Search results for: surface features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10144

Search results for: surface features

904 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques

Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh

Abstract:

In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.

Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network

Procedia PDF Downloads 71
903 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites

Authors: Jifeng Zhang , Yongpeng Lei

Abstract:

Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.

Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface

Procedia PDF Downloads 121
902 A Density Function Theory Based Comparative Study of Trans and Cis - Resveratrol

Authors: Subhojyoti Chatterjee, Peter J. Mahon, Feng Wang

Abstract:

Resveratrol (RvL), a phenolic compound, is a key ingredient in wine and tomatoes that has been studied over the years because of its important bioactivities such as anti-oxidant, anti-aging and antimicrobial properties. Out of the two isomeric forms of resveratrol i.e. trans and cis, the health benefit is primarily associated with the trans form. Thus, studying the structural properties of the isomers will not only provide an insight into understanding the RvL isomers, but will also help in designing parameters for differentiation in order to achieve 99.9% purity of trans-RvL. In the present study, density function theory (DFT) study is conducted, using the B3LYP/6-311++G** model to explore the through bond and through space intramolecular interactions. Properties such as vibrational spectroscopy (IR and Raman), nuclear magnetic resonance (NMR) spectra, excess orbital energy spectrum (EOES), energy based decomposition analyses (EDA) and Fukui function are calculated. It is discovered that the structure of trans-RvL, although it is C1 non-planar, the backbone non-H atoms are nearly in the same plane; whereas the cis-RvL consists of two major planes of R1 and R2 that are not in the same plane. The absence of planarity gives rise to a H-bond of 2.67Å in cis-RvL. Rotation of the C(5)-C(8) single bond in trans-RvL produces higher energy barriers since it may break the (planar) entire conjugated structure; while such rotation in cis-RvL produces multiple minima and maxima depending on the positions of the rings. The calculated FT-IR spectrum shows very different spectral features for trans and cis-RvL in the region 900 – 1500 cm-1, where the spectral peaks at 1138-1158 cm-1 are split in cis-RvL compared to a single peak at 1165 cm-1 in trans-RvL. In the Raman spectra, there is significant enhancement of cis-RvL in the region above 3000cm-1. Further, the carbon chemical environment (13C NMR) of the RvL molecule exhibit a larger chemical shift for cis-RvL compared to trans-RvL (Δδ = 8.18 ppm) for the carbon atom C(11), indicating that the chemical environment of the C group in cis-RvL is more diverse than its other isomer. The energy gap between highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) is 3.95 eV for trans and 4.35 eV for cis-RvL. A more detailed inspection using the recently developed EOES revealed that most of the large energy differences i.e. Δεcis-trans > ±0.30 eV, in their orbitals are contributed from the outer valence shell. They are MO60 (HOMO), MO52-55 and MO46. The active sites that has been captured by Fukui function (f + > 0.08) are associated with the stilbene C=C bond of RvL and cis-RvL is more active at these sites than in trans-RvL, as cis orientation breaks the large conjugation of trans-RvL so that the hydroxyl oxygen’s are more active in cis-RvL. Finally, EDA highlights the interaction energy (ΔEInt) of the phenolic compound, where trans is preferred over the cis-RvL (ΔΔEi = -4.35 kcal.mol-1) isomer. Thus, these quantum mechanics results could help in unwinding the diversified beneficial activities associated with resveratrol.

Keywords: resveratrol, FT-IR, Raman, NMR, excess orbital energy spectrum, energy decomposition analysis, Fukui function

Procedia PDF Downloads 194
901 Prevalent Features of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017

Authors: Lei Zhou, Dan Li, Ruiqi Ren, Chao Li, Yali Wang, Daxin Ni, Zijian Feng, Timothy M. Uyeki, Qun Li

Abstract:

