Search results for: new prediction model
16875 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.Keywords: soft jar test, jar test, water treatment plant process, artificial neural network
Procedia PDF Downloads 16316874 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC
Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan
Abstract:
Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.Keywords: concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, uniaxial tensile test
Procedia PDF Downloads 41616873 The Extent of Land Use Externalities in the Fringe of Jakarta Metropolitan: An Application of Spatial Panel Dynamic Land Value Model
Authors: Rahma Fitriani, Eni Sumarminingsih, Suci Astutik
Abstract:
In a fast growing region, conversion of agricultural lands which are surrounded by some new development sites will occur sooner than expected. This phenomenon has been experienced by many regions in Indonesia, especially the fringe of Jakarta (BoDeTaBek). Being Indonesia’s capital city, rapid conversion of land in this area is an unavoidable process. The land conversion expands spatially into the fringe regions, which were initially dominated by agricultural land or conservation sites. Without proper control or growth management, this activity will invite greater costs than benefits. The current land use is the use which maximizes its value. In order to maintain land for agricultural activity or conservation, some efforts are needed to keep the land value of this activity as high as possible. In this case, the knowledge regarding the functional relationship between land value and its driving forces is necessary. In a fast growing region, development externalities are the assumed dominant driving force. Land value is the product of the past decision of its use leading to its value. It is also affected by the local characteristics and the observed surrounded land use (externalities) from the previous period. The effect of each factor on land value has dynamic and spatial virtues; an empirical spatial dynamic land value model will be more useful to capture them. The model will be useful to test and to estimate the extent of land use externalities on land value in the short run as well as in the long run. It serves as a basis to formulate an effective urban growth management’s policy. This study will apply the model to the case of land value in the fringe of Jakarta Metropolitan. The model will be used further to predict the effect of externalities on land value, in the form of prediction map. For the case of Jakarta’s fringe, there is some evidence about the significance of neighborhood urban activity – negative externalities, the previous land value and local accessibility on land value. The effects are accumulated dynamically over years, but they will fully affect the land value after six years.Keywords: growth management, land use externalities, land value, spatial panel dynamic
Procedia PDF Downloads 25416872 Effects of Global Validity of Predictive Cues upon L2 Discourse Comprehension: Evidence from Self-paced Reading
Authors: Binger Lu
Abstract:
It remains unclear whether second language (L2) speakers could use discourse context cues to predict upcoming information as native speakers do during online comprehension. Some researchers propose that L2 learners may have a reduced ability to generate predictions during discourse processing. At the same time, there is evidence that discourse-level cues are weighed more heavily in L2 processing than in L1. Previous studies showed that L1 prediction is sensitive to the global validity of predictive cues. The current study aims to explore whether and to what extent L2 learners can dynamically and strategically adjust their prediction in accord with the global validity of predictive cues in L2 discourse comprehension as native speakers do. In a self-paced reading experiment, Chinese native speakers (N=128), C-E bilinguals (N=128), and English native speakers (N=128) read high-predictable (e.g., Jimmy felt thirsty after running. He wanted to get some water from the refrigerator.) and low-predictable (e.g., Jimmy felt sick this morning. He wanted to get some water from the refrigerator.) discourses in two-sentence frames. The global validity of predictive cues was manipulated by varying the ratio of predictable (e.g., Bill stood at the door. He opened it with the key.) and unpredictable fillers (e.g., Bill stood at the door. He opened it with the card.), such that across conditions, the predictability of the final word of the fillers ranged from 100% to 0%. The dependent variable was reading time on the critical region (the target word and the following word), analyzed with linear mixed-effects models in R. C-E bilinguals showed reliable prediction across all validity conditions (β = -35.6 ms, SE = 7.74, t = -4.601, p< .001), and Chinese native speakers showed significant effect (β = -93.5 ms, SE = 7.82, t = -11.956, p< .001) in two of the four validity conditions (namely, the High-validity and MedLow conditions, where fillers ended with predictable words in 100% and 25% cases respectively), whereas