Search results for: cross-validation support vector machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10109

Search results for: cross-validation support vector machine

9209 Development of a Web Exploration Support System Focusing on Accumulation of Search Contexts

Authors: T. Yamazaki, R. Onuma, H. Kaminaga, Y. Miyadera, S. Nakamura

Abstract:

Web exploration has increasingly diversified in accordance with the development of browsing environments on the Internet. Moreover, advanced exploration often conducted in intellectual activities such as surveys in research activities. This kind of exploration is conducted for a long period with trials and errors. In such a case, it is extremely important for a user to accumulate the search contexts and understand them. However, existing support systems were not effective enough since most systems could not handle the various factors involved in the exploration. This research aims to develop a novel system to support web exploration focusing on the accumulation of the search contexts. This paper mainly describes the outline of the system. An experiment using the system is also described. Finally, features of the system are discussed based on the results.

Keywords: web exploration context, refinement of search intention, accumulation of context, exploration support, information visualization

Procedia PDF Downloads 313
9208 Structural Reliability Analysis Using Extreme Learning Machine

Authors: Mehul Srivastava, Sharma Tushar Ravikant, Mridul Krishn Mishra

Abstract:

In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability.

Keywords: reliability, reliability index, statistically independent, extreme learning machine

Procedia PDF Downloads 688
9207 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia PDF Downloads 136
9206 Deployment of Armed Soldiers in European Cities as a Source of Insecurity among Czech Population

Authors: Blanka Havlickova

Abstract:

In the last ten years, there are growing numbers of troops with machine guns serving on streets of European cities. We can see them around government buildings, major transport hubs, synagogues, galleries and main tourist landmarks. As the main purpose of armed soldier’s presence in European cities authorities declare the prevention of terrorist attacks and psychological support for tourists and domestic population. The main objective of the following study is to find out whether the deployment of armed soldiers in European cities has a calming and reassuring effect on Czech citizens (if the presence at armed soldiers make the Czech population feel more secure) or rather becomes a stress factor (the presence of soldiers standing guard in full military fatigues recalls serious criminality and terrorist attacks which are reflected in the fears and insecurity of Czech population). The initial hypothesis of this study is connected with the priming theory, the idea that when we are exposed to an image (armed soldier), it makes us unconsciously focus on a topic connected with this image (terrorism). This paper is based on a quantitative public survey, which was carried out in the form of electronic questioning among the citizens of the Czech Republic. Respondents answered 14 questions about two European cities – London and Paris. Besides general questions investigating the respondents' awareness of these cities, some of the questions focused on the fear that the respondents had when picturing themselves leaving next Monday for the given city (London or Paris). The questions asking about respondent´s travel fears and concerns were accompanied by different photos. When answering the question about fear some respondents have been presented with a photo of Westminster Palace and the Eiffel with ordinary citizens while other respondents have been presented with a picture of the Westminster Palace, the and Eiffel's tower not only with ordinary citizens, but also with one soldier holding a machine gun. The main goal of this paper is to analyse and compare data about concerns for these two groups of respondents (presented with different pictures) and find out if and how an armed soldier with a machine gun in front of the Westminster Palace or the Eiffel Tower affects the public's concerns about visiting the site. In other words, the aim of this paper is to confirm or rebut the hypothesis that the look at a soldier with a machine gun in front of the Eiffel Tower or the Westminster Palace automatically triggers the association with a terrorist attack leading to an increase in fear and insecurity among Czech population.

Keywords: terrorism, security measures, priming, risk perception

Procedia PDF Downloads 255
9205 Enhancing Word Meaning Retrieval Using FastText and Natural Language Processing Techniques

Authors: Sankalp Devanand, Prateek Agasimani, Shamith V. S., Rohith Neeraje

Abstract:

Machine translation has witnessed significant advancements in recent years, but the translation of languages with distinct linguistic characteristics, such as English and Sanskrit, remains a challenging task. This research presents the development of a dedicated English-to-Sanskrit machine translation model, aiming to bridge the linguistic and cultural gap between these two languages. Using a variety of natural language processing (NLP) approaches, including FastText embeddings, this research proposes a thorough method to improve word meaning retrieval. Data preparation, part-of-speech tagging, dictionary searches, and transliteration are all included in the methodology. The study also addresses the implementation of an interpreter pattern and uses a word similarity task to assess the quality of word embeddings. The experimental outcomes show how the suggested approach may be used to enhance word meaning retrieval tasks with greater efficacy, accuracy, and adaptability. Evaluation of the model's performance is conducted through rigorous testing, comparing its output against existing machine translation systems. The assessment includes quantitative metrics such as BLEU scores, METEOR scores, Jaccard Similarity, etc.