Since the first human infections with avian influenza A(H7N9) virus were identified in early 2013, 1533 cases of laboratory-confirmed A(H7N9) virus infections were reported and confirmed as of September 13, 2017. The fifth epidemic was defined as starting from September 1, 2016, and the number of A(H7N9) cases has surged since the end of December in 2016. On February 18, 2017, the A(H7N9) cases who were infected with highly pathogenic avian influenza (HPAI) virus was reported from Southern China. The HPAI A(H7N9) cases were identified and then an investigation and analyses were conducted to assess whether disease severity in humans has changed with HPAI A(H7N9) compared with low pathogenic avian influenza (LPAI) A(H7N9) virus infection. Methods: All confirmed cases with A(H7N9) virus infections reported throughout mainland China from September 1, 2016, to September 13, 2017, were included. Cases' information was extracted from field investigation reports and the notifiable infectious surveillance system to describe the demographic, clinical, and epidemiologic characteristics. Descriptive statistics were used to compare HPAI A(H7N9) cases with all LPAI A(H7N9) cases reported during the fifth epidemic. Results: A total of 27 cases of HPAI A(H7N9) virus were identified infection from five provinces, including Guangxi (44%), Guangdong (33%), Hunan (15%), Hebei (4%) and Shangxi (4%). The median age of cases of HPAI A(H7N9) virus infection was 60 years (range, 15 to 80) and most of them were male (59%) and lived in rural areas (78%). All 27 cases had live poultry related exposures within 10 days before their illness onset. In comparison with LPAI A(H7N9) case-patients, HPAI A(H7N9) case-patients were significantly more likely to live in rural areas (78% vs. 51%; p = 0.006), have exposure to the sick or dead poultry (56% vs. 19%; p = 0.000), and be hospitalized earlier (median 3 vs. 4 days; p = 0.007). No significant differences were observed in median age, sex, prevalence of underlying chronic medical conditions, median time from illness onset to first medical service seeking, starting antiviral treatment, and diagnosis. Although the median time from illness onset to death (9 vs. 13 days) was shorter and the overall case-fatality proportion (48% vs. 38%) was higher for HPAI A(H7N9) case-patients than for LPAI A(H7N9) case-patients, these differences were not statistically significant. Conclusions: Our findings indicate that HPAI A(H7N9) virus infection was associated with exposure to sick and dead poultry in rural areas when visited live poultry market or in the backyard. In the fifth epidemic in mainland China, HPAI A (H7N9) case-patients were hospitalized earlier than LPAI A(H7N9) case-patients. Although the difference was not statistically significant, the mortality of HPAI A (H7N9) case-patients was obviously higher than that of LPAI A(H7N9) case-patients, indicating a potential severity change of HPAI A(H7N9) virus infection.

Keywords: Avian influenza A (H7N9) virus, highly pathogenic avian influenza (HPAI), case-patients, poultry

Procedia PDF Downloads 166
900 Elucidation of Dynamics of Murine Double Minute 2 Shed Light on the Anti-cancer Drug Development

Authors: Nigar Kantarci Carsibasi

Abstract:

Coarse-grained elastic network models, namely Gaussian network model (GNM) and Anisotropic network model (ANM), are utilized in order to investigate the fluctuation dynamics of Murine Double Minute 2 (MDM2), which is the native inhibitor of p53. Conformational dynamics of MDM2 are elucidated in unbound, p53 bound, and non-peptide small molecule inhibitor bound forms. With this, it is aimed to gain insights about the alterations brought to global dynamics of MDM2 by native peptide inhibitor p53, and two small molecule inhibitors (HDM201 and NVP-CGM097) that are undergoing clinical stages in cancer studies. MDM2 undergoes significant conformational changes upon inhibitor binding, carrying pieces of evidence of induced-fit mechanism. Small molecule inhibitors examined in this work exhibit similar fluctuation dynamics and characteristic mode shapes with p53 when complexed with MDM2, which would shed light on the design of novel small molecule inhibitors for cancer therapy. The results showed that residues Phe 19, Trp 23, Leu 26 reside in the minima of slowest modes of p53, pointing to the accepted three-finger binding model. Pro 27 displays the most significant hinge present in p53 and comes out to be another functionally important residue. Three distinct regions are identified in MDM2, for which significant conformational changes are observed upon binding. Regions I (residues 50-77) and III (residues 90-105) correspond to the binding interface of MDM2, including (α2, L2, and α4), which are stabilized during complex formation. Region II (residues 77-90) exhibits a large amplitude motion, being highly flexible, both in the absence and presence of p53 or other inhibitors. MDM2 exhibits a scattered profile in the fastest modes of motion, while binding of p53 and inhibitors puts restraints on MDM2 domains, clearly distinguishing the kinetically hot regions. Mode shape analysis revealed that the α4 domain controls the size of the cleft by keeping the cleft narrow in unbound MDM2; and open in the bound states for proper penetration and binding of p53 and inhibitors, which points to the induced-fit mechanism of p53 binding. P53 interacts with α2 and α4 in a synchronized manner. Collective modes are shifted upon inhibitor binding, i.e., second mode characteristic motion in MDM2-p53 complex is observed in the first mode of apo MDM2; however, apo and bound MDM2 exhibits similar features in the softest modes pointing to pre-existing modes facilitating the ligand binding. Although much higher amplitude motions are attained in the presence of non-peptide small molecule inhibitor molecules as compared to p53, they demonstrate close similarity. Hence, NVP-CGM097 and HDM201 succeed in mimicking the p53 behavior well. Elucidating how drug candidates alter the MDM2 global and conformational dynamics would shed light on the rational design of novel anticancer drugs.

