Smart Irrigation Systems and Website: Based Platform for Farmer Welfare
Authors: Anusha Jain, Santosh Vishwanathan, Praveen K. Gupta, Shwetha S., Kavitha S. N.
Abstract:
Agriculture has a major impact on the Indian economy, with the highest employment ratio than any sector of the country. Currently, most of the traditional agricultural practices and farming methods are manual, which results in farmers not realizing their maximum productivity often due to increasing in labour cost, inefficient use of water sources leading to wastage of water, inadequate soil moisture content, subsequently leading to food insecurity of the country. This research paper aims to solve this problem by developing a full-fledged web application-based platform that has the capacity to associate itself with a Microcontroller-based Automated Irrigation System which schedules the irrigation of crops based on real-time soil moisture content employing soil moisture sensors centric to the crop’s requirements using WSN (Wireless Sensor Networks) and M2M (Machine To Machine Communication) concepts, thus optimizing the use of the available limited water resource, thereby maximizing the crop yield. This robust automated irrigation system provides end-to-end automation of Irrigation of crops at any circumstances such as droughts, irregular rainfall patterns, extreme weather conditions, etc. This platform will also be capable of achieving a nationwide united farming community and ensuring the welfare of farmers. This platform is designed to equip farmers with prerequisite knowledge on tech and the latest farming practices in general. In order to achieve this, the MailChimp mailing service is used through which interested farmers/individuals' email id will be recorded and curated articles on innovations in the world of agriculture will be provided to the farmers via e-mail. In this proposed system, service is enabled on the platform where nearby crop vendors will be able to enter their pickup locations, accepted prices and other relevant information. This will enable farmers to choose their vendors wisely. Along with this, we have created a blogging service that will enable farmers and agricultural enthusiasts to share experiences, helpful knowledge, hardships, etc., with the entire farming community. These are some of the many features that the platform has to offer.Keywords: WSN (wireless sensor networks), M2M (M/C to M/C communication), automation, irrigation system, sustainability, SAAS (software as a service), soil moisture sensor
Procedia PDF Downloads 129117 A Strategic Water and Energy Project as a Climate Change Adaptation Tool for Israel, Jordan and the Middle East
Authors: Doron Markel
Abstract:
Water availability in most of the Middle East (especially in Jordan) is among the lowest in the world and has been even further exacerbated by the regional climatic change and the reduced rainfall. The Araba Valley in Israel is disconnected from the national water system. On the other hand, the Araba Valley, both in Israel and Jordan, is an excellent area for solar energy gaining. The Dead Sea (Israel and Jordan) is a hypersaline lake which its level declines at a rate of more than 1 m/y. The decline stems from the increasing use of all available freshwater resources that discharge into the Dead Sea and decreasing natural precipitation due to climate change in the Middle East. As an adaptation tool for this humanmade and Climate Change results, a comprehensive water-energy and environmental project were suggested: The Red Sea-Dead Sea Conveyance. It is planned to desalinate the Red Sea water, supply the desalinated water to both Israel and Jordan, and convey the desalination brine to the Dead Sea to stabilize its water level. Therefore, the World Bank had led a multi-discipline feasibility study between 2008 and 2013, that had mainly dealt with the mixing of seawater and Dead Sea Water. The possible consequences of such mixing were precipitation and possible suspension of secondary Gypsum, as well as blooming of Dunaliella red algae. Using a comprehensive hydrodynamic-geochemical model for the Dead Sea, it was predicted that while conveying up to 400 Million Cubic Meters per year of seawater or desalination brine to the Dead Sea, the latter would not be stratified as it was until 1979; hence Gypsum precipitation and algal blooms would be neglecting. Using another hydrodynamic-biological model for the Red Sea, it was predicted the Seawater pump from the Gulf of Eilat would not harm the ecological system of the gulf (including the sensitive coral reef), giving a pump depth of 120-160 m. Based on these studies, a pipeline conveyance was recommended to convey desalination brine to the Dead Sea with the use of a hydropower plant, utilizing the elevation difference of 400 m between the Red Sea and the Dead Sea. The complementary energy would come from solar panels coupled with innovative storage technology, needed to produce a continuous energy production for an appropriate function of the desalination plant. The paper will describe the proposed project as well as the feasibility study results. The possibility to utilize this water-energy-environmental project as a climate change adaptation strategy for both Israel and Jordan will also be discussed.Keywords: Red Sea, Dead Sea, water supply, hydro-power, Gypsum, algae
