Search results for: measurement models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9178

Search results for: measurement models

8278 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
8277 Validity of a Timing System in the Alpine Ski Field: A Magnet-Based Timing System Using the Magnetometer Built into an Inertial Measurement Units

Authors: Carla Pérez-Chirinos Buxadé, Bruno Fernández-Valdés, Mónica Morral-Yepes, Sílvia Tuyà Viñas, Josep Maria Padullés Riu, Gerard Moras Feliu

Abstract:

There is a long way to explore all the possible applications inertial measurement units (IMUs) have in the sports field. The aim of this study was to evaluate the validity of a new application on the use of these wearable sensors, specifically it was to evaluate a magnet-based timing system (M-BTS) for timing gate-to-gate in an alpine ski slalom using the magnetometer embedded in an IMU. This was a validation study. The criterion validity of time measured by the M-BTS was assessed using the 95% error range against actual time obtained from photocells. The experiment was carried out with first-and second-year junior skiers performing a ski slalom on a ski training slope. Eight alpine skiers (17.4 ± 0.8 years, 176.4 ± 4.9 cm, 67.7 ± 2.0 kg, 128.8 ± 26.6 slalom FIS-Points) participated in the study. An IMU device was attached to the skier’s lower back. Skiers performed a 40-gate slalom from which four gates were assessed. The M-BTS consisted of placing four bar magnets buried into the snow surface on the inner side of each gate’s turning pole; the magnetometer built into the IMU detected the peak-shaped magnetic field when passing near the magnets at a certain speed. Four magnetic peaks were detected. The time compressed between peaks was calculated. Three inter-gate times were obtained for each system: photocells and M-BTS. The total time was defined as the time sum of the inter-gate times. The 95% error interval for the total time was 0.050 s for the ski slalom. The M-BTS is valid for timing gate-to-gate in an alpine ski slalom. Inter-gate times can provide additional data for analyzing a skier’s performance, such as asymmetries between left and right foot.

Keywords: gate crossing time, inertial measurement unit, timing system, wearable sensor

Procedia PDF Downloads 184
8276 Temperature Dependence of Relative Permittivity: A Measurement Technique Using Split Ring Resonators

Authors: Sreedevi P. Chakyar, Jolly Andrews, V. P. Joseph

Abstract:

A compact method for measuring the relative permittivity of a dielectric material at different temperatures using a single circular Split Ring Resonator (SRR) metamaterial unit working as a test probe is presented in this paper. The dielectric constant of a material is dependent upon its temperature and the LC resonance of the SRR depends on its dielectric environment. Hence, the temperature of the dielectric material in contact with the resonator influences its resonant frequency. A single SRR placed between transmitting and receiving probes connected to a Vector Network Analyser (VNA) is used as a test probe. The dependence of temperature between 30 oC and 60 oC on resonant frequency of SRR is analysed. Relative permittivities ‘ε’ of test samples for different temperatures are extracted from a calibration graph drawn between the relative permittivity of samples of known dielectric constant and their corresponding resonant frequencies. This method is found to be an easy and efficient technique for analysing the temperature dependent permittivity of different materials.

Keywords: metamaterials, negative permeability, permittivity measurement techniques, split ring resonators, temperature dependent dielectric constant

Procedia PDF Downloads 412
8275 Measurement of Convective Heat Transfer from a Vertical Flat Plate Using Mach-Zehnder Interferometer with Wedge Fringe Setting

Authors: Divya Haridas, C. B. Sobhan

Abstract:

Laser interferometric methods have been utilized for the measurement of natural convection heat transfer from a heated vertical flat plate, in the investigation presented here. The study mainly aims at comparing two different fringe orientations in the wedge fringe setting of Mach-Zehnder interferometer (MZI), used for the measurements. The interference fringes are set in horizontal and vertical orientations with respect to the heated surface, and two different fringe analysis methods, namely the stepping method and the method proposed by Naylor and Duarte, are used to obtain the heat transfer coefficients. The experimental system is benchmarked with theoretical results, thus validating its reliability in heat transfer measurements. The interference fringe patterns are analyzed digitally using MATLAB 7 and MOTIC Plus softwares, which ensure improved efficiency in fringe analysis, hence reducing the errors associated with conventional fringe tracing. The work also discuss the relative merits and limitations of the two methods used.