Keywords: machine translation, English to Sanskrit, natural language processing, word meaning retrieval, fastText embeddings

Procedia PDF Downloads 48
9204 Iris Recognition Based on the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric

Procedia PDF Downloads 337
9203 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression

Authors: Abdulla D. Alblooshi

Abstract:

The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².

Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE

Procedia PDF Downloads 175
9202 Relationship Building Between Peer Support Worker and Person in Recovery in the Community-based One-to-One Peer Support Service of Mental Health Setting

Authors: Yuen Man Yan

Abstract:

Peer support has been a rising prevalent mental health service in the globe. The community-based mental health services employ persons with lived experience of mental illness to be peer support workers (PSWs) to provide peer support service to those who are in the progress of recovery (PIRs). It represents the transformation of mental health service system to a recovery-oriented and person-centered care. Literatures proved the feasibility and effectiveness of the peer support service. Researchers have attempted to explore the unique good qualities of peer support service that benefit the PIRs. Empirical researches found that the strength of the relationship between those who sought for change and the change agents positively related to the outcomes in one-to-one therapies across theoretical orientations. However, there is lack of literature on investigating the relationship building between the PSWs and PIRs in the one-to-one community-based peer support service. This study aims to identify and characterise the relationship in the community-based one-to-one peer support service from the perspectives of PSWs and PIRs; and to conceptualize the components of relationship building between PSWs and PIRs in the community-based one-to-one peer support service. The study adopted the constructivist grounded theory approach. 10 pairs of the PSWs and PIRs participated in the study. Data were collected through multiple qualitative methods, including observation of the interaction and exchange of the PSWs and PIRs in the 1ₛₜ, 3ᵣ𝒹 and 9th sessions of the community-based one-to-one peer support service; and semi-structural interview with the PSWs and PIRs separately after the 3ᵣ𝒹and 9ₜₕ session of the peer support service. This presentation is going to report the preliminary findings of the study. PSWs and PIRs identified their relationship as “life alliance”. Empathy was found to be one of key components of the relationship between the PSWs and the PIRs. Unlike the empathy, as explained by Carl Roger, in which the service provider was able to put themselves into the shoes of the service recipients as if he was the service recipients, the intensity of the empathy was much greater in the relationship between PSWs and PIRs because PSWs had the lived experience of mental illness and recovery. The dimensions of the empathy in the relationship between PSWs and PIRs was found to be multiple, not only related to the mental illness but also related to various aspects in life, like family relationship, employment, interest of life, self-esteem and etc.

Keywords: person with lived experience, peer support worker, peer support service, relationship building, therapeutic alliance, community-based mental health setting

Procedia PDF Downloads 77
9201 Teaching Basic Life Support in More Than 1000 Young School Children in 5th Grade

Authors: H. Booke, R. Nordmeier

Abstract:

Sudden cardiac arrest is sometimes eye-witnessed by kids. Mostly, their (grand-)parents are affected by sudden cardiac arrest, putting these kids under enormous psychological pressure: Although they are more than desperate to help, they feel insecure and helpless and are afraid of causing harm rather than realizing their chance to help. Even years later, they may blame themselves for not having helped their beloved ones. However, the absolute majority of school children - at least in Germany - is not educated to provide first aid. Teaching young kids (5th grade) in basic life support thus may help to save lives while washing away the kids' fear from causing harm during cardio-pulmonary resuscitation. A teaching of circulatory and respiratory (patho-)physiology, followed by hands-on training of basic life support for every single child, was offered to each school in our district. The teaching was performed by anesthesiologists, and the program was called 'kids can save lives'. However, before enrollment in this program, the entire class must have had lessons in biology with a special focus on heart and circulation as well as lung and gas exchange. More than 1.000 kids were taught and trained in basic life support, giving them the knowledge and skills to provide basic life support. This may help to reduce the rate of failure to provide first aid. Therefore, educating young kids in basic life support may not only help to save lives, but it also may help to prevent any feelings of guilt because of not having helped in cases of eye-witnessed sudden cardiac arrest.