Procedia PDF Downloads 113116 Assessment of Impact of Urbanization in High Mountain Urban Watersheds
Authors: D. M. Rey, V. Delgado, J. Zambrano Nájera
Abstract:
Increases in urbanization during XX century, has produced changes in natural dynamics of the basins, which has resulted in increases in runoff volumes, peak flows and flow velocities, that in turn increases flood risk. Higher runoff volumes decrease sewerage networks hydraulic capacity and can cause its failure. This in turn generates increasingly recurrent floods causing mobility problems and general economic detriment in the cities. In Latin America, especially Colombia, this is a major problem because urban population at late XX century was more than 70% is in urban areas increasing approximately in 790% in 1940-1990 period. Besides, high slopes product of Andean topography and high precipitation typical of tropical climates increases velocities and volumes even more, causing stopping of cities during storms. Thus, it becomes very important to know hydrological behavior of Andean Urban Watersheds. This research aims to determine the impact of urbanization in high sloped urban watersheds in its hydrology. To this end, it will be used as study area experimental urban watershed named Palogrande-San Luis watershed, located in the city of Manizales, Colombia. Manizales is a city in central western Colombia, located in Colombian Central Mountain Range (part of Los Andes Mountains) with an abrupt topography (average altitude is 2.153 m). The climate in Manizales is quite uniform, but due to its high altitude it presents high precipitations (1.545 mm/year average) with high humidity (83% average). It was applied HEC-HMS Hydrologic model on the watershed. The inputs to the model were derived from Geographic Information Systems (GIS) theme layers of the Instituto de Estudios Ambientales –IDEA of Universidad Nacional de Colombia, Manizales (Institute of Environmental Studies) and aerial photography taken for the research in conjunction with available literature and look up tables. Rainfall data from a network of 4 rain gages and historical stream flow data were used to calibrate and validate runoff depth using the hydrologic model. Manual calibration was made, and the simulation results show that the model selected is able to characterize the runoff response of the watershed due to land use for urbanization in high mountain watersheds.Keywords: Andean watersheds modelling, high mountain urban hydrology, urban planning, hydrologic modelling
Procedia PDF Downloads 233115 The Development and Change of Settlement in Tainan County (1904-2015) Using Historical Geographic Information System
Authors: Wei Ting Han, Shiann-Far Kung
Abstract:
In the early time, most of the arable land is dry farming and using rainfall as water sources for irrigation in Tainan county. After the Chia-nan Irrigation System (CIS) was completed in 1930, Chia-nan Plain was more efficient allocation of limited water sources or irrigation, because of the benefit from irrigation systems, drainage systems, and land improvement projects. The problem of long-term drought, flood and salt damage in the past were also improved by CIS. The canal greatly improved the paddy field area and agricultural output, Tainan county has become one of the important agricultural producing areas in Taiwan. With the development of water conservancy facilities, affected by national policies and other factors, many agricultural communities and settlements are formed indirectly, also promoted the change of settlement patterns and internal structures. With the development of historical geographic information system (HGIS), Academia Sinica developed the WebGIS theme with the century old maps of Taiwan which is the most complete historical map of database in Taiwan. It can be used to overlay historical figures of different periods, present the timeline of the settlement change, also grasp the changes in the natural environment or social sciences and humanities, and the changes in the settlements presented by the visualized areas. This study will explore the historical development and spatial characteristics of the settlements in various areas of Tainan County. Using of large-scale areas to explore the settlement changes and spatial patterns of the entire county, through the dynamic time and space evolution from Japanese rule to the present day. Then, digitizing the settlement of different periods to perform overlay analysis by using Taiwan historical topographic maps in 1904, 1921, 1956 and 1989. Moreover, using document analysis to analyze the temporal and spatial changes of regional environment and settlement structure. In addition, the comparison analysis method is used to classify the spatial characteristics and differences between the settlements. Exploring the influence of external environments in different time and space backgrounds, such as government policies, major construction, and industrial development. This paper helps to understand the evolution of the settlement space and the internal structural changes in Tainan County.Keywords: historical geographic information system, overlay analysis, settlement change, Tainan County