Keywords: Mach-Zehnder interferometer (MZI), natural convection, Naylor method, Vertical Flat Plate

Procedia PDF Downloads 364
8274 Influence of Improved Roughage Quality and Period of Meal Termination on Digesta Load in the Digestive Organs of Goats

Authors: Rasheed A. Adebayo, Mehluli M. Moyo, Ignatius V. Nsahlai

Abstract:

Ruminants are known to relish roughage for productivity but the effect of its quality on digesta load in rumen, omasum, abomasum and other distal organs of the digestive tract is yet unknown. Reticulorumen fill is a strong indicator for long-term control of intake in ruminants. As such, the measurement and prediction of digesta load in these compartments may be crucial to productivity in the ruminant industry. The current study aimed at determining the effect of (a) diet quality on digesta load in digestive organs of goats, and (b) period of meal termination on the reticulorumen fill and digesta load in other distal compartments of the digestive tract of goats. Goats were fed with urea-treated hay (UTH), urea-sprayed hay (USH) and non-treated hay (NTH). At the end of eight weeks of a feeding trial period, upon termination of a meal in the morning, afternoon or evening, all goats were slaughtered in random groups of three per day to measure reticulorumen fill and digesta loads in other distal compartments of the digestive tract. Both diet quality and period affected (P < 0.05) the measure of reticulorumen fill. However, reticulorumen fill in the evening was larger (P < 0.05) than afternoon, while afternoon was similar (P > 0.05) to morning. Also, diet quality affected (P < 0.05) the wet omasal digesta load, wet abomasum, dry abomasum and dry caecum digesta loads but did not affect (P > 0.05) both wet and dry digesta loads in other compartments of the digestive tract. Period of measurement did not affect (P > 0.05) the wet omasal digesta load, and both wet and dry digesta loads in other compartments of the digestive tract except wet abomasum digesta load (P < 0.05) and dry caecum digesta load (P < 0.05). Both wet and dry reticulorumen fill were correlated (P < 0.05) with omasum (r = 0.623) and (r = 0.723), respectively. In conclusion, reticulorumen fill of goats decreased by improving the roughage quality; and the period of meal termination and measurement of the fill is a key factor to the quantity of digesta load.

Keywords: digesta, goats, meal termination, reticulo-rumen fill

Procedia PDF Downloads 373
8273 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series

Procedia PDF Downloads 395
8272 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography (VOG)

Procedia PDF Downloads 260
8271 Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments

Authors: A.D. Susanti, W. B. Sediawan, S.K. Wirawan, Budhijanto, Ritmaleni

Abstract:

Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting.

Keywords: adsorption equilibrium, adsorption kinetics, oryzanol, rice bran oil

Procedia PDF Downloads 323
8270 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method

Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger

Abstract:

Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.

Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model

Procedia PDF Downloads 194
8269 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection

Authors: Jiaqi Huang, Yuheng Wang

Abstract:

Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.

Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning

Procedia PDF Downloads 183
8268 Modified Clusterwise Regression for Pavement Management

Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella

Abstract:

Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.

Keywords: clusterwise regression, pavement management system, performance model, optimization

Procedia PDF Downloads 252
8267 Using the Bootstrap for Problems Statistics

Authors: Brahim Boukabcha, Amar Rebbouh

Abstract:

The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.

Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models

Procedia PDF Downloads 381
8266 Framework for Developing Change Team to Maximize Change Initiative Success

Authors: Mohammad Z. Ansari, Lisa Brodie, Marilyn Goh

Abstract:

Change facilitators are individuals who utilize change philosophy to make a positive change to organizations. The application of change facilitators can be seen in various change models; Lewin, Lippitt, etc. The facilitators within numerous change models are considered as internal/external consultants. Whilst most of the scholarly paper considers change facilitation as a consensus attempt to improve organization, there is a lack of a framework that develops both the organization and the change facilitator creating a self-sustaining change environment. This research paper introduces the development of the framework for change Leaders, Planners, and Executers (LPE), aiming at various organizational levels (Process, Departmental, and Organisational). The LPE framework is derived by exploring interrelated characteristics between facilitator(s) and the organization through qualitative research for understanding change management techniques and facilitator(s) behavioral aspect from existing Change Management models and Organisation behavior works of literature. The introduced framework assists in highlighting and identify the most appropriate change team to successfully deliver the change initiative within any organization (s).