Keywords: teaching, children, basic life support, cardiac arrest, CPR

Procedia PDF Downloads 137
9200 The Link between Money Market and Economic Growth in Nigeria: Vector Error Correction Model Approach

Authors: Uyi Kizito Ehigiamusoe

Abstract:

The paper examines the impact of money market on economic growth in Nigeria using data for the period 1980-2012. Econometrics techniques such as Ordinary Least Squares Method, Johanson’s Co-integration Test and Vector Error Correction Model were used to examine both the long-run and short-run relationship. Evidence from the study suggest that though a long-run relationship exists between money market and economic growth, but the present state of the Nigerian money market is significantly and negatively related to economic growth. The link between the money market and the real sector of the economy remains very weak. This implies that the market is not yet developed enough to produce the needed growth that will propel the Nigerian economy because of several challenges. It was therefore recommended that government should create the appropriate macroeconomic policies, legal framework and sustain the present reforms with a view to developing the market so as to promote productive activities, investments, and ultimately economic growth.

Keywords: economic growth, investments, money market, money market challenges, money market instruments

Procedia PDF Downloads 350
9199 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains

Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda

Abstract:

In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).

Keywords: features extraction, handwritten numeric chains, image processing, neural networks

Procedia PDF Downloads 268
9198 A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning

Authors: Samina Khalid, Shamila Nasreen

Abstract:

Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented.

Keywords: age related macular degeneration, feature selection feature subset selection feature extraction/transformation, FSA’s, relief, correlation based method, PCA, ICA

Procedia PDF Downloads 503
9197 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 137
9196 The Ever-Changing Connection Among Banks and Insurers: An Examination of the Financial Standing of the Financial System

Authors: Iqra Ali

Abstract:

This study uses panel Vector Auto Regression (VAR) to analyses the dynamic link between banking and insurance activities based on the asset size of the insurance industry for 73 countries between 1980 and 2014. Assets in the insurance industry and banking activities usually have a Granger causal link, according to panel Granger-causality tests. Impulse response analyses for the entire sample show that the size of insurance assets responds favorably to a shock to the liquid liabilities and deposits of the financial system but negatively to a shock to deposit money bank assets and private credit offered by commercial banks, other financial institutions, and deposit banks. While the findings for middle- and low-income nations varied significantly, the observations for high-income countries are essentially the same. Furthermore, we find that there is a substantial interplay between banking and insurance activity in civil law nations as opposed to common law ones.

Keywords: vector autoregression, banking, insurance, Granger-causality

Procedia PDF Downloads 15
9195 The Effect of Peer Support to Interpersonal Problem Solving Tendencies and Skills in Nursing Students

Authors: B. Özlük, A. Karaaslan

Abstract:

This study has been conducted as a supplementary and relationship seeking study with the purpose of measuring the tendency and success of support among peers amid nursing students studying at university in solving interpersonal problems. The population of the study (N:279) is comprised of nursing students who are studying at one state and one private university in the province of Konya, while its sample is comprised of 231 nursing students who agreed to take part in the study voluntarily. As a result of this study, it has been determined that the peer support and interpersonal problem solving characteristics among students were at medium levels and that the interpersonal problem solving skills of students studying in the third year were higher than those of first and second year students. While the interpersonal problem solving characteristics of students who are aged 20 and over were found to be higher, no difference could be determined in terms of the interpersonal problem solving skills and tendencies among students, based on their gender and where they reside. A positive – to a medium degree – and significant relationship was determined between peer support and interpersonal problem solving skills, and it is possible to say that as peer support increases, so do the skills and tendencies to solve problems.

Keywords: nursing students, peer support, interpersonal problem, problem solving

Procedia PDF Downloads 272
9194 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 129
9193 The Effects of Cultural Self-Efficacy and Perceived Social Support on Acculturative Stress of International Postgraduate Students in the United Kingdom

Authors: Rhea Mathews

Abstract:

The purpose of the study is to investigate the effects of perceived social support and cultural self-efficacy on the acculturative stress of international postgraduate students in the United Kingdom. The study adopted Berry, Kim, Minde & Mok’s (1987) acculturative framework on acculturative stress and examined the relationship between the variables. The study hypothesized that perceived social support and cultural self-efficacy would predict lower levels of acculturative stress among students. Postgraduate students in the United Kingdom (N = 76) completed three surveys measuring the variables; Acculturative Stress Scale for International Students, Multidimensional Scale of Perceived Social Support, and Cultural Self-efficacy for Adolescents. To evaluate the role of the perceived social support and cultural self-efficacy in determining the acculturative stress level of international students, multiple linear regression was employed. Both independent variables exhibited a significant, negative relationship with acculturative stress (p < 0.001; p < 0.01). Results described that cultural self-efficacy and perceived social support significantly predicted acculturative stress (p < 0.01). Together, the variables accounted for 22% of the variance in acculturative stress scores (adjusted R² = 0.22), with cultural self-efficacy playing a larger role in predicting the dependent variable. Limitations and implications of the study are noted. The findings of the study are discussed in relation to enhancing international students’ acculturative experience when relocating to a new environment.

Keywords: acculturative stress, coping, cultural adjustment, cultural self-efficacy, international education, international students, migration, perceived social support

Procedia PDF Downloads 330
9192 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy

Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren

Abstract:

Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.

Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment

Procedia PDF Downloads 43
9191 Malaria Vector Situation in Tanjung Subdistrict, West Lombok Regency, West Nusa Tenggara Province, Indonesia

Authors: Subagyo Yotopranoto, Sri Wijayanti Sulistyawati, Sukmawati Basuki, Budi Armika, Yoes Prijatna Dachlan

Abstract:

Malaria is a parasitic infectious disease that still remains a health problem in the world, including Indonesia. There is an outbreak happen at West Nusa Tenggara in 2007. A tourist spot in West Nusa Tenggara called West Lombok is mesoendemic area for malaria. Tanjung is the highest malaria morbidity subdistrict in West Lombok. Thus, the research conducted for the presence of a new species of malaria vectors, that are suspected of one factors which caused high morbidity of malaria in this region. The study was conducted in coastal and highland areas. We collected and identified Anopheles larvae from their breeding places. We also collected and identified Anopheles adult mosquitoes with outdoor cow net, indoor and outdoor human bait. In coastal area (Tembobor village), we found Anopheles vagus larvae from rivers as its breeding places. In highland area (Dasan Tengah village), we found An. subpictus from pool, lagoon, and river as its breeding places. In coastal area, with outdoor human bait, we collected An. vagus and An. subpictus adult mosquitoes. With indoor human bait, we collected An. subpictus adult mosquitoes. Whereas with outdoor cow net, we collected An. subpictus and An. maculatus, the first was more dominant. Furthermore, An subpictus strong suspected as malaria vector in coastal area. Anopheles subpictus was an anthropozoophylic mosquitoes, because it was found at indoor and outdoor places.

Keywords: malaria, vector, Tanjung, West Nusa Tenggara

Procedia PDF Downloads 367
9190 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach

Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas

Abstract:

Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.

Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)

Procedia PDF Downloads 78
9189 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 162
9188 Learning the C-A-Bs: Resuscitation Training at Rwanda Military Hospital

Authors: Kathryn Norgang, Sarah Howrath, Auni Idi Muhire, Pacifique Umubyeyi

Abstract:

Description : A group of nurses address the shortage of trained staff to respond to critical patients at Rwanda Military Hospital (RMH) by developing a training program and a resuscitation response team. Members of the group who received the training when it first launched are now trainer of trainers; all components of the training program are organized and delivered by RMH staff-the clinical mentor only provides adjunct support. This two day training is held quarterly at RMH; basic life support and exposure to interventions for advanced care are included in the test and skills sign off. Seventy staff members have received the training this year alone. An increased number of admission/transfer to ICU due to successful resuscitation attempts is noted. Lessons learned: -Number of staff trained 2012-2014 (to be verified). -Staff who train together practice with greater collaboration during actual resuscitation events. -Staff more likely to initiate BLS if peer support is present-more staff trained equals more support. -More access to Advanced Cardiac Life Support training is necessary now that the cadre of BLS trained staff is growing. Conclusions: Increased access to training, peer support, and collaborative practice are effective strategies to strengthening resuscitation capacity within a hospital.

Keywords: resuscitation, basic life support, capacity building, resuscitation response teams, nurse trainer of trainers

Procedia PDF Downloads 307
9187 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism

Authors: Ferah Tesfaye Admasu

Abstract:

Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.

Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning

Procedia PDF Downloads 27
9186 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine

Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin

Abstract:

This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.

Keywords: CAM, multi-axis milling machining, transformation matrix, rotation angles

Procedia PDF Downloads 485
9185 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 181
9184 Design and Evaluation of a Prototype for Non-Invasive Screening of Diabetes – Skin Impedance Technique

Authors: Pavana Basavakumar, Devadas Bhat

Abstract:

Diabetes is a disease which often goes undiagnosed until its secondary effects are noticed. Early detection of the disease is necessary to avoid serious consequences which could lead to the death of the patient. Conventional invasive tests for screening of diabetes are mostly painful, time consuming and expensive. There’s also a risk of infection involved, therefore it is very essential to develop non-invasive methods to screen and estimate the level of blood glucose. Extensive research is going on with this perspective, involving various techniques that explore optical, electrical, chemical and thermal properties of the human body that directly or indirectly depend on the blood glucose concentration. Thus, non-invasive blood glucose monitoring has grown into a vast field of research. In this project, an attempt was made to device a prototype for screening of diabetes by measuring electrical impedance of the skin and building a model to predict a patient’s condition based on the measured impedance. The prototype developed, passes a negligible amount of constant current (0.5mA) across a subject’s index finger through tetra polar silver electrodes and measures output voltage across a wide range of frequencies (10 KHz – 4 MHz). The measured voltage is proportional to the impedance of the skin. The impedance was acquired in real-time for further analysis. Study was conducted on over 75 subjects with permission from the institutional ethics committee, along with impedance, subject’s blood glucose values were also noted, using conventional method. Nonlinear regression analysis was performed on the features extracted from the impedance data to obtain a model that predicts blood glucose values for a given set of features. When the predicted data was depicted on Clarke’s Error Grid, only 58% of the values predicted were clinically acceptable. Since the objective of the project was to screen diabetes and not actual estimation of blood glucose, the data was classified into three classes ‘NORMAL FASTING’,’NORMAL POSTPRANDIAL’ and ‘HIGH’ using linear Support Vector Machine (SVM). Classification accuracy obtained was 91.4%. The developed prototype was economical, fast and pain free. Thus, it can be used for mass screening of diabetes.

Keywords: Clarke’s error grid, electrical impedance of skin, linear SVM, nonlinear regression, non-invasive blood glucose monitoring, screening device for diabetes

Procedia PDF Downloads 328
9183 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach

Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy

Abstract:

In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.

Keywords: interaction, machine learning, predictive modeling, virtual reality

Procedia PDF Downloads 148
9182 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 74
9181 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 138
9180 Aggregate Supply Response of Some Livestock Commodities in Algeria: Cointegration- Vector Error Correction Model Approach

Authors: Amine M. Benmehaia, Amine Oulmane

Abstract:

The supply response of agricultural commodities to changes in price incentives is an important issue for the success of any policy reform in the agricultural sector. This study aims to quantify the responsiveness of producers of some livestock commodities to price incentives in Algerian context. Time series analysis is used on annual data for a period of 52 years (1966-2018). Both co-integration and vector error correction model (VECM) are used through the Nerlove model of partial adjustment. The study attempts to determine the long-run and short-run relationships along with the magnitudes of disequilibria in the selected commodities. Results show that the short-run price elasticities are low in cow and sheep meat sectors (8.7 and 8% respectively), while their respective long-run elasticities are 16.5 and 10.5, whereas eggs and milk have very high short-run price elasticities (82 and 90% respectively) with long-run elasticities of 40 and 46 respectively. The error correction coefficient, reflecting the speed of adjustment towards the long-run equilibrium, is statistically significant and have the expected negative sign. Its estimates are 12.7 for cow meat, 33.5 for sheep meat, 46.7 for eggs and 8.4 for milk. It seems that cow meat and milk producers have a weak feedback of about 12.7% and 8.4% respectively of the previous year's disequilibrium from the long-run price elasticity, whereas sheep meat and eggs producers adjust to correct long run disequilibrium with a high speed of adjustment (33.5% and 46.7 % respectively). The implication of this is that much more in-depth research is needed to identify those factors that affect agricultural supply and to describe the effect of factors that shift supply in response to price incentives. This could provide valuable information for government in the use of appropriate policy measures.

Keywords: Algeria, cointegration, livestock, supply response, vector error correction model

Procedia PDF Downloads 144