Procedia PDF Downloads 128114 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance
Authors: Xiaoyong He
Abstract:
The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.Keywords: graphene, metamaterials, terahertz, tunable
Procedia PDF Downloads 344113 Delusional Parasitosis (A Rare Primary Psychiatric Diagnosis)
Authors: Jaspinder Kaur, Jatinder Pal Singh
Abstract:
Introduction- Delusional parasitosis is a rare psychotic illness characterized by a fixed belief of manifesting a parasite in a body when in reality, it was not. Also known as Ekbom syndrome or delusional infestations, or acarophobia. Although the patient has no primary skin pathology, but all skin findings were secondary to skin manipulation by the patient itself, which is why up to 90% of patients first seek consultation from a dermatologist. Most commonly, it was seen in older people with female to male ratio is 2:1. For treatment, the patient first need to be investigated to rule all other possible causes, as Delusional parasitosis can be caused by Vitamin B12 deficiency, pellagra, hepatic and renal disease, diabetes mellitus, multiple sclerosis, and leprosy. When all possible causes ruled out, psychiatric referral to be done. Rule out other psychiatric comorbidities, and treatment should be done accordingly. Patient with delusional parasitosis responds well to second generation antipsychotics and need to continuous medication over years, and relapse is likely if treatment is stopped. Case Presentation- A 79-year-old female, belonging to lower socio-economic status, presented with complaints of itching sensation with erythematous patches over the scalp and multiple scratch excoriations lesion over the scalp, face and neck from the past 7-8 months. She had a feeling of small insect crawling under her skin and scalp area. To reduce the itching and kill the insect, she would scratch and squeeze her skin repeatedly. When the family tried to give her explanation that there was no insect in her body, she would not get convinced, rather got angry and abuse family members for not believing her. Gradually, her sleep would remain disturbed, she would be seen awake at night, seen to be scratching her skin, pull her scalp hair, even squeeze out her healed lesions. She collected her skin debris, scalp hairs and look out for insect. Because of her continuous illness, the patient started to remain sad and had crying spells. Her appetite decreased. She became socially isolated and stopped doing her activities of daily living. Family member’s first consulted dermatologist, investigated thoroughly with routine investigations, autoimmune and malignancy workup. As all investigations were normal, following which patient was referred for psychiatric evaluation. The patient was started on Tablet Olanzapine 2.5 mg, gradually increased to 7.5 mg. Over 1 month, there was reduction in itching, skin pricking. Lesions were gradually healed, and the patient continued to take other dermatological medications and ointment and was in regular follow up with psychiatric liaison from past 2 months with 70-80 % improvement in her symptoms. Conclusion- Delusional parasitosis is a psychiatric disorder of insidious onset, seen commonly in middle and old age people. Both psychiatric and dermatology consultation liaison will help the patient for an early diagnosis and adequate treatment. If a primary psychiatric diagnosis, the patient respond well to second generation antipsychotics but always require a further evaluation and treatment management if it is secondary to some physical or other psychiatric comorbidity.Keywords: delusional parasitosis, delusional infestations, rare, primary psychiatric diagnosis, antipsychotic agents
Procedia PDF Downloads 83112 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM
Authors: Fazli Rahim Shinwari, Ulrich Dittmer
Abstract:
Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage
Procedia PDF Downloads 153111 Assessment of Sediment Control Characteristics of Notches in Different Sediment Transport Regimes
Authors: Chih Ming Tseng
Abstract:
Landslides during typhoons that generate substantial amounts of sediment and subsequent rainfall can trigger various types of sediment transport regimes, such as debris flows, high-concentration sediment-laden flows, and typical river sediment transport. This study aims to investigate the sediment control characteristics of natural notches within different sediment transport regimes. High-resolution digital terrain models were used to establish the relationship between slope gradients and catchment areas, which were then used to delineate distinct sediment transport regimes and analyze the sediment control characteristics of notches within these regimes. The research results indicate that the catchment areas of Aiyuzi Creek, Hossa Creek, and Chushui Creek in the study region can be clearly categorized into three sediment transport regimes based on the slope-area