Keywords: change initiative, LPE framework, change facilitator(s), sustainable change

Procedia PDF Downloads 196
8265 3D Building Model Utilizing Airborne LiDAR Dataset and Terrestrial Photographic Images

Authors: J. Jasmee, I. Roslina, A. Mohammed Yaziz & A.H Juazer Rizal

Abstract:

The need of an effective building information collection method is vital to support a diversity of land development activities. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) is an established technology for building information collection, location, and elevation of the reflecting laser points towards the construction of 3D building models. In this study, LiDAR datasets and terrestrial photographic images of buildings towards the construction of 3D building models is explored. It is found that, the quantitative accuracy of the constructed 3D building model, namely in the horizontal and vertical components were ± 0.31m (RMSEx,y) and ± 0.145m (RMSEz) respectively. The accuracies were computed based on sixty nine (69) horizontal and twenty (20) vertical surveyed points. As for the qualitative assessment, it is shown that the appearance of the 3D building model is adequate to support the requirements of LOD3 presentation based on the OGC (Open Geospatial Consortium) standard CityGML.

Keywords: LiDAR datasets, DSM, DTM, 3D building models

Procedia PDF Downloads 321
8264 The Use of Electrical Resistivity Measurement, Cracking Test and Ansys Simulation to Predict Concrete Hydration Behavior and Crack Tendency

Authors: Samaila Bawa Muazu

Abstract:

Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50.

Keywords: concrete hydration, electrical resistivity, restrained shrinkage crack, setting time, simulation

Procedia PDF Downloads 210
8263 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: data mining, knowledge discovery in databases, prediction models, student success

Procedia PDF Downloads 407
8262 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis

Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar

Abstract:

Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.

Keywords: NLP, multilingual, sentiment analysis, texts

Procedia PDF Downloads 105
8261 A Critical Review and Bibliometric Analysis on Measures of Achievement Motivation

Authors: Kanupriya Rawat, Aleksandra Błachnio, Paweł Izdebski

Abstract:

Achievement motivation, which drives a person to strive for success, is an important construct in sports psychology. This systematic review aims to analyze the methods of measuring achievement motivation used in previous studies published over the past four decades and to find out which method of measuring achievement motivation is the most prevalent and the most effective by thoroughly examining measures of achievement motivation used in each study and by evaluating most highly cited achievement motivation measures in sport. In order to understand this latent construct, thorough measurement is necessary, hence a critical evaluation of measurement tools is required. The literature search was conducted in the following databases: EBSCO, MEDLINE, APA PsychARTICLES, Academic Search Ultimate, Open Dissertations, ERIC, Science direct, Web of Science, as well as Wiley Online Library. A total of 26 articles met the inclusion criteria and were selected. From this review, it was found that the Achievement Goal Questionnaire- Sport (AGQ-Sport) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ) were used in most of the research, however, the average weighted impact factor of the Achievement Goal Questionnaire- Sport (AGQ-Sport) is the second highest and most relevant in terms of research articles related to the sport psychology discipline. Task and Ego Orientation in Sport Questionnaire (TEOSQ) is highly popular in cross-cultural adaptation but has the second last average IF among other scales due to the less impact factor of most of the publishing journals. All measures of achievement motivation have Cronbach’s alpha value of more than .70, which is acceptable. The advantages and limitations of each measurement tool are discussed, and the distinction between using implicit and explicit measures of achievement motivation is explained. Overall, both implicit and explicit measures of achievement motivation have different conceptualizations of achievement motivation and are applicable at either the contextual or situational level. The conceptualization and degree of applicability are perhaps the most crucial factors for researchers choosing a questionnaire, even though they differ in their development, reliability, and use.