English native speakers didn’t predict at all (β = -2.78 ms, SE = 7.60, t = -.365, p = .715). There was neither main effect (χ^²(3) = .256, p = .968) nor interaction (Predictability: Background: Validity, χ^²(3) = 1.229, p = .746; Predictability: Validity, χ^²(3) = 2.520, p = .472; Background: Validity, χ^²(3) = 1.281, p = .734) of Validity with speaker groups. The results suggest that prediction occurs in L2 discourse processing but to a much less extent in L1, witha significant effect in some conditions of L1 Chinese and anull effect in L1 English processing, consistent with the view that L2 speakers are more sensitive to discourse cues compared with L1 speakers. Additionally, the pattern of L1 and L2 predictive processing was not affected by the global validity of predictive cues. C-E bilinguals’ predictive processing could be partly transferred from their L1, as prior research showed that discourse information played a more significant role in L1 Chinese processing.Keywords: bilingualism, discourse processing, global validity, prediction, self-paced reading
Procedia PDF Downloads 13816871 Role of von Willebrand Factor Antigen as Non-Invasive Biomarker for the Prediction of Portal Hypertensive Gastropathy in Patients with Liver Cirrhosis
Authors: Mohamed El Horri, Amine Mouden, Reda Messaoudi, Mohamed Chekkal, Driss Benlaldj, Malika Baghdadi, Lahcene Benmahdi, Fatima Seghier
Abstract:
Background/aim: Recently, the Von Willebrand factor antigen (vWF-Ag)has been identified as a new marker of portal hypertension (PH) and its complications. Few studies talked about its role in the prediction of esophageal varices. VWF-Ag is considered a non-invasive approach, In order to avoid the endoscopic burden, cost, drawbacks, unpleasant and repeated examinations to the patients. In our study, we aimed to evaluate the ability of this marker in the prediction of another complication of portal hypertension, which is portal hypertensive gastropathy (PHG), the one that is diagnosed also by endoscopic tools. Patients and methods: It is about a prospective study, which include 124 cirrhotic patients with no history of bleeding who underwent screening endoscopy for PH-related complications like esophageal varices (EVs) and PHG. Routine biological tests were performed as well as the VWF-Ag testing by both ELFA and Immunoturbidimetric techniques. The diagnostic performance of our marker was assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curves. Results: 124 patients were enrolled in this study, with a mean age of 58 years [CI: 55 – 60 years] and a sex ratio of 1.17. Viral etiologies were found in 50% of patients. Screening endoscopy revealed the presence of PHG in 20.2% of cases, while for EVsthey were found in 83.1% of cases. VWF-Ag levels, were significantly increased in patients with PHG compared to those who have not: 441% [CI: 375 – 506], versus 279% [CI: 253 – 304], respectively (p <0.0001). Using the area under the receiver operating characteristic curve (AUC), vWF-Ag was a good predictor for the presence of PHG. With a value higher than 320% and an AUC of 0.824, VWF-Ag had an 84% sensitivity, 74% specificity, 44.7% positive predictive value, 94.8% negative predictive value, and 75.8% diagnostic accuracy. Conclusion: VWF-Ag is a good non-invasive low coast marker for excluding the presence of PHG in patients with liver cirrhosis. Using this marker as part of a selective screening strategy might reduce the need for endoscopic screening and the coast of the management of these kinds of patients.Keywords: von willebrand factor, portal hypertensive gastropathy, prediction, liver cirrhosis
Procedia PDF Downloads 20116870 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 12416869 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements
Authors: Alexander Buhr, Klaus Ehrenfried
Abstract:
Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.Keywords: boundary layer, high-speed PIV, ICE3, moving train model, roughness elements
Procedia PDF Downloads 30416868 A Theoretical Hypothesis on Ferris Wheel Model of University Social Responsibility
Authors: Le Kang
Abstract:
According to the nature of the university, as a free and responsible academic community, USR is based on a different foundation —academic responsibility, so the Pyramid and the IC Model of CSR could not fully explain the most distinguished feature of USR. This paper sought to put forward a new model— Ferris Wheel Model, to illustrate the nature of USR and the process of achievement. The Ferris Wheel Model of USR shows the university creates a balanced, fairness and neutrality systemic structure to afford social responsibilities; that makes the organization could obtain a synergistic effect to achieve more extensive interests of stakeholders and wider social responsibilities.Keywords: USR, achievement model, ferris wheel model, social responsibilities
Procedia PDF Downloads 72216867 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt
Procedia PDF Downloads 35216866 Quoting Jobshops Due Dates Subject to Exogenous Factors in Developing Nations
Authors: Idris M. Olatunde, Kareem B.
