Search results for: magnetic field measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11400

Search results for: magnetic field measurement

10500 Progress in Accuracy, Reliability and Safety in Firedamp Detection

Authors: José Luis Lorenzo Bayona, Ljiljana Medic-Pejic, Isabel Amez Arenillas, Blanca Castells Somoza

Abstract:

The communication presents the study results carried out by the Official Laboratory J. M. Madariaga (LOM) of the Polytechnic University of Madrid to analyze the reliability of methane detection systems used in underground mining. Poor firedamp control in work can cause from production stoppages to fatal accidents and since there is currently a great variety of equipment with different functional characteristics, a study is needed to indicate which measurement principles have the highest degree of confidence. For the development of the project, a series of fixed, transportable and portable methane detectors with different measurement principles have been selected to subject them to laboratory tests following the methods described in the applicable regulations. The test equipment has been the one usually used in the certification and calibration of these devices, subject to the LOM quality system, and the tests have been carried out on detectors accessible in the market. The conclusions establish the main advantages and disadvantages of the equipment according to the measurement principle used; catalytic combustion, interferometry and infrared absorption.

Keywords: ATEX standards, gas detector, methane meter, mining safety

Procedia PDF Downloads 136
10499 An Approach on the Design of a Solar Cell Characterization Device

Authors: Christoph Mayer, Dominik Holzmann

Abstract:

This paper presents the development of a compact, portable and easy to handle solar cell characterization device. The presented device reduces the effort and cost of single solar cell characterization to a minimum. It enables realistic characterization of cells under sunlight within minutes. In the field of photovoltaic research the common way to characterize a single solar cell or a module is, to measure the current voltage curve. With this characteristic the performance and the degradation rate can be defined which are important for the consumer or developer. The paper consists of the system design description, a summary of the measurement results and an outline for further developments.

Keywords: solar cell, photovoltaics, PV, characterization

Procedia PDF Downloads 417
10498 The Inversion of Helical Twist Sense in Liquid Crystal by Spectroscopy Methods

Authors: Anna Drzewicz, Marzena Tykarska

Abstract:

The chiral liquid crystal phases form the helicoidal structure, which is characterized by the helical pitch and the helical twist sense. In anticlinic smectic phase with antiferroelectric properties three types of helix temperature dependence have been obtained: increased helical pitch with temperature and right-handed helix, decreased helical pitch with temperature and left-handed helix and the inversion of both. The change of helical twist sense may be observed during the transition from one liquid crystal phase to another or within one phase for the same substance. According to Gray and McDonnell theory, the helical handedness depends on the absolute configuration of the assymetric carbon atom and its position related to the rigid core of the molecule. However, this theory does not explain the inversion of helical twist sense phenomenon. It is supposed, that it may be caused by the presence of different conformers with opposite handendess, which concentration may change with temperature. In this work, the inversion of helical twist sense in the chiral liquid crystals differing in the length of alkyl chain, in the substitution the benzene ring by fluorine atoms and in the type of helix handedness was tested by vibrational spectroscopy (infrared and raman spectroscopy) and by nuclear magnetic resonance spectroscopy. The results obtained from the vibrational spectroscopy confirm the presence of different conformers. Moreover, the analysis of nuclear magnetic resonance spectra is very useful to check, on which structural fragments the change of conformations are important for the change of helical twist sense.

Keywords: helical twist sense, liquid crystals, nuclear magnetic resonance spectroscopy, vibrational spectroscopy

Procedia PDF Downloads 280
10497 Vibration Measurements of Single-Lap Cantilevered SPR Beams

Authors: Xiaocong He

Abstract:

Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.

Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions

Procedia PDF Downloads 428
10496 Reliability Prediction of Tires Using Linear Mixed-Effects Model

Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong

Abstract:

We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.

Keywords: reliability, tires, field data, linear mixed-effects model

Procedia PDF Downloads 562
10495 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging

Authors: Balakrishna Shetty

Abstract:

Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.