Keywords: achievement motivation, task and ego orientation, sports psychology, measures of achievement motivation

Procedia PDF Downloads 96
8260 Drying Kinects of Soybean Seeds

Authors: Amanda Rithieli Pereira Dos Santos, Rute Quelvia De Faria, Álvaro De Oliveira Cardoso, Anderson Rodrigo Da Silva, Érica Leão Fernandes Araújo

Abstract:

The study of the kinetics of drying has great importance for the mathematical modeling, allowing to know about the processes of transference of heat and mass between the products and to adjust dryers managing new technologies for these processes. The present work had the objective of studying the kinetics of drying of soybean seeds and adjusting different statistical models to the experimental data varying cultivar and temperature. Soybean seeds were pre-dried in a natural environment in order to reduce and homogenize the water content to the level of 14% (b.s.). Then, drying was carried out in a forced air circulation oven at controlled temperatures of 38, 43, 48, 53 and 58 ± 1 ° C, using two soybean cultivars, BRS 8780 and Sambaíba, until reaching a hygroscopic equilibrium. The experimental design was completely randomized in factorial 5 x 2 (temperature x cultivar) with 3 replicates. To the experimental data were adjusted eleven statistical models used to explain the drying process of agricultural products. Regression analysis was performed using the least squares Gauss-Newton algorithm to estimate the parameters. The degree of adjustment was evaluated from the analysis of the coefficient of determination (R²), the adjusted coefficient of determination (R² Aj.) And the standard error (S.E). The models that best represent the drying kinetics of soybean seeds are those of Midilli and Logarítmico.

Keywords: curve of drying seeds, Glycine max L., moisture ratio, statistical models

Procedia PDF Downloads 628
8259 A Contactless Capacitive Biosensor for Muscle Activity Measurement

Authors: Charn Loong Ng, Mamun Bin Ibne Reaz

Abstract:

As elderly population grows globally, the percentage of people diagnosed with musculoskeletal disorder (MSD) increase proportionally. Electromyography (EMG) is an important biosignal that contributes to MSD’s clinical diagnose and recovery process. Conventional conductive electrode has many disadvantages in the continuous EMG measurement application. This research has design a new surface EMG biosensor based on the parallel-plate capacitive coupling principle. The biosensor is developed by using a double-sided PCB with having one side of the PCB use to construct high input impedance circuitry while the other side of the copper (CU) plate function as biosignal sensing metal plate. The metal plate is insulated using kapton tape for contactless application. The result implicates that capacitive biosensor is capable to constantly capture EMG signal without having galvanic contact to human skin surface. However, there are noticeable noise couple into the measured signal. Post signal processing is needed in order to present a clean and significant EMG signal. A complete design of single ended, non-contact, high input impedance, front end EMG biosensor is presented in this paper.

Keywords: contactless, capacitive, biosensor, electromyography

Procedia PDF Downloads 450
8258 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs

Authors: Malo Pocheau-Lesteven, Olivier Le Maître

Abstract:

Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.

Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program

Procedia PDF Downloads 157
8257 The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE

Authors: Lakrim Abderrazak, Tahri Driss

Abstract:

This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A).

Keywords: SiC power MOSFET, DC electro-thermal model, ABM Spice library, SPICE modelling, behavioural model, C2M0025120D CREE.

Procedia PDF Downloads 581
8256 Dispersion-Less All Reflective Split and Delay Unit for Ultrafast Metrology

Authors: Akansha Tyagi, Mehar S. Sidhu, Ankur Mandal, Sanjay Kapoor, Sunil Dahiya, Jan M. Rost, Thomas Pfeifer, Kamal P. Singh

Abstract:

An all-reflective split and delay unit is designed for dispersion free measurement of broadband ultrashort pulses using a pair of reflective knife edge prism for splitting and recombining of the measuring pulse. It is based on symmetrical wavefront splitting of the measuring pulse having two separate arms to independently shape both split parts. We have validated our delay line with NIR –femtosecond pulse measurement centered at 800 nm using second harmonic-Interferometric frequency resolved optical gating (SH-IFROG). The delay line is compact, easy to align and provides attosecond stability and precision and thus make it more versatile for wide range of applications in ultrafast measurements. We envision that the present delay line will find applications in IR-IR controlling for high harmonic generation (HHG) and attosecond IR-XUV pump-probe measurements with solids and gases providing attosecond resolution and wide delay range.