relationship curves: frequent collapse headwater areas, debris flow zones, and high-concentration sediment-laden flow zones. The threshold for transitioning from the collapse zone to the debris flow zone in the Aiyuzi Creek catchment is lower compared to Hossa Creek and Chushui Creek, suggesting that the active collapse processes in the upper reaches of Aiyuzi Creek continuously supply a significant sediment source, making it more susceptible to subsequent debris flow events. Moreover, the analysis of sediment trapping efficiency at notches within different sediment transport regimes reveals that as the notch constriction ratio increases, the sediment accumulation per unit area also increases. The accumulation thickness per unit area in high-concentration sediment-laden flow zones is greater than in debris flow zones, indicating differences in sediment deposition characteristics among various sediment transport regimes. Regarding sediment control rates at notches, there is a generally positive correlation with the notch constriction ratio. During the 2009 Morakot Typhoon, the substantial sediment supply from slope failures in the upstream catchment led to an oversupplied sediment transport condition in the river channel. Consequently, sediment control rates were more pronounced during medium and small sediment transport events between 2010 and 2015. However, there were no significant differences in sediment control rates among the different sediment transport regimes at notches. Overall, this research provides valuable insights into the sediment control characteristics of notches under various sediment transport conditions, which can aid in the development of improved sediment management strategies in watersheds.Keywords: landslide, debris flow, notch, sediment control, DTM, slope–area relation
Procedia PDF Downloads 28110 Assessment of Impact of Urbanization in Drainage Urban Systems, Cali-Colombia
Authors: A. Caicedo Padilla, J. Zambrano Nájera
Abstract:
Cali, the capital of Valle del Cauca and the second city of Colombia, is located in the Cauca River Valley between the Western and Central Cordillera that is South West of the country. The topography of the city is mainly flat, but it is possibly to find mountains in the west. The city has increased urbanization during XX century, especially since 1958 when started a rapid growth due to migration of people from other parts of the region. Much of that population has settled in eastern of Cali, an area originally intended for cane cultivation and a zone of flood from Cauca River and its tributaries. Due to the unplanned migration, settling was inadequate and produced changes in natural dynamics of the basins, which has resulted in increases in runoff volumes, peak flows and flow velocities, that in turn increases flood risk. Sewerage networks capacity were not enough for this higher runoff volume, because in first term they were not adequately designed and built, causing its failure. This in turn generates increasingly recurrent floods generating considerable effects on the economy and development of normal activities in Cali. Thus, it becomes very important to know hydrological behavior of Urban Watersheds. This research aims to determine the impact of urbanization on hydrology of watersheds with very low slopes. The project aims to identify changes in natural drainage patterns caused by the changes made on landscape. From the identification of such modifications it will be defined the most critical areas due to recurring flood events in the city of Cali. Critical areas are defined as areas where the sewerage system does not work properly as surface runoff increases considerable with storm events, and floods are recurrent. The assessment will be done from the analysis of Geographic Information Systems (GIS) theme layers from CVC Environmental Institution of Regional Control in Valle del Cauca, hydrological data and disaster database developed by OSSO Corporation. Rainfall data from a network and historical stream flow data will be used for analysis of historical behavior and change of precipitation and hydrological response according to homogeneous zones characterized by EMCALI S.A. public utility enterprise of Cali in 1999.Keywords: drainage systems, land cover changes, urban hydrology, urban planning
Procedia PDF Downloads 264109 Automated System: Managing the Production and Distribution of Radiopharmaceuticals
Authors: Shayma Mohammed, Adel Trabelsi
Abstract:
Radiopharmacy is the art of preparing high-quality, radioactive, medicinal products for use in diagnosis and therapy. Radiopharmaceuticals unlike normal medicines, this dual aspect (radioactive, medical) makes their management highly critical. One of the most convincing applications of modern technologies is the ability to delegate the execution of repetitive tasks to programming scripts. Automation has found its way to the most skilled jobs, to improve the company's overall performance by allowing human workers to focus on more important tasks than document filling. This project aims to contribute to implement a comprehensive system to insure rigorous management of radiopharmaceuticals through the use of a platform that links the Nuclear Medicine Service Management System to the Nuclear Radio-pharmacy Management System in accordance with the recommendations of World Health Organization (WHO) and International Atomic Energy Agency (IAEA). In this project we attempt to build a web application that targets radiopharmacies, the platform is built atop the inherently compatible web stack which allows it to work in virtually any environment. Different technologies are used in this project (PHP, Symfony, MySQL Workbench, Bootstrap, Angular 7, Visual Studio Code and TypeScript). The operating principle of the platform is mainly based on two parts: Radiopharmaceutical Backoffice for the Radiopharmacian, who is responsible for the realization of radiopharmaceutical preparations and their delivery and Medical Backoffice for the Doctor, who holds the authorization for the possession and use of radionuclides and he/she is responsible for ordering radioactive products. The application consists of sven modules: Production, Quality Control/Quality Assurance, Release, General Management, References, Transport and Stock Management. It allows 8 classes of users: The Production Manager (PM), Quality Control Manager (QCM), Stock Manager (SM), General Manager (GM), Client (Doctor), Parking and Transport Manager (PTM), Qualified Person (QP) and Technical and Production Staff. Digital platform bringing together all players involved in the use of radiopharmaceuticals and integrating the stages of preparation, production and distribution, Web technologies, in particular, promise to offer all the benefits of automation while requiring no more than a web browser to act as a user client, which is a strength because the web stack is by nature multi-platform. This platform will provide a traceability system for radiopharmaceuticals products to ensure the safety and radioprotection of actors and of patients. The new integrated platform is an alternative to write all the boilerplate paperwork manually, which is a tedious and error-prone task. It would minimize manual human manipulation, which has proven to be the main source of error in nuclear medicine. A codified electronic transfer of information from radiopharmaceutical preparation to delivery will further reduce the risk of maladministration.Keywords: automated system, management, radiopharmacy, technical papers
Procedia PDF Downloads 156108 Assessing and Managing the Risk of Inland Acid Sulfate Soil Drainage via Column Leach Tests and 1D Modelling: A Case Study from South East Australia
Authors: Nicolaas Unland, John Webb
Abstract:
The acidification and mobilisation of metals during the oxidation of acid sulfate soils exposed during lake bed drying is an increasingly common phenomenon under climate scenarios with reduced rainfall. In order to assess the risk of generating high concentrations of acidity and dissolved metals, chromium suite analysis are fundamental, but sometimes limited in characterising the potential risks they pose. This study combines such fundamental test work, along with incubation tests and 1D modelling to investigate the risks associated with the drying of Third Reedy Lake in South East Australia. Core samples were collected from a variable depth of 0.5 m below the lake bed, at 19 locations across the lake’s footprint, using a boat platform. Samples were subjected to a chromium suite of analysis, including titratable actual acidity, chromium reducible sulfur and acid neutralising capacity. Concentrations of reduced sulfur up to 0.08 %S and net acidities up to 0.15 %S indicate that acid sulfate soils have formed on the lake bed during permanent inundation over the last century. A further sub-set of samples were prepared in 7 columns and subject to accelerated heating, drying and wetting over a period of 64 days in laboratory. Results from the incubation trial indicate that while pyrite oxidation proceeded, minimal change to soil pH or the acidity of leachate occurred, suggesting that the internal buffering capacity of lake bed sediments was sufficient to neutralise a large proportion of the acidity produced. A 1D mass balance model was developed to assess potential changes in lake water quality during drying based on the results of chromium suite and incubation tests. Results from the above test work and modelling suggest that acid sulfate soils pose a moderate to low risk to the Third Reedy Lake system. Further, the risks can be effectively managed during the initial stages of lake drying via flushing with available mildly alkaline water. The study finds that while test work such as chromium suite analysis are fundamental in characterizing acid sulfate soil environments, they can the overestimate risks associated with the soils. Subsequent incubation test work may more accurately characterise such soils and lead to better-informed management strategies.Keywords: acid sulfate soil, incubation, management, model, risk
Procedia PDF Downloads 358107 Comparison of Phytochemicals in Grapes and Wine from Shenton Park Winery
Authors: Amanda Sheard, Garry Lee, Katherine Stockham
Abstract:
Introduction: Health benefits associated with wine consumption have been well documented; these include anticancer, anti-inflammatory, and cardiovascular protection. The majority of these health benefits have been linked to polyphenols found within wine and grapes. Once consumed polyphenols exhibit free radical quenching capabilities. Environmental factors such as rainfall, temperature, CO2 levels and sunlight exposure have been shown to affect the polyphenol content of grapes. The objective of this work was to evaluate the effect of growing conditions on the antioxidant capacity of grapes obtained from a single plot vineyard in Perth. This was achieved through the analysis of samples using; oxygen radical antioxidant capacity (ORAC), cellular antioxidant activity (CAA) in human red blood cells, ICP-MS and ICP-OES, total polyphenols (PP’s), and total flavonoid’s (FLa). The data obtained was compared to observed climate data. The 14 Selected Vitis Vinefera L. cultivars included Cabernet franc, Cabernet Sauvignon, Carnelian, Chardonnay, Grenache, Melbec, Merlot, Orange muscat, Rousanne, Sauvignon Blanc, Shiraz, Tempernillo, Verdelho, and Voignier. Results: Notable variation’s between cultivars included results ranging from 125 mg/100 g-350 mg/100 g for PP’s, 93 mg/100 g–300 mg/100 g for FLa, 13 mM T.E/kg–33 mM T.E/kg for ORAC and 0.3 mM Q.E/kg–27 mM Q.E/kg CAA were found between red and white grape cultivars. No correlation was found between CAA and the ORAC obtained in this study; except that white cultivars were consistently lower than red. ICP analysis showed that seeds contained the highest concentration of copper followed by skins and flesh of the grape. A positive correlation between copper and ORAC was found. The ORAC, PP’s, and FLa in red grapes were consistently higher than white grape cultivars; these findings were supported by literature values. Significance: The cellular antioxidant activities of white and red wine cultivars were used to compare the bioactivity of these grapes against the chemical ORAC measurement. The common method of antioxidant activity measurement is the chemical value from ORAC analysis; however this may not reflect the activity within the human body. Hence, the measurements were also carried out using the cellular antioxidant activity to perform a comparison. Additionally, the study explored the influence of weather systems such as El Niño and La Niña on the polyphenol content of Australian wine cultivars grown in Perth.Keywords: oxygen radical antioxidant activity, cellular antioxidant activity, total polyphenols, total flavonoids, wine grapes, climate
Procedia PDF Downloads 290106 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence
Authors: Sogand Barghi
Abstract:
The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting
Procedia PDF Downloads 71105 Partially Aminated Polyacrylamide Hydrogel: A Novel Approach for Temporary Oil and Gas Well Abandonment
Authors: Hamed Movahedi, Nicolas Bovet, Henning Friis Poulsen
Abstract:
Following the advent of the Industrial Revolution, there has been a significant increase in the extraction and utilization of hydrocarbon and fossil fuel resources. However, a new era has emerged, characterized by a shift towards sustainable practices, namely the reduction of carbon emissions and the promotion of renewable energy generation. Given the substantial number of mature oil and gas wells that have been developed inside the petroleum reservoir domain, it is imperative to establish an environmental strategy and adopt appropriate measures to effectively seal and decommission these wells. In general, the cement plug serves as a material for plugging purposes. Nevertheless, there exist some scenarios in which the durability of such a plug is compromised, leading to the potential escape of hydrocarbons via fissures and fractures within cement plugs. Furthermore, cement is often not considered a practical solution for temporary plugging, particularly in the case of well sites that have the potential for future gas storage or CO2 injection. The Danish oil and gas industry has promising potential as a prospective candidate for future carbon dioxide (CO2) injection, hence contributing to the implementation of carbon capture strategies within Europe. The primary reservoir component consists of chalk, a rock characterized by limited permeability. This work focuses on the development and characterization of a novel hydrogel variant. The hydrogel is designed to be injected via a low-permeability reservoir and afterward undergoes a transformation into a high-viscosity gel. The primary objective of this research is to explore the potential of this hydrogel as a new solution for effectively plugging well flow. Initially, the synthesis of polyacrylamide was carried out using radical polymerization inside the confines of the reaction flask. Subsequently, with the application of the Hoffman rearrangement, the polymer chain undergoes partial amination, facilitating its subsequent reaction with the crosslinker and enabling the formation of a hydrogel in the subsequent stage. The organic crosslinker, glutaraldehyde, was employed in the experiment to facilitate the formation of a gel. This