Keywords: stem cells, imaging, DWI, peripheral vascular disease

Procedia PDF Downloads 71
10494 Synthesis by Mechanical Alloying and Characterization of FeNi₃ Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest on the synthesis and characterization of nanoalloys since the unique chemical, and physical properties of nanoalloys can be tuned and, consequently, new structural motifs can be created by varying the type of constituent elements, atomic and magnetic ordering, as well as size and shape of the nanoparticles. Due to the fine size effects, magnetic nanoalloys have considerable attention with their enhanced mechanical, electrical, optical and magnetic behavior. As an important magnetic nanoalloy, the novel application area of Fe-Ni based nanoalloys is expected to be widened in the chemical, aerospace industry and magnetic biomedical applications. Noble metals have been using in biomedical applications for several years because of their surface plasmon properties. In this respect, iron-nickel nanoalloys are promising materials for magnetic biomedical applications because they show novel properties such as superparamagnetism and surface plasmon resonance property. Also, there is great attention for the usage Fe-Ni based nanoalloys as radar absorbing materials in aerospace and stealth industry due to having high Curie temperature, high permeability and high saturation magnetization with good thermal stability. In this study, FeNi₃ bimetallic nanoalloys were synthesized by mechanical alloying in a planetary high energy ball mill. In mechanical alloying, micron size powders are placed into the mill with milling media. The powders are repeatedly deformed, fractured and alloyed by high energy collision under the impact of balls until the desired composition and particle size is achieved. The experimental studies were carried out in two parts. Firstly, dry mechanical alloying with high energy dry planetary ball milling was applied to obtain FeNi₃ nanoparticles. Secondly, dry milling was followed by surfactant-assisted ball milling to observe the surfactant and solvent effect on the structure, size, and properties of the FeNi₃ nanoalloys. In the first part, the powder sample of iron-nickel was prepared according to the 1:3 iron to nickel ratio to produce FeNi₃ nanoparticles and the 1:10 powder to ball weight ratio. To avoid oxidation during milling, the vials had been filled with Ar inert gas before milling started. The powders were milled for 80 hours in total and the synthesis of the FeNi₃ intermetallic nanoparticles was succeeded by mechanical alloying in 40 hours. Also, regarding the particle size, it was found that the amount of nano-sized particles raised with increasing milling time. In the second part of the study, dry milling of the Fe and Ni powders with the same stoichiometric ratio was repeated. Then, to prevent agglomeration and to obtain smaller sized nanoparticles with superparamagnetic behavior, surfactants and solvent are added to the system, after 40-hour milling time, with the completion of the mechanical alloying. During surfactant-assisted ball milling, heptane was used as milling medium, and as surfactants, oleic acid and oleylamine were used in the high energy ball milling processes. The characterization of the alloyed particles in terms of microstructure, morphology, particle size, thermal and magnetic properties with respect to milling time was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, vibrating-sample magnetometer, and differential scanning calorimetry.

Keywords: iron-nickel systems, magnetic nanoalloys, mechanical alloying, nanoalloy characterization, surfactant-assisted ball milling

Procedia PDF Downloads 179
10493 Comparison of the Classification of Cystic Renal Lesions Using the Bosniak Classification System with Contrast Enhanced Ultrasound and Magnetic Resonance Imaging to Computed Tomography: A Prospective Study

Authors: Dechen Tshering Vogel, Johannes T. Heverhagen, Bernard Kiss, Spyridon Arampatzis

Abstract:

In addition to computed tomography (CT), contrast enhanced ultrasound (CEUS), and magnetic resonance imaging (MRI) are being increasingly used for imaging of renal lesions. The aim of this prospective study was to compare the classification of complex cystic renal lesions using the Bosniak classification with CEUS and MRI to CT. Forty-eight patients with 65 cystic renal lesions were included in this study. All participants signed written informed consent. The agreement between the Bosniak classifications of complex renal lesions ( ≥ BII-F) on CEUS and MRI were compared to that of CT and were tested using Cohen’s Kappa. Sensitivity, specificity, positive and negative predictive values (PPV/NPV) and the accuracy of CEUS and MRI compared to CT in the detection of complex renal lesions were calculated. Twenty-nine (45%) out of 65 cystic renal lesions were classified as complex using CT. The agreement between CEUS and CT in the classification of complex cysts was fair (agreement 50.8%, Kappa 0.31), and was excellent between MRI and CT (agreement 93.9%, Kappa 0.88). Compared to CT, MRI had a sensitivity of 96.6%, specificity of 91.7%, a PPV of 54.7%, and an NPV of 54.7% with an accuracy of 63.1%. The corresponding values for CEUS were sensitivity 100.0%, specificity 33.3%, PPV 90.3%, and NPV 97.1% with an accuracy 93.8%. The classification of complex renal cysts based on MRI and CT scans correlated well, and MRI can be used instead of CT for this purpose. CEUS can exclude complex lesions, but due to higher sensitivity, cystic lesions tend to be upgraded. However, it is useful for initial imaging, for follow up of lesions and in those patients with contraindications to CT and MRI.

Keywords: Bosniak classification, computed tomography, contrast enhanced ultrasound, cystic renal lesions, magnetic resonance imaging

Procedia PDF Downloads 142
10492 Spectroscopic Autoradiography of Alpha Particles on Geologic Samples at the Thin Section Scale Using a Parallel Ionization Multiplier Gaseous Detector

Authors: Hugo Lefeuvre, Jerôme Donnard, Michael Descostes, Sophie Billon, Samuel Duval, Tugdual Oger, Herve Toubon, Paul Sardini

Abstract:

Spectroscopic autoradiography is a method of interest for geological sample analysis. Indeed, researchers may face different issues such as radioelement identification and quantification in the field of environmental studies. Imaging gaseous ionization detectors find their place in geosciences for conducting specific measurements of radioactivity to improve the monitoring of natural processes using naturally-occurring radioactive tracers, but also for the nuclear industry linked to the mining sector. In geological samples, the location and identification of the radioactive-bearing minerals at the thin-section scale remains a major challenge as the detection limit of the usual elementary microprobe techniques is far higher than the concentration of most of the natural radioactive decay products. The spatial distribution of each decay product in the case of uranium in a geomaterial is interesting for relating radionuclides concentration to the mineralogy. The present study aims to provide spectroscopic autoradiography analysis method for measuring the initial energy of alpha particles with a parallel ionization multiplier gaseous detector. The analysis method has been developed thanks to Geant4 modelling of the detector. The track of alpha particles recorded in the gas detector allow the simultaneous measurement of the initial point of emission and the reconstruction of the initial particle energy by a selection based on the linear energy distribution. This spectroscopic autoradiography method was successfully used to reproduce the alpha spectra from a 238U decay chain on a geological sample at the thin-section scale. The characteristics of this measurement are an energy spectrum resolution of 17.2% (FWHM) at 4647 keV and a spatial resolution of at least 50 µm. Even if the efficiency of energy spectrum reconstruction is low (4.4%) compared to the efficiency of a simple autoradiograph (50%), this novel measurement approach offers the opportunity to select areas on an autoradiograph to perform an energy spectrum analysis within that area. This opens up possibilities for the detailed analysis of heterogeneous geological samples containing natural alpha emitters such as uranium-238 and radium-226. This measurement will allow the study of the spatial distribution of uranium and its descendants in geo-materials by coupling scanning electron microscope characterizations. The direct application of this dual modality (energy-position) of analysis will be the subject of future developments. The measurement of the radioactive equilibrium state of heterogeneous geological structures, and the quantitative mapping of 226Ra radioactivity are now being actively studied.

Keywords: alpha spectroscopy, digital autoradiography, mining activities, natural decay products

Procedia PDF Downloads 150
10491 Two-Dimensional Van-Der Waals Heterostructure for Highly Energy-Efficient Field-Free Deterministic Spin-Orbit Torque Switching at Room Temperature

Authors: Pradeep Raj Sharma, Bogeun Jang, Jongill Hong

Abstract:

Spin-orbit torque (SOT) is a novel and efficient approach for manipulating the magnetization of ferromagnetic materials (FMs), providing improved device performance, better compatibility, and ultra-fast switching with lower power consumption, compared to spin-transfer torque (STT). Among the various materials and structural designs, two-dimensional (2D) van-der Waals (vdW) layered materials and their heterostructures have been demonstrated as highly scalable and promising device architecture for SOT. In particular, a bilayer heterostructure consisting of fully 2D-vdW-FM, non-magnetic material (NM) offers an innovative platform for controlling the magnetization using SOT because of the advantages of being easy to scale and less energy to switch. Here, we report filed-free deterministic switching driven by SOT at room temperature in a bilayer consisting of perpendicularly magnetized 2D-vdW material Fe3GaTe2 (FGaT) and NM WTe2. Pulse current-induced magnetization switching with an ultra-low current density of about 6.5×105 A/cm², yielding a SOT efficiency close to double-digits at 300 K is reported. These values are two orders of magnitude higher than those observed in conventional heavy metal (HM) based SOT and exceed those reported with 2D-vdW layered materials. WTe2, a topological semimetal possessing strong SOC and high spin Hall angle can induce significant spin accumulation with negligible spin loss across the transparent 2D bilayer heterointerface. This promising device architecture enables highly compatible, energy-efficient non-volatile memory and lays the foundation for designing flexible, miniaturized spintronic devices that could facilitate quantum computing.

Keywords: spintronics, spin-orbit torque, spin Hall effect, spin Hall angle, topological semimetal, perpendicular magnetic anisotropy

Procedia PDF Downloads 2
10490 Reduction and Smelting of Magnetic Fraction Obtained by Magnetic-Gravimetric-Separation (MGS) of Electric Arc Furnace Dust

Authors: Sara Scolari, Davide Mombelli, Gianluca Dall'Osto, Jasna Kastivnik, Gašper Tavčar, Carlo Mapelli

Abstract:

The EIT Raw Materials RIS-DustRec-II project aims to transform Electric Arc Furnace Dust (EAFD) into a valuable resource by overcoming the challenges associated with traditional recycling approaches. EAFD, a zinc-rich industrial by-product typically recycled by the Waelz process, contains complex oxides such as franklinite (ZnFe₂O₄), which hinder the efficient extraction of zinc, by also introducing other valuable elements (Fe, Ni, Cr, Cu, …) in the slag. The project aims to develop a multistage multidisciplinary approach to separate EAFD into two streams: a magnetic and non-magnetic one. In this paper the production of self-reducing briquettes from the magnetic stream of EAFD with a reducing agent, aiming to drive carbothermic reduction and recover iron as a usable alloy, was investigated. Research was focused on optimizing the magnetic and subsequent gravimetric separation (MGS) processes, followed by high-temperature smelting to evaluate reduction efficiency and phase separation. The characterization of selected two different raw EAFD samples and their magnetic-gravitational separation to isolate zinc- and iron-rich fractions was performed by X-ray diffraction and scanning electron microscope. The iron-enriched concentrates were then agglomerated into self-reducing briquettes by mixing them with either biochar (olive pomace pyrolyzed at 350 and 750°C and wood chips pyrolyzed at 750 °C) and a Cupola Furnace dust as reducing agents, combined with gelatinized corn starch as a binder. Cylindrical briquettes were produced and cured for 14 days to ensure structural integrity during subsequent thermal treatments. Smelting tests were carried out at 1400 °C in an inert argon atmosphere to assess the metallization efficiency and the separation between metal and slag phases. A carbon/oxides mass ratio of 0.262 (C/(ZnO+Fe₂O₃)) was used in these tests to maintain continuity with previous studies and to standardize reduction conditions. The magnetic and gravimetric separations effectively isolated zinc- and iron-enriched fractions, particularly for one of the two EAFD, where the concentration of Zn in the concentration fraction was reduced by 8 wt.% while Fe reached 45 wt.%. The reduction tests conducted at 1400 °C showed that the chosen carbon/oxides ratio was sufficient for the smelting of the reducible oxides within the briquettes. However, an important limitation became apparent: the amount of carbon, exceeding the stochiometric value, proved to be excessive for the effective coalescence of metal droplets, preventing clear metal-slag separation. To address this, further smelting tests were carried out in an air atmosphere rather than inert conditions to burn off excess carbon. This paper demonstrates the potential of controlled carbothermic reduction for EAFD recycling. By carefully optimizing the C/(ZnO+Fe₂O₃) ratio, the process can maximize metal recovery while achieving better separation of the metal and slag phases. This approach offers a promising alternative to traditional EAFD recycling methods, with further studies recommended to refine the parameters for industrial application.

