Search results for: multichannel signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5068

Search results for: multichannel signal processing

4168 Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers

Authors: Samira Baghbanbari, A. B. P. Lever, Payam S. Shabestari, Donald Weaver

Abstract:

Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor.

Keywords: charge transfer, signal transmission, phospholipids, water layers, ANN

Procedia PDF Downloads 77
4167 Affective Transparency in Compound Word Processing

Authors: Jordan Gallant

Abstract:

In the compound word processing literature, much attention has been paid to the relationship between a compound’s denotational meaning and that of its morphological whole-word constituents, which is referred to as ‘semantic transparency’. However, the parallel relationship between a compound’s connotation and that of its constituents has not been addressed at all. For instance, while a compound like ‘painkiller’ might be semantically transparent, it is not ‘affectively transparent’. That is, both constituents have primarily negative connotations, while the whole compound has a positive one. This paper investigates the role of affective transparency on compound processing using two methodologies commonly employed in this field: a lexical decision task and a typing task. The critical stimuli used were 112 English bi-constituent compounds that differed in terms of the effective transparency of their constituents. Of these, 36 stimuli contained constituents with similar connotations to the compound (e.g., ‘dreamland’), 36 contained constituents with more positive connotations (e.g. ‘bedpan’), and 36 contained constituents with more negative connotations (e.g. ‘painkiller’). Connotation of whole-word constituents and compounds were operationalized via valence ratings taken from an off-line ratings database. In Experiment 1, compound stimuli and matched non-word controls were presented visually to participants, who were then asked to indicate whether it was a real word in English. Response times and accuracy were recorded. In Experiment 2, participants typed compound stimuli presented to them visually. Individual keystroke response times and typing accuracy were recorded. The results of both experiments provided positive evidence that compound processing is influenced by effective transparency. In Experiment 1, compounds in which both constituents had more negative connotations than the compound itself were responded to significantly more slowly than compounds in which the constituents had similar or more positive connotations. Typed responses from Experiment 2 showed that inter-keystroke intervals at the morphological constituent boundary were significantly longer when the connotation of the head constituent was either more positive or more negative than that of the compound. The interpretation of this finding is discussed in the context of previous compound typing research. Taken together, these findings suggest that affective transparency plays a role in the recognition, storage, and production of English compound words. This study provides a promising first step in a new direction for research on compound words.

Keywords: compound processing, semantic transparency, typed production, valence

Procedia PDF Downloads 131
4166 Reliability of Intra-Logistics Systems – Simulating Performance Availability

Authors: Steffen Schieweck, Johannes Dregger, Sascha Kaczmarek, Michael ten Hompel

Abstract:

Logistics distributors face the issue of having to provide increasing service levels while being forced to reduce costs at the same time. Same-day delivery, quick order processing and rapidly growing ranges of articles are only some of the prevailing challenges. One key aspect of the performance of an intra-logistics system is how often and in which amplitude congestions and dysfunctions affect the processing operations. By gaining knowledge of the so called ‘performance availability’ of such a system during the planning stage, oversizing and wasting can be reduced whereas planning transparency is increased. State of the art for the determination of this KPI are simulation studies. However, their structure and therefore their results may vary unforeseeably. This article proposes a concept for the establishment of ‘certified’ and hence reliable and comparable simulation models.

Keywords: intra-logistics, performance availability, simulation, warehousing

Procedia PDF Downloads 457
4165 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification

Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine

Abstract:

Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.

Keywords: convolution, feature extraction, image analysis, validation, precision agriculture

Procedia PDF Downloads 319
4164 Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing

Authors: Tim Dunne, Jiaxiang Ren, Lei Zhao, Peng Cheng, Yi Song, Yu Liu, Wenhan Yue, Xiongwen Yang

Abstract:

Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1” square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 °C, at a rate of 0.005”/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude.

Keywords: equal channel angular processing, dissolvable magnesium, frac plug, mechanical properties

Procedia PDF Downloads 119
4163 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices

Authors: S. Srinivasan, E. Cretu

Abstract:

The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.

Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape

Procedia PDF Downloads 140
4162 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision

Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari

Abstract:

In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.