gel formation occurred when the polymeric solution was subjected to heat within a specified range of reservoir temperatures. Additionally, a rheological survey and gel time measurements were conducted on several polymeric solutions to determine the optimal concentration. The findings indicate that the gel duration is contingent upon the starting concentration and exhibits a range of 4 to 20 hours, hence allowing for manipulation to accommodate diverse injection strategies. Moreover, the findings indicate that the gel may be generated in environments characterized by acidity and high salinity. This property ensures the suitability of this substance for application in challenging reservoir conditions. The rheological investigation indicates that the polymeric solution exhibits the characteristics of a Herschel-Bulkley fluid with somewhat elevated yield stress prior to solidification.Keywords: polyacrylamide, hofmann rearrangement, rheology, gel time
Procedia PDF Downloads 77104 Spatial Mapping of Variations in Groundwater of Taluka Islamkot Thar Using GIS and Field Data
Authors: Imran Aziz Tunio
Abstract:
Islamkot is an underdeveloped sub-district (Taluka) in the Tharparkar district Sindh province of Pakistan located between latitude 24°25'19.79"N to 24°47'59.92"N and longitude 70° 1'13.95"E to 70°32'15.11"E. The Islamkot has an arid desert climate and the region is generally devoid of perennial rivers, canals, and streams. It is highly dependent on rainfall which is not considered a reliable surface water source and groundwater is the only key source of water for many centuries. To assess groundwater’s potential, an electrical resistivity survey (ERS) was conducted in Islamkot Taluka. Groundwater investigations for 128 Vertical Electrical Sounding (VES) were collected to determine the groundwater potential and obtain qualitatively and quantitatively layered resistivity parameters. The PASI Model 16 GL-N Resistivity Meter was used by employing a Schlumberger electrode configuration, with half current electrode spacing (AB/2) ranging from 1.5 to 100 m and the potential electrode spacing (MN/2) from 0.5 to 10 m. The data was acquired with a maximum current electrode spacing of 200 m. The data processing for the delineation of dune sand aquifers involved the technique of data inversion, and the interpretation of the inversion results was aided by the use of forward modeling. The measured geo-electrical parameters were examined by Interpex IX1D software, and apparent resistivity curves and synthetic model layered parameters were mapped in the ArcGIS environment using the inverse Distance Weighting (IDW) interpolation technique. Qualitative interpretation of vertical electrical sounding (VES) data shows the number of geo-electrical layers in the area varies from three to four with different resistivity values detected. Out of 128 VES model curves, 42 nos. are 3 layered, and 86 nos. are 4 layered. The resistivity of the first subsurface layers (Loose surface sand) varied from 16.13 Ωm to 3353.3 Ωm and thickness varied from 0.046 m to 17.52m. The resistivity of the second subsurface layer (Semi-consolidated sand) varied from 1.10 Ωm to 7442.8 Ωm and thickness varied from 0.30 m to 56.27 m. The resistivity of the third subsurface layer (Consolidated sand) varied from 0.00001 Ωm to 3190.8 Ωm and thickness varied from 3.26 m to 86.66 m. The resistivity of the fourth subsurface layer (Silt and Clay) varied from 0.0013 Ωm to 16264 Ωm and thickness varied from 13.50 m to 87.68 m. The Dar Zarrouk parameters, i.e. longitudinal unit conductance S is from 0.00024 to 19.91 mho; transverse unit resistance T from 7.34 to 40080.63 Ωm2; longitudinal resistance RS is from 1.22 to 3137.10 Ωm and transverse resistivity RT from 5.84 to 3138.54 Ωm. ERS data and Dar Zarrouk parameters were mapped which revealed that the study area has groundwater potential in the subsurface.Keywords: electrical resistivity survey, GIS & RS, groundwater potential, environmental assessment, VES
Procedia PDF Downloads 110103 The Impacts Of Hydraulic Conditions On The Fate, Transport And Accumulation Of Microplastics Pollution In The Aquatic Ecosystems
Authors: Majid Rasta, Xiaotao Shi, Mian Adnan Kakakhel, Yanqin Bai, Lao Liu, Jia Manke
Abstract:
Microplastics (MPs; particles <5 mm) pollution is considered as a globally pervasive threat to aquatic ecosystems, and many studies reported this pollution in rivers, wetlands, lakes, coastal waters and oceans. In the aquatic environments, settling and transport of MPs in water column and sediments are determined by different factors such as hydrologic characteristics, watershed pattern, rainfall events, hydraulic conditions, vegetation, hydrodynamics behavior of MPs, and physical features of particles (shape, size and density). In the meantime, hydraulic conditions (such as turbulence, high/low water speed flows or water stagnation) play a key role in the fate of MPs in aquatic ecosystems. Therefore, this study presents a briefly review on the effects of different hydraulic conditions on the fate, transport and accumulation of MPs in aquatic ecosystems. Generally, MPs are distributed horizontally