Keywords: HHG, nonlinear optics, pump-probe spectroscopy, ultrafast metrology

Procedia PDF Downloads 200
8255 Legal Considerations in Fashion Modeling: Protecting Models' Rights and Ensuring Ethical Practices

Authors: Fatemeh Noori

Abstract:

The fashion industry is a dynamic and ever-evolving realm that continuously shapes societal perceptions of beauty and style. Within this industry, fashion modeling plays a crucial role, acting as the visual representation of brands and designers. However, behind the glamorous façade lies a complex web of legal considerations that govern the rights, responsibilities, and ethical practices within the field. This paper aims to explore the legal landscape surrounding fashion modeling, shedding light on key issues such as contract law, intellectual property, labor rights, and the increasing importance of ethical considerations in the industry. Fashion modeling involves the collaboration of various stakeholders, including models, designers, agencies, and photographers. To ensure a fair and transparent working environment, it is imperative to establish a comprehensive legal framework that addresses the rights and obligations of each party involved. One of the primary legal considerations in fashion modeling is the contractual relationship between models and agencies. Contracts define the terms of engagement, including payment, working conditions, and the scope of services. This section will delve into the essential elements of modeling contracts, the negotiation process, and the importance of clarity to avoid disputes. Models are not just individuals showcasing clothing; they are integral to the creation and dissemination of artistic and commercial content. Intellectual property rights, including image rights and the use of a model's likeness, are critical aspects of the legal landscape. This section will explore the protection of models' image rights, the use of their likeness in advertising, and the potential for unauthorized use. Models, like any other professionals, are entitled to fair and ethical treatment. This section will address issues such as working conditions, hours, and the responsibility of agencies and designers to prioritize the well-being of models. Additionally, it will explore the global movement toward inclusivity, diversity, and the promotion of positive body image within the industry. The fashion industry has faced scrutiny for perpetuating harmful standards of beauty and fostering a culture of exploitation. This section will discuss the ethical responsibilities of all stakeholders, including the promotion of diversity, the prevention of exploitation, and the role of models as influencers for positive change. In conclusion, the legal considerations in fashion modeling are multifaceted, requiring a comprehensive approach to protect the rights of models and ensure ethical practices within the industry. By understanding and addressing these legal aspects, the fashion industry can create a more transparent, fair, and inclusive environment for all stakeholders involved in the art of modeling.

Keywords: fashion modeling contracts, image rights in modeling, labor rights for models, ethical practices in fashion, diversity and inclusivity in modeling

Procedia PDF Downloads 77
8254 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 208
8253 Validating Thermal Performance of Existing Wall Assemblies Using In-Situ Measurements

Authors: Shibei Huang

Abstract:

In deep energy retrofits, the thermal performance of existing building envelopes is often difficult to determine with a high level of accuracy. For older buildings, the records of existing assemblies are often incomplete or inaccurate. To obtain greater baseline performance accuracy for energy models, in-field measurement tools can be used to obtain data on the thermal performance of the existing assemblies. For a known assembly, these field measurements assist in validating the U-factor estimates. If the field-measured U-factor consistently varies from the calculated prediction, those measurements prompt further study. For an unknown assembly, successful field measurements can provide approximate U-factor evaluation, validate assumptions, or identify anomalies requiring further investigation. Using case studies, this presentation will focus on the non-destructive methods utilizing a set of various field tools to validate the baseline U-factors for a range of existing buildings with various wall assemblies. The lessons learned cover what can be achieved, the limitations of these approaches and tools, and ideas for improving the validity of measurements. Key factors include the weather conditions, the interior conditions, the thermal mass of the measured assemblies, and the thermal profiles of the assemblies in question.