Keywords: breakage, computer vision, husking, rice kernel

Procedia PDF Downloads 385
4161 Generic Early Warning Signals for Program Student Withdrawals: A Complexity Perspective Based on Critical Transitions and Fractals

Authors: Sami Houry

Abstract:

Complex systems exhibit universal characteristics as they near a tipping point. Among them are common generic early warning signals which precede critical transitions. These signals include: critical slowing down in which the rate of recovery from perturbations decreases over time; an increase in the variance of the state variable; an increase in the skewness of the state variable; an increase in the autocorrelations of the state variable; flickering between different states; and an increase in spatial correlations over time. The presence of the signals has management implications, as the identification of the signals near the tipping point could allow management to identify intervention points. Despite the applications of the generic early warning signals in various scientific fields, such as fisheries, ecology and finance, a review of literature did not identify any applications that address the program student withdrawal problem at the undergraduate distance universities. This area could benefit from the application of generic early warning signals as the program withdrawal rate amongst distance students is higher than the program withdrawal rate at face-to-face conventional universities. This research specifically assessed the generic early warning signals through an intensive case study of undergraduate program student withdrawal at a Canadian distance university. The university is non-cohort based due to its system of continuous course enrollment where students can enroll in a course at the beginning of every month. The assessment of the signals was achieved through the comparison of the incidences of generic early warning signals among students who withdrew or simply became inactive in their undergraduate program of study, the true positives, to the incidences of the generic early warning signals among graduates, the false positives. This was achieved through significance testing. Research findings showed support for the signal pertaining to the rise in flickering which is represented in the increase in the student’s non-pass rates prior to withdrawing from a program; moderate support for the signals of critical slowing down as reflected in the increase in the time a student spends in a course; and moderate support for the signals on increase in autocorrelation and increase in variance in the grade variable. The findings did not support the signal on the increase in skewness of the grade variable. The research also proposes a new signal based on the fractal-like characteristic of student behavior. The research also sought to extend knowledge by investigating whether the emergence of a program withdrawal status is self-similar or fractal-like at multiple levels of observation, specifically the program level and the course level. In other words, whether the act of withdrawal at the program level is also present at the course level. The findings moderately supported self-similarity as a potential signal. Overall, the assessment of the signals suggests that the signals, with the exception with the increase of skewness, could be utilized as a predictive management tool and potentially add one more tool, the fractal-like characteristic of withdrawal, as an additional signal in addressing the student program withdrawal problem.

Keywords: critical transitions, fractals, generic early warning signals, program student withdrawal

Procedia PDF Downloads 186
4160 Detection of Intentional Attacks in Images Based on Watermarking

Authors: Hazem Munawer Al-Otum

Abstract:

In this work, an efficient watermarking technique is proposed and can be used for detecting intentional attacks in RGB color images. The proposed technique can be implemented for image authentication and exhibits high robustness against unintentional common image processing attacks. It deploys two measures to discern between intentional and unintentional attacks based on using a quantization-based technique in a modified 2D multi-pyramidal DWT transform. Simulations have shown high accuracy in detecting intentionally attacked regions while exhibiting high robustness under moderate to severe common image processing attacks.

Keywords: image authentication, copyright protection, semi-fragile watermarking, tamper detection

Procedia PDF Downloads 259
4159 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting

Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos

Abstract:

Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.

Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning

Procedia PDF Downloads 112
4158 Control the Flow of Big Data

Authors: Shizra Waris, Saleem Akhtar

Abstract:

Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.

Keywords: computer, it community, industry, big data

Procedia PDF Downloads 196
4157 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing

Procedia PDF Downloads 326
4156 Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker

Authors: Nassim Bessaad, Qilian Bao, Zhao Jiangkang

Abstract:

The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF).

Keywords: inertial navigation, adaptive filtering, star tracker, FOG

Procedia PDF Downloads 82
4155 Design of Regular Communication Area for Infrared Electronic-Toll-Collection Systems

Authors: Wern-Yarng Shieh, Chao Qian, Bingnan Pei

Abstract:

A design of communication area for infrared electronic-toll-collection systems to provide an extended communication interval in the vehicle traveling direction and regular boundary between contiguous traffic lanes is proposed. By utilizing two typical low-cost commercial infrared LEDs with different half-intensity angles Φ1/2 = 22° and 10°, the radiation pattern of the emitter is designed to properly adjust the spatial distribution of the signal power. The aforementioned purpose can be achieved with an LED array in a three-piece structure with appropriate mounting angles. With this emitter, the influence of the mounting parameters, including the mounting height and mounting angles of the on-board unit and road-side unit, on the system performance in terms of the received signal strength and communication area are investigated. The results reveal that, for our emitter proposed in this paper, the ideal "long-and-narrow" characteristic of the communication area is very little affected by these mounting parameters. An optimum mounting configuration is also suggested.