Keywords: biochars, electrical arc furnace dust, metallization, smelting

Procedia PDF Downloads 12
10489 A Study of Rapid Replication of Square-Microlens Structures

Authors: Ting-Ting Wen, Jung-Ruey Tsai

Abstract:

This paper reports a method for the replication of micro-scale structures. By using electromagnetic force-assisted imprinting system with magnetic soft stamp written square-microlens cavity, a photopolymer square-microlens structures can be rapidly fabricated. Under the proper processing conditions, the polymeric square-microlens structures with feature size of width 100.3um and height 15.2um across a large area can be successfully fabricated. Scanning electron microscopy (SEM) and surface profiler observations confirm that the micro-scale polymer structures are produced without defects or distortion and with good pattern fidelity over a 60x60mm2 area. This technique shows great potential for the efficient replication of the micro-scale structure array at room temperature and with high productivity and low cost.

Keywords: square-microlens structures, electromagnetic force-assisted imprinting, magnetic soft stamp

Procedia PDF Downloads 330
10488 Optimal Placement of Phasor Measurement Units (PMU) Using Mixed Integer Programming (MIP) for Complete Observability in Power System Network

Authors: Harshith Gowda K. S, Tejaskumar N, Shubhanga R. B, Gowtham N, Deekshith Gowda H. S

Abstract:

Phasor measurement units (PMU) are playing an important role in the current power system for state estimation. It is necessary to have complete observability of the power system while minimizing the cost. For this purpose, the optimal location of the phasor measurement units in the power system is essential. In a bus system, zero injection buses need to be evaluated to minimize the number of PMUs. In this paper, the optimization problem is formulated using mixed integer programming to obtain the optimal location of the PMUs with increased observability. The formulation consists of with and without zero injection bus as constraints. The formulated problem is simulated using a CPLEX solver in the GAMS software package. The proposed method is tested on IEEE 30, IEEE 39, IEEE 57, and IEEE 118 bus systems. The results obtained show that the number of PMUs required is minimal with increased observability.

Keywords: PMU, observability, mixed integer programming (MIP), zero injection buses (ZIB)

Procedia PDF Downloads 162
10487 Lateral Cephalometric Radiograph to Determine Sex in Forensic Investigations

Authors: Paulus Maulana

Abstract:

Forensic identification is to help investigators determine a person's identity. Personal identification is often a problem in civil and criminal cases. Orthodontists like all other dental professionals can play a major role by maintaining lateral cephalogram and thus providing important or vital information or can clues to the legal authorities in order to help them in their search. Radiographic lateral cephalometry is a measurement method which focused on the anatomical points of human lateral skull. Sex determination is one of the most important aspects of the personal identification in forensic. Lateral cephalogram is a valuable tool in identification of sex as reveal morphological details of the skull on single radiograph. This present study evaluates the role of lateral cephalogram in identification of sex that parameters of lateral cephalogram are linear measurement and angle measurement. The linear measurements are N-S ( Anterior cranial length), Sna-Snp (Palatal plane length), Me-Go (menton-gonion), N-Sna ( Midfacial anterior height ), Sna-Me (Lower anterior face height), Co-Gn (total mandibular length). The angle measurements are SNA, SNB, ANB, Gonial, Interincical, and facial.

Keywords: lateral cephalometry, cephalogram, sex, forensic, parameter

Procedia PDF Downloads 189
10486 Optimization of Three Phase Squirrel Cage Induction Motor

Authors: Tunahan Sapmaz, Harun Etçi, İbrahim Şenol, Yasemin Öner

Abstract:

Rotor bar dimensions have a great influence on the air-gap magnetic flux density. Therefore, poor selection of this parameter during the machine design phase causes the air-gap magnetic flux density to be distorted. Thus, it causes noise, torque fluctuation, and losses in the induction motor. On the other hand, the change in rotor bar dimensions will change the resistance of the conductor, so the current will be affected. Therefore, the increase and decrease of rotor bar current affect operation, starting torque, and efficiency. The aim of this study is to examine the effect of rotor bar dimensions on the electromagnetic performance criteria of the induction motor. Modeling of the induction motor is done by the finite element method (FEM), which is a very powerful tool. In FEM, the results generally focus on performance criteria such as torque, torque fluctuation, efficiency, and current.