Abstract:
In manufacturing systems, especially job shops, service performance is a key factor that determines customer satisfaction. Service performance depends not only on the quality of the output but on the delivery lead times as well. Besides product quality enhancement, delivery lead time must be minimized for optimal patronage. Quoting accurate due dates is sine quo non for job shop operational survival in a global competitive environment. Quoting accurate due dates in job shops has been a herculean task that nearly defiled solutions from many methods employed due to complex jobs routing nature of the system. This class of NP-hard problems possessed no rigid algorithms that can give an optimal solution. Jobshop operational problem is more complex in developing nations due to some peculiar factors. Operational complexity in job shops emanated from political instability, poor economy, technological know-how, and the non-promising socio-political environment. The mentioned exogenous factors were hardly considered in the previous studies on scheduling problem related to due date determination in job shops. This study has filled the gap created in the past studies by developing a dynamic model that incorporated the exogenous factors for accurate determination of due dates for varying jobs complexity. Real data from six job shops selected from the different part of Nigeria, were used to test the efficacy of the model, and the outcomes were analyzed statistically. The results of the analyzes showed that the model is more promising in determining accurate due dates than the traditional models deployed by many job shops in terms of patronage and lead times minimization.Keywords: due dates prediction, improved performance, customer satisfaction, dynamic model, exogenous factors, job shops
Procedia PDF Downloads 41116865 Model Predictive Control of Three Phase Inverter for PV Systems
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink
Procedia PDF Downloads 59216864 Forecasting the Sea Level Change in Strait of Hormuz
Authors: Hamid Goharnejad, Amir Hossein Eghbali
Abstract:
Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One models of Discrete Wavelet artificial Neural Network (DWNN) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and predictands to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 to 105 cm. Furthermore the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.Keywords: climate change scenarios, sea-level rise, strait of Hormuz, forecasting
Procedia PDF Downloads 26916863 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression
Authors: Abdulla D. Alblooshi
Abstract:
The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE
Procedia PDF Downloads 16816862 Determining the Relationship Between Maternal Stress and Depression and Child Obesity: The Mediating Role of Maternal Self-efficacy
Authors: Alireza Monzavi Chaleshtori, Mahnaz Aliakbari Dehkordi, Maryam Aliakbari, Solmaz Seyed Mostafaii
Abstract:
Objective: Considering the growing obesity among children and the role of mother's psychological factors as well as the need to prevent childhood obesity, this study aimed to investigate the mediating role of mother's self-efficacy in the relationship between mother's stress and depression and child obesity. Method: For this purpose, in a descriptive-correlation study, 222 mothers and children aged 1 to 5 years in Tehran, who had the opportunity to answer an online questionnaire, were selected by random sampling and to the depression scales of the Kroenke and Spitzer Patient Health Questionnaire, Cohen's stress and Self-efficacy of Berkeley mothers answered. Pearson correlation test and path analysis were used for data analysis. Findings: The findings showed that maternal depression had an indirect and significant effect on child obesity, and the effect of stress and depression on child obesity was indirect and non-significant. Therefore, the model has a good fit with the research data, and stress and depression indirectly predicted child obesity with the mediating role of self-efficacy. Conclusion: The hypothesized model tested based on mother's stress and depression with the mediating role of mother's self-efficacy was a good model in explaining the prediction of child obesity. Based on the findings of this research, a practical framework can be provided to explain the psychological factors of the mother in relation to child obesity and its treatment.Keywords: stress, self-efficacy, child obesity, depression
Procedia PDF Downloads 6816861 Model Observability – A Monitoring Solution for Machine Learning Models
Authors: Amreth Chandrasehar
Abstract:
Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.Keywords: model observability, monitoring, drift detection, ML observability platform
Procedia PDF Downloads 11016860 Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations
Authors: Jossitt Williams Vargas Cruz, Aura Jazmín Pérez Ríos
Abstract:
The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation.Keywords: correlations, cosmic rays, sun, sunspots and variations.