Keywords: dedicated short-range communication (DSRC), electronic toll collection (ETC), infrared communication, intelligent transportation system (ITS), multilane free flow

Procedia PDF Downloads 339
4154 Big Data Analysis with RHadoop

Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim

Abstract:

It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop

Procedia PDF Downloads 439
4153 An Innovative Auditory Impulsed EEG and Neural Network Based Biometric Identification System

Authors: Ritesh Kumar, Gitanjali Chhetri, Mandira Bhatia, Mohit Mishra, Abhijith Bailur, Abhinav

Abstract:

The prevalence of the internet and technology in our day to day lives is creating more security issues than ever. The need for protecting and providing a secure access to private and business data has led to the development of many security systems. One of the potential solutions is to employ the bio-metric authentication technique. In this paper we present an innovative biometric authentication method that utilizes a person’s EEG signal, which is acquired in response to an auditory stimulus,and transferred wirelessly to a computer that has the necessary ANN algorithm-Multi layer perceptrol neural network because of is its ability to differentiate between information which is not linearly separable.In order to determine the weights of the hidden layer we use Gaussian random weight initialization. MLP utilizes a supervised learning technique called Back propagation for training the network. The complex algorithm used for EEG classification reduces the chances of intrusion into the protected public or private data.

Keywords: EEG signal, auditory evoked potential, biometrics, multilayer perceptron neural network, back propagation rule, Gaussian random weight initialization

Procedia PDF Downloads 417
4152 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: deep learning, skin cancer, image processing, melanoma

Procedia PDF Downloads 152
4151 Enhancing Word Meaning Retrieval Using FastText and Natural Language Processing Techniques

Authors: Sankalp Devanand, Prateek Agasimani, Shamith V. S., Rohith Neeraje

Abstract:

Machine translation has witnessed significant advancements in recent years, but the translation of languages with distinct linguistic characteristics, such as English and Sanskrit, remains a challenging task. This research presents the development of a dedicated English-to-Sanskrit machine translation model, aiming to bridge the linguistic and cultural gap between these two languages. Using a variety of natural language processing (NLP) approaches, including FastText embeddings, this research proposes a thorough method to improve word meaning retrieval. Data preparation, part-of-speech tagging, dictionary searches, and transliteration are all included in the methodology. The study also addresses the implementation of an interpreter pattern and uses a word similarity task to assess the quality of word embeddings. The experimental outcomes show how the suggested approach may be used to enhance word meaning retrieval tasks with greater efficacy, accuracy, and adaptability. Evaluation of the model's performance is conducted through rigorous testing, comparing its output against existing machine translation systems. The assessment includes quantitative metrics such as BLEU scores, METEOR scores, Jaccard Similarity, etc.

Keywords: machine translation, English to Sanskrit, natural language processing, word meaning retrieval, fastText embeddings

Procedia PDF Downloads 48
4150 Pedestrian Safe Bumper Design from Commingled Glass Fiber/Polypropylene Reinforced Sandwich Composites

Authors: L. Onal

Abstract:

The aim of this study is to optimize manufacturing process for thermoplastic sandwich composite structures for the pedestrian safety of automobiles subjected to collision condition. In particular, cost-effective manufacturing techniques for sandwich structures with commingled GF/PP skins and low-density foam cores are being investigated. The performance of these structures under bending load is being studied. Samples are manufactured using compression moulding technique. The relationship of this performance to processing parameters such as mould temperature, moulding time, moulding pressure and sequence of the layers during moulding is being investigated. The results of bending tests are discussed in the light of the moulding conditions and conclusions are given regarding optimum set of processing conditions using the compression moulding route

Keywords: twintex, flexural properties, automobile composites, sandwich structures

Procedia PDF Downloads 435
4149 Characterization of Shiga Toxin Escherichia coli Recovered from a Beef Processing Facility within Southern Ontario and Comparative Performance of Molecular Diagnostic Platforms

Authors: Jessica C. Bannon, Cleso M. Jordao Jr., Mohammad Melebari, Carlos Leon-Velarde, Roger Johnson, Keith Warriner

Abstract:

There has been an increased incidence of non-O157 Shiga Toxin Escherichia coli (STEC) with six serotypes (Top 6) being implicated in causing haemolytic uremic syndrome (HUS). Beef has been suggested to be a significant vehicle for non-O157 STEC although conclusive evidence has yet to be obtained. The following aimed to determine the prevalence of the Top 6 non-O157 STEC in beef processing using three different diagnostic platforms then characterize the recovered isolates. Hide, carcass and environmental swab samples (n = 60) were collected from a beef processing facility over a 12 month period. Enriched samples were screened using Biocontrol GDS, BAX or PALLgene molecular diagnostic tests. Presumptive non-O157 STEC positive samples were confirmed using conventional PCR and serology. STEC was detected by GDS (55% positive), BAX (85% positive), and PALLgene (93%). However, during confirmation testing only 8 of the 60 samples (13%) were found to harbour STEC. Interestingly, the presence of virulence factors in the recovered isolates was unstable and readily lost during subsequent sub-culturing. There is a low prevalence of Top 6 non-O157 STEC associated with beef although other serotypes are encountered. Yet, the instability of the virulence factors in recovered strains would question their clinical relevance.

Keywords: beef, food microbiology, shiga toxin, STEC

Procedia PDF Downloads 464
4148 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images

Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam

Abstract:

Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.

Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification

Procedia PDF Downloads 349
4147 Prediction, Production, and Comprehension: Exploring the Influence of Salience in Language Processing

Authors: Andy H. Clark

Abstract:

This research looks into the relationship between language comprehension and production with a specific focus on the role of salience in shaping these processes. Salience, our most immediate perception of what is most probable out of all possible situations and outcomes strongly affects our perception and action in language production and comprehension. This study investigates the impact of geographic and emotional attachments to the target language on the differences in the learners’ comprehension and production abilities. Using quantitative research methods (Qualtrics, SPSS), this study examines preferential choices of two groups of Japanese English language learners: those residing in the United States and those in Japan. By comparing and contrasting these two groups, we hope to gain a better understanding of how salience of linguistics cues influences language processing.

Keywords: intercultural pragmatics, salience, production, comprehension, pragmatics, action, perception, cognition

Procedia PDF Downloads 78
4146 High Pressure Processing of Jackfruit Bulbs: Effect on Color, Nutrient Profile and Enzyme Inactivation

Authors: Jyoti Kumari, Pavuluri Srinivasa Rao

Abstract:

Jackfruit (ArtocarpusheterophyllusL.) is an underutilized yet highly nutritious fruit with unique flavour, known for its therapeutic and culinary properties. Fresh jackfruit bulb has a very short shelf life due to high moisture and sugar content leading to microbial and enzymatic browning, hindering its consumer acceptability and marketability. An attempt has been made for the preservation of the ripe jackfruit bulbs, by the application of high pressure (HP) over a range of 200-500 MPa at ambient temperature for dwell times ranging from 5 to 20 min. The physicochemical properties of jackfruit bulbs such as the pH, TSS, and titrable acidity were not affected by the pressurization process. The ripening index of the fruit bulb also decreased following HP treatment. While the ascorbic acid and antioxidant activity of jackfruit bulb were well retained by high pressure processing (HPP), the total phenols and carotenoids showed a slight increase. The HPP significantly affected the colour and textural properties of jackfruit bulb. High pressure processing was highly effective in reducing the browning index of jackfruit bulbs in comparison to untreated bulbs. The firmness of the bulbs improved upon the pressure treatment with longer dwelling time. The polyphenol oxidase has been identified as the most prominent oxidative enzyme in the jackfruit bulb. The enzymatic activity of polyphenol oxidase and peroxidase were significantly reduced by up to 40% following treatment at 400 MPa/15 min. HPP of jackfruit bulbs at ambient temperatures is shown to be highly beneficial in improving the shelf stability, retaining its nutrient profile, color, and appearance while ensuring the maximum inactivation of the spoilage enzymes.