Keywords: induction motor, finite element method, optimization, rotor bar

Procedia PDF Downloads 124
10485 Strategy in Controlling Rice-Field Conversion in Pangkep Regency, South Sulawesi, Indonesia

Authors: Nurliani, Ida Rosada

Abstract:

The national rice consumption keeps increasing along with raising income of the households and the rapid growth of population. However, food availability, particularly rice, is limited. Impacts of rice-field conversion have run cumulatively, as we can see on potential losses of rice and crops production, as well as work opportunity that keeps increasing year-by-year. Therefore, it requires policy recommendation to control rice-field conversion through economic, social, and ecological approaches. The research was a survey method intended to: (1) Identify internal factors; quality and productivity of the land as the cause of land conversion, (2) Identify external factors of land conversion, value of the rice-field and the competitor’s land, workforce absorption, and regulation, as well as (3) Formulate strategies in controlling rice-field conversion. Population of the research was farmers who applied land conversion at Pangkep Regency, South Sulawesi. Samples were determined using the incidental sampling method. Data analysis used productivity analysis, land quality analysis, total economic value analysis, and SWOT analysis. Results of the research showed that the quality of rice-field was low as well as productivity of the grains (unhulled-rice). So that, average productivity of the grains and quality of rice-field were low as well. Total economic value of rice-field was lower than the economic value of the embankment. Workforce absorption value on rice-field was higher than on the embankment. Strategies in controlling such rice-field conversion can be done by increasing rice-field productivity, improving land quality, applying cultivation technique of specific location, improving the irrigation lines, and socializing regulation and sanction about the transfer of land use.

Keywords: land conversion, quality of rice-field, productivity, land economic value.

Procedia PDF Downloads 273
10484 Heliport Remote Safeguard System Based on Real-Time Stereovision 3D Reconstruction Algorithm

Authors: Ł. Morawiński, C. Jasiński, M. Jurkiewicz, S. Bou Habib, M. Bondyra

Abstract:

With the development of optics, electronics, and computers, vision systems are increasingly used in various areas of life, science, and industry. Vision systems have a huge number of applications. They can be used in quality control, object detection, data reading, e.g., QR-code, etc. A large part of them is used for measurement purposes. Some of them make it possible to obtain a 3D reconstruction of the tested objects or measurement areas. 3D reconstruction algorithms are mostly based on creating depth maps from data that can be acquired from active or passive methods. Due to the specific appliance in airfield technology, only passive methods are applicable because of other existing systems working on the site, which can be blinded on most spectral levels. Furthermore, reconstruction is required to work long distances ranging from hundreds of meters to tens of kilometers with low loss of accuracy even with harsh conditions such as fog, rain, or snow. In response to those requirements, HRESS (Heliport REmote Safeguard System) was developed; which main part is a rotational head with a two-camera stereovision rig gathering images around the head in 360 degrees along with stereovision 3D reconstruction and point cloud combination. The sub-pixel analysis introduced in the HRESS system makes it possible to obtain an increased distance measurement resolution and accuracy of about 3% for distances over one kilometer. Ultimately, this leads to more accurate and reliable measurement data in the form of a point cloud. Moreover, the program algorithm introduces operations enabling the filtering of erroneously collected data in the point cloud. All activities from the programming, mechanical and optical side are aimed at obtaining the most accurate 3D reconstruction of the environment in the measurement area.

Keywords: airfield monitoring, artificial intelligence, stereovision, 3D reconstruction

Procedia PDF Downloads 121
10483 Small-Sided Games in Football: Effect of Field Sizes on Technical Parameters

Authors: Faruk Guven, Nurtekin Erkmen, Samet Aktas, Cengiz Taskin

Abstract:

The aim of this study was to determine effects of field sizes on technical parameters of small-sided games in football players. Eight amateur football players (27.23±3.08 years, heigth: 171.01±5.36 cm, body weigth: 66.86±4.54 kg, sports experience: 12.88±3.28 years) performed 4-a-side small-sided games (SSG) with different field sizes. In SSGs, field sizes were 30 x 40 m and 26 mx24 m. SSGs was conducted as a series of 3 bouts of 6 min with 5 min recovery durations. All SSGs were video recorded using two digital video camcorder positioned on a tripot. Shoot on taget, passes, succesful passes, unsuccesful passes, dripling, tackle, possession in SSGs were counted by Mathball Match Analysis System. The effects of bouts on technical score were examined separately using a Friedman’s test. Mann Whitney U test was applied to analyse differences between field sizes. There were no significant differences in shoots on target, total pass, successful pass, tackle, interception, possession between bouts in 30x40 m field size (p>0.05). Unsuccessful pass in bout 3 for 30x40 m field size was lower than bout 1 and bout 2 (p<0.05) and dripling in bout 3 was lower than bout 2 (p<0.05). There was no significant difference in technical actions between bouts for 26x34 m field size (p>0.05). Shoot on target in SSG with 26 x 34 m field size was higher than SSG with 30x40 m field size (p<0.05). Unsuccessful pass for 26x34 m field size in bout 3 was higher than SSG with 30x40 m field size (p<0.05). There was no significant difference in technical actions between field sizes (p>0.05). In conclusion; in this study demonstrates that technical actions in a-4-side SSG are not influenced by different field sizes (for 30x40 m and 26x34 m field sizes). This consequence is same for both total SSG time and each bout. Dripling and unsuccessful pass decrease in bout 3 during SSG in 30 x 40 m field size.