Procedia PDF Downloads 7016859 All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model
Authors: S. A. Sadegh Zadeh, C. Kambhampati
Abstract:
Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness.Keywords: all-or-none, computational modelling, mathematical model, transmembrane voltage, action potential
Procedia PDF Downloads 61316858 A Wall Law for Two-Phase Turbulent Boundary Layers
Authors: Dhahri Maher, Aouinet Hana
Abstract:
The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.Keywords: bubbly flows, log law, boundary layer, CFD
Procedia PDF Downloads 27716857 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 31416856 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding
Authors: Emad A. Mohammed
Abstract:
Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.Keywords: MMP, gas flooding, artificial intelligence, correlation
Procedia PDF Downloads 14316855 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building
Authors: Aaditya U. Jhamb
Abstract:
Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.Keywords: energy efficient buildings, heating load, cooling load, machine learning models
Procedia PDF Downloads 9216854 A Numerical Study of the Tidal Currents in the Persian Gulf and Oman Sea
Authors: Fatemeh Sadat Sharifi, A. A. Bidokhti, M. Ezam, F. Ahmadi Givi
Abstract:
This study focuses on the tidal oscillation and its speed to create a general pattern in seas. The purpose of the analysis is to find out the amplitude and phase for several important tidal components. Therefore, Regional Ocean Models (ROMS) was rendered to consider the correlation and accuracy of this pattern. Finding tidal harmonic components allows us to predict tide at this region. Better prediction of these tides, making standard platform, making suitable wave breakers, helping coastal building, navigation, fisheries, port management and tsunami research. Result shows a fair accuracy in the SSH. It reveals tidal currents are highest in Hormuz Strait and the narrow and shallow region between Kish Island. To investigate flow patterns of the region, the results of limited size model of FVCOM were utilized. Many features of the present day view of ocean circulation have some precedent in tidal and long- wave studies. Tidal waves are categorized to be among the long waves. So that tidal currents studies have indeed effects in subsequent studies of sea and ocean circulations.Keywords: barotropic tide, FVCOM, numerical model, OTPS, ROMS
Procedia PDF Downloads 23416853 A Compressor Map Optimizing Tool for Prediction of Compressor Off-Design Performance
Authors: Zhongzhi Hu, Jie Shen, Jiqiang Wang
Abstract:
A high precision aeroengine model is needed when developing the engine control system. Compared with other main components, the axial compressor is the most challenging component to simulate. In this paper, a compressor map optimizing tool based on the introduction of a modifiable β function is developed for FWorks (FADEC Works). Three parameters (d density, f fitting coefficient, k₀ slope of the line β=0) are introduced to the β function to make it modifiable. The comparison of the traditional β function and the modifiable β function is carried out for a certain type of compressor. The interpolation errors show that both methods meet the modeling requirements, while the modifiable β function can predict compressor performance more accurately for some areas of the compressor map where the users are interested in.Keywords: beta function, compressor map, interpolation error, map optimization tool
Procedia PDF Downloads 26516852 Ensemble-Based SVM Classification Approach for miRNA Prediction
Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam
Abstract:
In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data
Procedia PDF Downloads 34716851 Study of the Use of Artificial Neural Networks in Islamic Finance
Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi
Abstract:
The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning
Procedia PDF Downloads 23616850 CD133 and CD44 - Stem Cell Markers for Prediction of Clinically Aggressive Form of Colorectal Cancer
Authors: Ognen Kostovski, Svetozar Antovic, Rubens Jovanovic, Irena Kostovska, Nikola Jankulovski
Abstract:
Introduction:Colorectal carcinoma (CRC) is one of the most common malignancies in the world. The cancer stem cell (CSC) markers are associated with aggressive cancer types and poor prognosis. The aim of study was to determine whether the expression of colorectal cancer stem cell markers CD133 and CD44 could be significant in prediction of clinically aggressive form of CRC. Materials and methods: Our study included ninety patients (n=90) with CRC. Patients were divided into two subgroups: with metatstatic CRC and non-metastatic CRC. Tumor samples were analyzed with standard histopathological methods, than was performed immunohistochemical analysis with monoclonal antibodies against CD133 and CD44 stem cell markers. Results: High coexpression of CD133 and CD44 was observed in 