Keywords: antioxidant capacity, ascorbic acid, carotenoids, color, HPP-high pressure processing, jackfruit bulbs, polyphenol oxidase, peroxidase, total phenolic content

Procedia PDF Downloads 177
4145 Application of the Bionic Wavelet Transform and Psycho-Acoustic Model for Speech Compression

Authors: Chafik Barnoussi, Mourad Talbi, Adnane Cherif

Abstract:

In this paper we propose a new speech compression system based on the application of the Bionic Wavelet Transform (BWT) combined with the psychoacoustic model. This compression system is a modified version of the compression system using a MDCT (Modified Discrete Cosine Transform) filter banks of 32 filters each and the psychoacoustic model. This modification consists in replacing the banks of the MDCT filter banks by the bionic wavelet coefficients which are obtained from the application of the BWT to the speech signal to be compressed. These two methods are evaluated and compared with each other by computing bits before and bits after compression. They are tested on different speech signals and the obtained simulation results show that the proposed technique outperforms the second technique and this in term of compressed file size. In term of SNR, PSNR and NRMSE, the outputs speech signals of the proposed compression system are with acceptable quality. In term of PESQ and speech signal intelligibility, the proposed speech compression technique permits to obtain reconstructed speech signals with good quality.

Keywords: speech compression, bionic wavelet transform, filterbanks, psychoacoustic model

Procedia PDF Downloads 386
4144 The Effect of Speech-Shaped Noise and Speaker’s Voice Quality on First-Grade Children’s Speech Perception and Listening Comprehension

Authors: I. Schiller, D. Morsomme, A. Remacle

Abstract:

Children’s ability to process spoken language develops until the late teenage years. At school, where efficient spoken language processing is key to academic achievement, listening conditions are often unfavorable. High background noise and poor teacher’s voice represent typical sources of interference. It can be assumed that these factors particularly affect primary school children, because their language and literacy skills are still low. While it is generally accepted that background noise and impaired voice impede spoken language processing, there is an increasing need for analyzing impacts within specific linguistic areas. Against this background, the aim of the study was to investigate the effect of speech-shaped noise and imitated dysphonic voice on first-grade primary school children’s speech perception and sentence comprehension. Via headphones, 5 to 6-year-old children, recruited within the French-speaking community of Belgium, listened to and performed a minimal-pair discrimination task and a sentence-picture matching task. Stimuli were randomly presented according to four experimental conditions: (1) normal voice / no noise, (2) normal voice / noise, (3) impaired voice / no noise, and (4) impaired voice / noise. The primary outcome measure was task score. How did performance vary with respect to listening condition? Preliminary results will be presented with respect to speech perception and sentence comprehension and carefully interpreted in the light of past findings. This study helps to support our understanding of children’s language processing skills under adverse conditions. Results shall serve as a starting point for probing new measures to optimize children’s learning environment.

Keywords: impaired voice, sentence comprehension, speech perception, speech-shaped noise, spoken language processing

Procedia PDF Downloads 194
4143 A Novel Approach to Asynchronous State Machine Modeling on Multisim for Avoiding Function Hazards

Authors: Parisi L., Hamili D., Azlan N.

Abstract:

The aim of this study was to design and simulate a particular type of Asynchronous State Machine (ASM), namely a ‘traffic light controller’ (TLC), operated at a frequency of 0.5 Hz. The design task involved two main stages: firstly, designing a 4-bit binary counter using J-K flip flops as the timing signal and subsequently, attaining the digital logic by deploying ASM design process. The TLC was designed such that it showed a sequence of three different colours, i.e. red, yellow and green, corresponding to set thresholds by deploying the least number of AND, OR and NOT gates possible. The software Multisim was deployed to design such circuit and simulate it for circuit troubleshooting in order for it to display the output sequence of the three different colours on the traffic light in the correct order. A clock signal, an asynchronous 4-bit binary counter that was designed through the use of J-K flip flops along with an ASM were used to complete this sequence, which was programmed to be repeated indefinitely. Eventually, the circuit was debugged and optimized, thus displaying the correct waveforms of the three outputs through the logic analyzer. However, hazards occurred when the frequency was increased to 10 MHz. This was attributed to delays in the feedback being too high.

Keywords: asynchronous state machine, traffic light controller, circuit design, digital electronics

Procedia PDF Downloads 432
4142 DNA Multiplier: A Design Architecture of a Multiplier Circuit Using DNA Molecules

Authors: Hafiz Md. Hasan Babu, Khandaker Mohammad Mohi Uddin, Nitish Biswas, Sarreha Tasmin Rikta, Nuzmul Hossain Nahid

Abstract:

Nanomedicine and bioengineering use biological systems that can perform computing operations. In a biocomputational circuit, different types of biomolecules and DNA (Deoxyribose Nucleic Acid) are used as active components. DNA computing has the capability of performing parallel processing and a large storage capacity that makes it diverse from other computing systems. In most processors, the multiplier is treated as a core hardware block, and multiplication is one of the time-consuming and lengthy tasks. In this paper, cost-effective DNA multipliers are designed using algorithms of molecular DNA operations with respect to conventional ones. The speed and storage capacity of a DNA multiplier are also much higher than a traditional silicon-based multiplier.