Keywords: small-sided games, football, technical actions, sport science

Procedia PDF Downloads 549
10482 Understanding the Polygon with the Eyes of Blinds

Authors: Tuğba Horzum, Ahmet Arikan

Abstract:

This paper was part of a broader study that investigated what blind students (BSs) understood and how they used concept definitions (CDs) and concept images (CIs) for some mathematical concepts. This paper focused on the polygon concept. For this purpose, four open-ended questions were asked to five blind middle school students. During the interviews, BSs were presented with raised-line materials and were given opportunities to construct geometric shapes with magnetic sticks and micro-balls. Qualitative research techniques applied in grounded theory were used for analyzing documents pictures which were taken from magnetic geometric shapes that BSs constructed, raised-line materials and researcher’s observation notes and interviews. At the end of the analysis, it was observed that BSs used mostly their CIs and never took into account the CDs. Besides, BSs encountered with the difficulties associated with the combination of polygon edges’ endpoints consecutively. Additionally, they focused on the interior of the polygon and the angles which have smaller a size. Lastly, BSs were often conflicted about triangle, rectangle, square and circle whether or not a polygon.

Keywords: blind students, concept definition, concept image, polygon

Procedia PDF Downloads 294
10481 Thermodynamic and Magnetic Properties of Heavy Fermion UTE₂ Superconductor

Authors: Habtamu Anagaw Muluneh, Gebregziabher Kahsay, Tamiru Negussie

Abstract:

Theoretical study of the density of state, condensation energy, specific heat, and magnetization in a spin-triplet superconductor are the main goals of this work. Utilizing the retarded double-time temperature-dependent Green's function formalism and building a model Hamiltonian for the system at hand, we were able to derive the expressions for the parameters mentioned above. The phase diagrams are plotted using MATLAB scripts. From the phase diagrams, the density of electrons increases as the excitation energy increases, and the maximum excitation energy is equal to the superconducting gap, but it decreases when the value exceeds the gap and finally becomes the same as the density of the normal state. On the other hand, the condensation energy decreases with the increase in temperature and attains its minimum value at the superconducting transition temperature but increases with the increase in superconducting transition temperature (TC) and finally becomes zero, implying the superconducting energy is equal to the normal state energy. The specific heat increases with the increase in temperature, attaining its maximum value at the TC and then undergoing a jump, showing the presence of a second-order phase transition from the superconducting state to the normal state. Finally, the magnetization of both the itinerant and localized electrons decreases with the increase in temperature and finally becomes zero at TC = 1.6 K and magnetic phase transition temperature T = 2 K, respectively, which results in a magnetic phase transition from a ferromagnetic to a paramagnetic state. Our finding is in good agreement with the previous findings.

Keywords: spin triplet superconductivity, Green’s function, condensation energy, density of state, specific heat, magnetization

Procedia PDF Downloads 15
10480 Evaluating the Small-Strain Mechanical Properties of Cement-Treated Clayey Soils Based on the Confining Pressure

Authors: Muhammad Akmal Putera, Noriyuki Yasufuku, Adel Alowaisy, Ahmad Rifai

Abstract:

Indonesia’s government has planned a project for a high-speed railway connecting the capital cities, Jakarta and Surabaya, about 700 km. Based on that location, it has been planning construction above the lowland soil region. The lowland soil region comprises cohesive soil with high water content and high compressibility index, which in fact, led to a settlement problem. Among the variety of railway track structures, the adoption of the ballastless track was used effectively to reduce the settlement; it provided a lightweight structure and minimized workspace. Contradictorily, deploying this thin layer structure above the lowland area was compensated with several problems, such as lack of bearing capacity and deflection behavior during traffic loading. It is necessary to combine with ground improvement to assure a settlement behavior on the clayey soil. Reflecting on the assurance of strength increment and working period, those were convinced by adopting methods such as cement-treated soil as the substructure of railway track. Particularly, evaluating mechanical properties in the field has been well known by using the plate load test and cone penetration test. However, observing an increment of mechanical properties has uncertainty, especially for evaluating cement-treated soil on the substructure. The current quality control of cement-treated soils was established by laboratory tests. Moreover, using small strain devices measurement in the laboratory can predict more reliable results that are identical to field measurement tests. Aims of this research are to show an intercorrelation of confining pressure with the initial condition of the Young modulus (E_o), Poisson ratio (υ_o) and Shear modulus (G_o) within small strain ranges. Furthermore, discrepancies between those parameters were also investigated. Based on the experimental result confirmed the intercorrelation between cement content and confining pressure with a power function. In addition, higher cement ratios have discrepancies, conversely with low mixing ratios.

Keywords: amount of cement, elastic zone, high-speed railway, lightweight structure

Procedia PDF Downloads 138
10479 Saturation Misbehavior and Field Activation of the Mobility in Polymer-Based OTFTs

Authors: L. Giraudet, O. Simonetti, G. de Tournadre, N. Dumelié, B. Clarenc, F. Reisdorffer

Abstract:

In this paper we intend to give a comprehensive view of the saturation misbehavior of thin film transistors (TFTs) based on disordered semiconductors, such as most organic TFTs, and its link to the field activation of the mobility. Experimental evidence of the field activation of the mobility is given for disordered semiconductor based TFTs, when reducing the gate length. Saturation misbehavior is observed simultaneously. Advanced transport models have been implemented in a quasi-2D numerical TFT simulation software. From the numerical simulations it is clearly established that field activation of the mobility alone cannot explain the saturation misbehavior. Evidence is given that high longitudinal field gradient at the drain end of the channel is responsible for an excess charge accumulation, preventing saturation. The two combined effects allow reproducing the experimental output characteristics of short channel TFTs, with S-shaped characteristics and saturation failure.