Keywords: existing building, sensor, thermal analysis, retrofit

Procedia PDF Downloads 63
8252 Exploration of Classic Models of Precipitation in Iran: A Case Study of Sistan and Baluchestan Province

Authors: Mohammad Borhani, Ahmad Jamshidzaei, Mehdi Koohsari

Abstract:

The study of climate has captivated human interest throughout history. In response to this fascination, individuals historically organized their daily activities in alignment with prevailing climatic conditions and seasonal variations. Understanding the elements and specific climatic parameters of each region, such as precipitation, which directly impacts human life, is essential because, in recent years, there has been a significant increase in heavy rainfall in various parts of the world attributed to the effects of climate change. Climate prediction models suggest a future scenario characterized by an increase in severe precipitation events and related floods on a global scale. This is a result of human-induced greenhouse gas emissions causing changes in the natural precipitation patterns. The Intergovernmental Panel on Climate Change reported global warming in 2001. The average global temperature has shown an increasing trend since 1861. In the 20th century, this increase has been between (0/2 ± 0/6) °C. The present study focused on examining the trend of monthly, seasonal, and annual precipitation in Sistan and Baluchestan provinces. The study employed data obtained from 13 precipitation measurement stations managed by the Iran Water Resources Management Company, encompassing daily precipitation records spanning the period from 1997 to 2016. The results indicated that the total monthly precipitation at the studied stations in Sistan and Baluchestan province follows a sinusoidal trend. The highest intense precipitation was observed in January, February, and March, while the lowest occurred in September, October, and then November. The investigation of the trend of seasonal precipitation in this province showed that precipitation follows an upward trend in the autumn season, reaching its peak in winter, and then shows a decreasing trend in spring and summer. Also, the examination of average precipitation indicated that the highest yearly precipitation occurred in 1997 and then in 2004, while the lowest annual precipitation took place between 1999 and 2001. The analysis of the annual precipitation trend demonstrates a decrease in precipitation from 1997 to 2016 in Sistan and Baluchestan province.

Keywords: climate change, extreme precipitation, greenhouse gas, trend analysis

Procedia PDF Downloads 67
8251 A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models

Authors: Manisha Mukherjee, Diptarka Saha

Abstract:

Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature.

Keywords: time series, ARIMA, auto.arima, ARIMA parameters, forecast, R function

Procedia PDF Downloads 166
8250 MCDM Spectrum Handover Models for Cognitive Wireless Networks

Authors: Cesar Hernández, Diego Giral, Fernando Santa

Abstract:

The spectral handoff is important in cognitive wireless networks to ensure an adequate quality of service and performance for secondary user communications. This work proposes a benchmarking of performance of the three spectrum handoff models: VIKOR, SAW and MEW. Four evaluation metrics are used. These metrics are, accumulative average of failed handoffs, accumulative average of handoffs performed, accumulative average of transmission bandwidth and, accumulative average of the transmission delay. As a difference with related work, the performance of the three spectrum handoff models was validated with captured data of spectral occupancy in experiments realized at the GSM frequency band (824 MHz-849 MHz). These data represent the actual behavior of the licensed users for this wireless frequency band. The results of the comparative show that VIKOR Algorithm provides 15.8% performance improvement compared to a SAW Algorithm and, 12.1% better than the MEW Algorithm.

Keywords: cognitive radio, decision making, MEW, SAW, spectrum handoff, VIKOR

Procedia PDF Downloads 438
8249 Seismic Evaluation of Reinforced Concrete Buildings in Myanmar, Based on Microtremor Measurement

Authors: Khaing Su Su Than, Hibino Yo

Abstract:

Seismic evaluation is needed upon the buildings in Myanmar. Microtremor measurement was conducted in the main cities, Mandalay and Yangon. In order to evaluate the seismic properties of buildings currently under construction, seismic information was gathered for six buildings in Yangon city and four buildings in Mandalay city. The investigated buildings vary from 12m-80 m in height, and mostly public residence structures. The predominant period obtained from frequency results of the investigated buildings were given by horizontal to vertical spectral ratio (HVSR) for each building. The fundamental period results have been calculated in the form of Fourier amplitude spectra of translation along with the main structure. Based on that, the height (H)-period(T) relationship was observed as T=0.012H-0.017H in the buildings of Yangon and, observed the relationship as T=0.014H-0.019H in the buildings of Mandalay. The results showed that the relationship between height and natural period was slightly under the relationship T=0.02H that is used for Japanese reinforced concrete buildings, which indicated that the results depend on the properties and characteristics of materials used.

Keywords: HVSR, height-period relationship, microtremor, Myanmar earthquake, reinforced concrete structures

Procedia PDF Downloads 157