Keywords: biological systems, DNA multiplier, large storage, parallel processing

Procedia PDF Downloads 220
4141 Benchmarking Bert-Based Low-Resource Language: Case Uzbek NLP Models

Authors: Jamshid Qodirov, Sirojiddin Komolov, Ravilov Mirahmad, Olimjon Mirzayev

Abstract:

Nowadays, natural language processing tools play a crucial role in our daily lives, including various techniques with text processing. There are very advanced models in modern languages, such as English, Russian etc. But, in some languages, such as Uzbek, the NLP models have been developed recently. Thus, there are only a few NLP models in Uzbek language. Moreover, there is no such work that could show which Uzbek NLP model behaves in different situations and when to use them. This work tries to close this gap and compares the Uzbek NLP models existing as of the time this article was written. The authors try to compare the NLP models in two different scenarios: sentiment analysis and sentence similarity, which are the implementations of the two most common problems in the industry: classification and similarity. Another outcome from this work is two datasets for classification and sentence similarity in Uzbek language that we generated ourselves and can be useful in both industry and academia as well.

Keywords: NLP, benchmak, bert, vectorization

Procedia PDF Downloads 57
4140 A Bottleneck-Aware Power Management Scheme in Heterogeneous Processors for Web Apps

Authors: Inyoung Park, Youngjoo Woo, Euiseong Seo

Abstract:

With the advent of WebGL, Web apps are now able to provide high quality graphics by utilizing the underlying graphic processing units (GPUs). Despite that the Web apps are becoming common and popular, the current power management schemes, which were devised for the conventional native applications, are suboptimal for Web apps because of the additional layer, the Web browser, between OS and application. The Web browser running on a CPU issues GL commands, which are for rendering images to be displayed by the Web app currently running, to the GPU and the GPU processes them. The size and number of issued GL commands determine the processing load of the GPU. While the GPU is processing the GL commands, CPU simultaneously executes the other compute intensive threads. The actual user experience will be determined by either CPU processing or GPU processing depending on which of the two is the more demanded resource. For example, when the GPU work queue is saturated by the outstanding commands, lowering the performance level of the CPU does not affect the user experience because it is already deteriorated by the retarded execution of GPU commands. Consequently, it would be desirable to lower CPU or GPU performance level to save energy when the other resource is saturated and becomes a bottleneck in the execution flow. Based on this observation, we propose a power management scheme that is specialized for the Web app runtime environment. This approach incurs two technical challenges; identification of the bottleneck resource and determination of the appropriate performance level for unsaturated resource. The proposed power management scheme uses the CPU utilization level of the Window Manager to tell which one is the bottleneck if exists. The Window Manager draws the final screen using the processed results delivered from the GPU. Thus, the Window Manager is on the critical path that determines the quality of user experience and purely executed by the CPU. The proposed scheme uses the weighted average of the Window Manager utilization to prevent excessive sensitivity and fluctuation. We classified Web apps into three categories using the analysis results that measure frame-per-second (FPS) changes under diverse CPU/GPU clock combinations. The results showed that the capability of the CPU decides user experience when the Window Manager utilization is above 90% and consequently, the proposed scheme decreases the performance level of CPU by one step. On the contrary, when its utilization is less than 60%, the bottleneck usually lies in the GPU and it is desirable to decrease the performance of GPU. Even the processing unit that is not on critical path, excessive performance drop can occur and that may adversely affect the user experience. Therefore, our scheme lowers the frequency gradually, until it finds an appropriate level by periodically checking the CPU utilization. The proposed scheme reduced the energy consumption by 10.34% on average in comparison to the conventional Linux kernel, and it worsened their FPS by 1.07% only on average.

Keywords: interactive applications, power management, QoS, Web apps, WebGL

Procedia PDF Downloads 193
4139 Carbon-Based Electrodes for Parabens Detection

Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea

Abstract:

Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.

Keywords: carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben

Procedia PDF Downloads 226