Keywords: mobility field activation, numerical simulation, OTFT, saturation failure

Procedia PDF Downloads 518
10478 Super-Exchange Coupling in Oxygen Rich Rare-Earth Based Sm₂MnRuO₆₊δ Double Perovskite

Authors: S. Nqayi, B. Sondezi

Abstract:

A rare-earth-based Sm₂MnRuO₆₊δ (SMRO) double perovskite was prepared using a high-temperature solid-state reaction. The structural, morphological, chemical, thermodynamic, and magnetic properties were measured with X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoemission spectroscopy (XPS), and vibrating sample magnetometer (VSM), respectively. The XRD revealed a tetragonal structure belonging to the I4/mmm space group, number 139, with linear Mn−O−Ru bonds. Replacing the well-studied alkaline earth metal with a rare-earth element increased the Mn-O bond length difference between the shorter equatorial (Mn-Oab) and the axial (Mn-Oc) bonds by approximately 6.3%. The elemental composition showed an O-rich double perovskite with a Ru deficit, which encourages the formation of a Ru⁶⁺ (d²) state. XPS spectra of Sm-3d, Ru-3d, and Mn-2p revealed the coexistence of a double oxidation state for each cation; Sm²⁺, Sm³⁺, Ru³⁺, Ru⁶⁺, Mn²⁺ , and Mn³⁺, in varying proportions. Entropy studies showed drastic ordering of spins at low temperatures (up to 12.4 K), whilst increasing temperatures above this point resulted in a drastic increase of disorder of the spins (up to 43.26 K), beyond which a constant slope of entropy is observed. Magnetic measurements revealed two magnetic ground states at TN = 12.4 K and TC = 43.3 K ordering antiferromagnetically (AFM) and ferromagnetically (FM), respectively. Kneller fit further showed that the materials become completely paramagnetic at TB = 88.1 K, (the blocking temperature). The existence of ferromagnetic (FM) super-exchange coupling in this work originating from Mn³⁺ (t³₂𝓰e¹𝓰)−O−Ru³⁺ (t⁵₂𝓰e⁰𝓰) and Mn²⁺ (t³₂𝓰e²𝓰−O−Ru⁶⁺ (t²₂𝓰e⁰𝓰) which plays an important role in suppressing the Mn/Ru−O−Mn/Ru antiferromagnetic (AFM) interactions.

Keywords: solid-state reaction, super-exchange coupling, ferromagnetic, Kneller’s law, entropy

Procedia PDF Downloads 17
10477 Modeling and Controlling Nonlinear Dynamical Effects in Non-Contact Superconducting and Diamagnetic Suspensions

Authors: Sergey Kuznetsov, Yuri Urman

Abstract:

We present an approach to investigate non-linear dynamical effects occurring in the noncontact superconducting and diamagnetic suspensions, when levitated body has finite size. This approach is based on the calculation of interaction energy between spherical finite size superconducting or diamagnetic body with external magnetic field. Effects of small deviations from spherical shape may be also taken into account by introducing small corrections to the energy. This model allows investigating dynamical effects important for practical applications, such as nonlinear resonances, change of vibration plane, coupling of rotational and translational motions etc. We also show how the geometry of suspension affects various dynamical effects and how an inverse problem may be formulated to enforce or diminish various dynamical effects.

Keywords: levitation, non-linear dynamics, superconducting, diamagnetic stability

Procedia PDF Downloads 408
10476 Numerical Simulation and Experimental Study on Cable Damage Detection Using an MFL Technique

Authors: Jooyoung Park, Junkyeong Kim, Aoqi Zhang, Seunghee Park

Abstract:

Non-destructive testing on cable is in great demand due to safety accidents at sites where many equipments using cables are installed. In this paper, the quantitative change of the obtained signal was analyzed using a magnetic flux leakage (MFL) method. A two-dimensional simulation was conducted with a FEM model replicating real elevator cables. The simulation data were compared for three parameters (depth of defect, width of defect and inspection velocity). Then, an experiment on same conditions was carried out to verify the results of the simulation. Signals obtained from both the simulation and the experiment were transformed to characterize the properties of the damage. Throughout the results, a cable damage detection based on an MFL method was confirmed to be feasible. In further study, it is expected that the MFL signals of an entire specimen will be gained and visualized as well.