Keywords: cancer, drug design, elastic network model, MDM2

Procedia PDF Downloads 130
899 Fabrication of Carbon Nanoparticles and Graphene Using Pulsed Laser Ablation

Authors: Davoud Dorranian, Hajar Sadeghi, Elmira Solati

Abstract:

Carbon nanostructures in various forms were synthesized using pulsed laser ablation of a graphite target in different liquid environment. The beam of a Q-switched Nd:YAG laser of 1064-nm wavelength at 7-ns pulse width is employed to irradiate the solid target in water, acetone, alcohol, and cetyltrimethylammonium bromide (CTAB). Then the effect of the liquid environment on the characteristic of carbon nanostructures produced by laser ablation was investigated. The optical properties of the carbon nanostructures were examined at room temperature by UV–Vis-NIR spectrophotometer. The crystalline structure of the carbon nanostructures was analyzed by X-ray diffraction (XRD). The morphology of samples was investigated by field emission scanning electron microscope (FE-SEM). Transmission electron microscope (TEM) was employed to investigate the form of carbon nanostructures. Raman spectroscopy was used to determine the quality of carbon nanostructures. Results show that different carbon nanostructures such as nanoparticles and few-layer graphene were formed in various liquid environments. The UV-Vis-NIR absorption spectra of samples reveal that the intensity of absorption peak of nanoparticles in alcohol is higher than the other liquid environments due to the larger number of nanoparticles in this environment. The red shift of the absorption peak of the sample in acetone confirms that produced carbon nanoparticles in this liquid are averagely larger than the other medium. The difference in the intensity and shape of the absorption peak indicated the effect of the liquid environment in producing the nanoparticles. The XRD pattern of the sample in water indicates an amorphous structure due to existence the graphene sheets. X-ray diffraction pattern shows that the degree of crystallinity of sample produced in CTAB is higher than the other liquid environments. Transmission electron microscopy images reveal that the generated carbon materials in water are graphene sheet and in the other liquid environments are graphene sheet and spherical nanostructures. According to the TEM images, we have the larger amount of carbon nanoparticles in the alcohol environment. FE-SEM micrographs indicate that in this liquids sheet like structures are formed however in acetone, produced sheets are adhered and these layers overlap with each other. According to the FE-SEM micrographs, the surface morphology of the sample in CTAB was coarser than that without surfactant. From Raman spectra, it can be concluded the distinct shape, width, and position of the graphene peaks and corresponding graphite source.

Keywords: carbon nanostructures, graphene, pulsed laser ablation, graphite

Procedia PDF Downloads 315
898 Low-Temperature Poly-Si Nanowire Junctionless Thin Film Transistors with Nickel Silicide

Authors: Yu-Hsien Lin, Yu-Ru Lin, Yung-Chun Wu

Abstract:

This work demonstrates the ultra-thin poly-Si (polycrystalline Silicon) nanowire junctionless thin film transistors (NWs JL-TFT) with nickel silicide contact. For nickel silicide film, this work designs to use two-step annealing to form ultra-thin, uniform and low sheet resistance (Rs) Ni silicide film. The NWs JL-TFT with nickel silicide contact exhibits the good electrical properties, including high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this work also compares the electrical characteristics of NWs JL-TFT with nickel silicide and non-silicide contact. Nickel silicide techniques are widely used for high-performance devices as the device scaling due to the source/drain sheet resistance issue. Therefore, the self-aligned silicide (salicide) technique is presented to reduce the series resistance of the device. Nickel silicide has several advantages including low-temperature process, low silicon consumption, no bridging failure property, smaller mechanical stress, and smaller contact resistance. The junctionless thin-film transistor (JL-TFT) is fabricated simply by heavily doping the channel and source/drain (S/D) regions simultaneously. Owing to the special doping profile, JL-TFT has some advantages such as lower thermal the budget which can integrate with high-k/metal-gate easier than conventional MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), longer effective channel length than conventional MOSFETs, and avoidance of complicated source/drain engineering. To solve JL-TFT has turn-off problem, JL-TFT needs ultra-thin body (UTB) structure to reach fully depleted channel region in off-state. On the other hand, the drive current (Iᴅ) is declined as transistor features are scaled. Therefore, this work demonstrates ultra thin poly-Si nanowire junctionless thin film transistors with nickel silicide contact. This work investigates the low-temperature formation of nickel silicide layer by physical-chemical deposition (PVD) of a 15nm Ni layer on the poly-Si substrate. Notably, this work designs to use two-step annealing to form ultrathin, uniform and low sheet resistance (Rs) Ni silicide film. The first step was promoted Ni diffusion through a thin interfacial amorphous layer. Then, the unreacted metal was lifted off after the first step. The second step was annealing for lower sheet resistance and firmly merged the phase.The ultra-thin poly-Si nanowire junctionless thin film transistors NWs JL-TFT with nickel silicide contact is demonstrated, which reveals high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In silicide film analysis, the second step of annealing was applied to form lower sheet resistance and firmly merge the phase silicide film. In short, the NWs JL-TFT with nickel silicide contact has exhibited a competitive short-channel behavior and improved drive current.