71.4% of patients with metastatic disease, compared to 37.9% in patients without metastases. Discordant expression of both markers was found in 8% of the subgroup with metastatic CRC, and in 13.4% of the subgroup without metastatic CRC. Statistical analyses showed a significant association of increased expression of CD133 and CD44 with the disease stage, T - category and N - nodal status. With multiple regression analysis the stage of disease was designate as a factor with the greatest statistically significant influence on expression of CD133 (p <0.0001) and CD44 (p <0.0001). Conclusion: Our results suggest that the coexpression of CD133 and CD44 have an important role in prediction of clinically aggressive form of CRC. Both stem cell markers can be routinely implemented in standard pathohistological diagnostics and can be useful markers for pre-therapeutic oncology screening.Keywords: colorectal carcinoma, stem cells, CD133+, CD44+
Procedia PDF Downloads 14616849 Intelligent Prediction of Breast Cancer Severity
Authors: Wahab Ali, Oyebade K. Oyedotun, Adnan Khashman
Abstract:
Breast cancer remains a threat to the woman’s world in view of survival rates, it early diagnosis and mortality statistics. So far, research has shown that many survivors of breast cancer cases are in the ones with early diagnosis. Breast cancer is usually categorized into stages which indicates its severity and corresponding survival rates for patients. Investigations show that the farther into the stages before diagnosis the lesser the chance of survival; hence the early diagnosis of breast cancer becomes imperative, and consequently the application of novel technologies to achieving this. Over the year, mammograms have used in the diagnosis of breast cancer, but the inconclusive deductions made from such scans lead to either false negative cases where cancer patients may be left untreated or false positive where unnecessary biopsies are carried out. This paper presents the application of artificial neural networks in the prediction of severity of breast tumour (whether benign or malignant) using mammography reports and other factors that are related to breast cancer.Keywords: breast cancer, intelligent classification, neural networks, mammography
Procedia PDF Downloads 48716848 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 28916847 Prediction of Solanum Lycopersicum Genome Encoded microRNAs Targeting Tomato Spotted Wilt Virus
Authors: Muhammad Shahzad Iqbal, Zobia Sarwar, Salah-ud-Din
Abstract:
Tomato spotted wilt virus (TSWV) belongs to the genus Tospoviruses (family Bunyaviridae). It is one of the most devastating pathogens of tomato (Solanum Lycopersicum) and heavily damages the crop yield each year around the globe. In this study, we retrieved 329 mature miRNA sequences from two microRNA databases (miRBase and miRSoldb) and checked the putative target sites in the downloaded-genome sequence of TSWV. A consensus of three miRNA target prediction tools (RNA22, miRanda and psRNATarget) was used to screen the false-positive microRNAs targeting sites in the TSWV genome. These tools calculated different target sites by calculating minimum free energy (mfe), site-complementarity, minimum folding energy and other microRNA-mRNA binding factors. R language was used to plot the predicted target-site data. All the genes having possible target sites for different miRNAs were screened by building a consensus table. Out of these 329 mature miRNAs predicted by three algorithms, only eight miRNAs met all the criteria/threshold specifications. MC-Fold and MC-Sym were used to predict three-dimensional structures of miRNAs and further analyzed in USCF chimera to visualize the structural and conformational changes before and after microRNA-mRNA interactions. The results of the current study show that the predicted eight miRNAs could further be evaluated by in vitro experiments to develop TSWV-resistant transgenic tomato plants in the future.Keywords: tomato spotted wild virus (TSWV), Solanum lycopersicum, plant virus, miRNAs, microRNA target prediction, mRNA
Procedia PDF Downloads 15416846 Multiscale Modelling of Citrus Black Spot Transmission Dynamics along the Pre-Harvest Supply Chain
Authors: Muleya Nqobile, Winston Garira
Abstract:
We presented a compartmental deterministic multi-scale model which encompass internal plant defensive mechanism and pathogen interaction, then we consider nesting the model into the epidemiological model. The objective was to improve our understanding of the transmission dynamics of within host and between host of Guignardia citricapa Kiely. The inflow of infected class was scaled down to individual level while the outflow was scaled up to average population level. Conceptual model and mathematical model were constructed to display a theoretical framework which can be used for predicting or identify disease pattern.Keywords: epidemiological model, mathematical modelling, multi-scale modelling, immunological model
Procedia PDF Downloads 456