and vertically in aquatic environments. The vertical distribution of MPs in the water column changes with different flow velocities. In the riverine, turbulent flow causing from the rapid water velocity and shallow depth may create a homogeneous mixture of MPs throughout the water column. While low velocity followed by low-turbulent waters can lead to the low level vertical mixing of MP particles in the water column. Consequently, the high numbers of MPs are expected to be found in the sediments of deep and wide channels as well as estuaries. In contrast, observing the lowest accumulation of MP particles in the sediments of straights of the rivers, places with the highest flow velocity is understandable. In the marine environment, hydrodynamic factors (e.g., turbulence, current velocity and residual circulation) can affect the sedimentation and transportation of MPs and thus change the distribution of MPs in the marine and coastal sediments. For instance, marine bays are known as the accumulation area of MPs due to poor hydrodynamic conditions. On the other hand, in the nearshore zone, the flow conditions are highly complex and dynamic. Experimental studies illustrated that maximum horizontal flow velocity in the sandy beach can predict the accumulation of MPs so that particles with high sinking velocities deposit in the lower water depths. As a whole, it can be concluded that the transport and accumulation of MPs in aquatic ecosystems are highly affected by hydraulic conditions. This study provided information about the impacts of hydraulic on MPs pollution. Further research on hydraulics and its relationship to the accumulation of MPs in aquatic ecosystems is needed to increase insights into this pollution.Keywords: microplastics pollution, hydraulic, transport, accumulation
Procedia PDF Downloads 70102 An Early Intervention Framework for Supporting Students’ Mathematical Development in the Transition to University STEM Programmes
Authors: Richard Harrison
Abstract:
Developing competency in mathematics and related critical thinking skills is essential to the education of undergraduate students of Science, Technology, Engineering and Mathematics (STEM). Recently, the HE sector has been impacted by a seemingly widening disconnect between the mathematical competency of incoming first-year STEM students and their entrance qualification tariffs. Despite relatively high grades in A-Level Mathematics, students may initially lack fundamental skills in key areas such as algebraic manipulation and have limited capacity to apply problem solving strategies. Compounded by compensatory measures applied to entrance qualifications during the pandemic, there has been an associated decline in student performance on introductory university mathematics modules. In the UK, a number of online resources have been developed to help scaffold the transition to university mathematics. However, in general, these do not offer a structured learning journey focused on individual developmental needs, nor do they offer an experience coherent with the teaching and learning characteristics of the destination institution. In order to address some of these issues, a bespoke framework has been designed and implemented on our VLE in the Faculty of Engineering & Physical Sciences (FEPS) at the University of Surrey. Called the FEPS Maths Support Framework, it was conceived to scaffold the mathematical development of individuals prior to entering the university and during the early stages of their transition to undergraduate studies. More than 90% of our incoming STEM students voluntarily participate in the process. Students complete a set of initial diagnostic questions in the late summer. Based on their performance and feedback on these questions, they are subsequently guided to self-select specific mathematical topic areas for review using our proprietary resources. This further assists students in preparing for discipline related diagnostic tests. The framework helps to identify students who are mathematically weak and facilitates early intervention to support students according to their specific developmental needs. This paper presents a summary of results from a rich data set captured from the framework over a 3-year period. Quantitative data provides evidence that students have engaged and developed during the process. This is further supported by process evaluation feedback from the students. Ranked performance data associated with seven key mathematical topic areas and eight engineering and science discipline areas reveals interesting patterns which can be used to identify more generic relative capabilities of the discipline area cohorts. In turn, this facilitates evidence based management of the mathematical development of the new cohort, informing any associated adjustments to teaching and learning at a more holistic level. Evidence is presented establishing our framework as an effective early intervention strategy for addressing the sector-wide issue of supporting the mathematical development of STEM students transitioning to HEKeywords: competency, development, intervention, scaffolding
Procedia PDF Downloads 65