Keywords: magnetic flux leakage (mfl), cable damage detection, non-destructive testing, numerical simulation

Procedia PDF Downloads 381
10475 Magnetic SF (Silk Fibroin) E-Gel Scaffolds Containing bFGF-Conjugated Fe3O4 Nanoparticles

Authors: Z. Karahaliloğlu, E. Yalçın, M. Demirbilek, E.B. Denkbaş

Abstract:

Critical-sized bone defects caused by trauma, bone diseases, prosthetic implant revision or tumor excision cannot be repaired by physiological regenerative processes. Current orthopedic applications for critical-sized bone defects are to use autologous bone grafts, bone allografts, or synthetic graft materials. However, these strategies are unable to solve completely the problem, and motivate the development of novel effective biological scaffolds for tissue engineering applications and regenerative medicine applications. In particular, scaffolds combined with a variety of bio-agents as fundamental tools emerge to provide the regeneration of damaged bone tissues due to their ability to promote cell growth and function. In this study, a magnetic silk fibroin (SF) hydrogel scaffold was prepared by electrogelation process of the concentrated Bombxy mori silk fibroin (8 %wt) aqueous solution. For enhancement of osteoblast-like cells (SaOS-2) growth and adhesion, basal fibroblast growth factor (bFGF) were conjugated physically to the HSA-coated magnetic nanoparticles (Fe3O4) and magnetic SF e-gel scaffolds were prepared by incorporation of Fe3O4, HSA (human serum albumin)=Fe3O4 and HSA=Fe3O4-bFGF nanoparticles. HSA=Fe3O4, HSA=Fe3O4-bFGF loaded and bare SF e-gels scaffolds were characterized using scanning electron microscopy (SEM.) For cell studies, human osteoblast-like cell line (SaOS-2) was used and an MTT assay was used to assess the cytotoxicity of magnetic silk fibroin e-gel scaffolds and cell density on these surfaces. For the evaluation osteogenic activation, ALP (alkaline phosphatase), the amount of mineralized calcium, total protein and collagen were studied. Fe3O4 nanoparticles were successfully synthesized and bFGF was conjugated to HSA=Fe3O4 nanoparticles with %97.5 of binding yield which has a particle size of 71.52±2.3 nm. Electron microscopy images of the prepared HSA and bFGF incorporated SF e-gel scaffolds showed a 3D porous morphology. In terms of water uptake results, bFGF conjugated HSA=Fe3O4 nanoparticles has the best water absorbability behavior among all groups. In the in-vitro cell culture studies realized using SaOS-2 cell line, the coating of Fe3O4 nanoparticles surface with a protein enhance the cell viability and HSA coating and bFGF conjugation, the both have an inductive effect in the cell proliferation. One of the markers of bone formation and osteoblast differentiation, according to the ALP activity and total protein results, HSA=Fe3O4-bFGF loaded SF e-gels had significantly enhanced ALP activity. Osteoblast cultured HSA=Fe3O4-bFGF loaded SF e-gels deposited more calcium compared with SF e-gel. The proposed magnetic scaffolds seem to be promising for bone tissue regeneration and used in future work for various applications.

Keywords: basic fibroblast growth factor (bFGF), e-gel, iron oxide nanoparticles, silk fibroin

Procedia PDF Downloads 284
10474 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity

Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki

Abstract:

In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.

Keywords: 3D indexation, spherical harmonic, similarity of 3D objects, measurement similarity

Procedia PDF Downloads 431
10473 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts

Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba

Abstract:

Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.

Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection

Procedia PDF Downloads 222
10472 Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix

Authors: J. Plocek, P. Holec, S. Kubickova, B. Pacakova, I. Matulkova, A. Mantlikova, I. Němec, D. Niznansky, J. Vejpravova

Abstract:

This article presents summary on preparation and characterization of zinc, copper, cadmium and cobalt chromite nano crystals, embedded in an amorphous silica matrix. The ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2 nano composites were prepared by a conventional sol-gel method under acid catalysis. Final heat treatment of the samples was carried out at temperatures in the range of 900–1200 °C to adjust the phase composition and the crystallite size, respectively. The resulting samples were characterized by Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), Raman/FTIR spectroscopy and magnetic measurements. Formation of the spinel phase was confirmed in all samples. The average size of the nano crystals was determined from the PXRD data and by direct particle size observation on HRTEM; both results were correlated. The mean particle size (reviewed by HRTEM) was in the range from ~ 4 to 46 nm. The results showed that the sol-gel method can be effectively used for preparation of the spinel chromite nano particles embedded in the silica matrix and the particle size is driven by the type of the cation A2+ in the spinel structure and the temperature of the final heat treatment. Magnetic properties of the nano crystals were found to be just moderately modified in comparison to the bulk phases.

Keywords: sol-gel method, nanocomposites, Rietveld refinement, Raman spectroscopy, Fourier transform infrared spectroscopy, magnetic properties, spinel, chromite

Procedia PDF Downloads 215
10471 A Model of Preventing Global Financial Crisis: Gauss Law Model Proposal Used in Electrical Field Calculations

Authors: Arzu K. Kamberli

Abstract:

This article examines the relationship between economics and physics, starting with Adam Smith, with a new econophysics approach in Economics-Physics with the Gauss Law model proposal using for the Electric Field calculation, which will allow us to anticipate the Global Financial Crisis. For this purpose, the similarities between the Gauss Law using the electric field calculations and the global financial crisis have been explained on the formula, and a model has been suggested to predict the risks of the financial systems from the electricity field calculations. Thus, this study is expected to help for preventing the Global Financial Crisis with the contribution of the science of economics and physics from the aspect of econophysics.

Keywords: econophysics, electric field, financial system, Gauss law, global financial crisis

Procedia PDF Downloads 283