Keywords: poly-Si, nanowire, junctionless, thin-film transistors, nickel silicide

Procedia PDF Downloads 237
897 'Utsadhara': Rejuvenating the Dead River Edge into an Urban Activity Space along the Banks of River Hooghly

Authors: Aparna Saha, Tuhin Ahmed

Abstract:

West Bengal has a number of important rivers, each with its distinctive character and a story. Traditionally, cities have ‘divulged’ to rivers at the river edges and rivers have been an inseparable part of the urban experience. Considering the research aspect, the area is taken in Barrackpore, a small but important outgrowth of Kolkata Municipal Association, West Bengal. Barrackpore, at present, has ample inadequate public open spaces at the neighborhood level where people of different socio-cultural, economic, and religious backgrounds can come together and engage in various leisure activities, but there is no opportunity either, where people can learn about and explore the rich history of the settlement. Pertaining to these issues forms the backdrop of this research paper which has been conceptualized as a place from space that will bring people back to the river and increase community interactions and will also celebrate and commemorate towards the historical importance of the river and its edges. The entire precinct bordering the river represents the transition from pre-independence (Raj era) to Sepoy phase (Swaraj era), finally culminating into the Gandhian philosophy which is being projected into the already existing Gandhi Ghat. The ultimate aim of the paper entitled ‘Utsadhara- Rejuvenating the dead river edge into an urban activity space along the banks of river Hooghly’ is to create a socio-cultural space keeping the heritage identity intact through judicious use of the water body. Also, a balance is kept between the natural ecosystem and the cosmetic development of the surrounding open spaces. It can be duly achieved by the aforementioned methodology provided in the document, but mainly it would focus into preserving the historic ethnicity of the place by holding its character through various facts and figures as well as features. Most importantly the natural topography of the place is left intact. The second priority is given in terms of hierarchy of well connected public plazas, podiums where people from different socio-economic backgrounds irrespective of age and sex could socialize and reach towards venturing into a cordial relationship with one another. The third priority is to provide a platform for the common mass for showcasing their skills and talent through different art and craft forms which in turn would enhance their individual self and also the community as a whole through economic rise. Apart from this here some spaces are created in accordance to different age groups or class of people. The paper intends to see the river as a major multifunctional public space to attract people for different activities and re-establish the relationship of the river with the settlement. Hence, it is apprehended that the paper is not only intended to a simple riverfront conservation project but unlike others it is a place which is created for the people, by the people and of the people towards a holistic community development through a sustainable approach.

Keywords: holistic community development, public activity space, river-urban precinct, urban dead space

Procedia PDF Downloads 135
896 Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX): Scale Development

Authors: Cristina Costescu, Carmen David, Adrian Roșan

Abstract:

Executive functions (EF) and emotion regulation strategies are processes that allow individuals to function in an adaptative way and to be goal-oriented, which is essential for success in daily living activities, at school, or in social contexts. The Emotion Regulation and Executive Functioning Scale for Children and Adolescents (REMEX) represents an empirically based tool (based on the model of EF developed by Diamond) for evaluating significant dimensions of child and adolescent EFs and emotion regulation strategies, mainly in school contexts. The instrument measures the following dimensions: working memory, inhibition, cognitive flexibility, executive attention, planning, emotional control, and emotion regulation strategies. Building the instrument involved not only a top-down process, as we selected the content in accordance with prominent models of FE, but also a bottom-up one, as we were able to identify valid contexts in which FE and ER are put to use. For the construction of the instrument, we implemented three focus groups with teachers and other professionals since the aim was to develop an accurate, objective, and ecological instrument. We used the focus group method in order to address each dimension and to yield a bank of items to be further tested. Each dimension is addressed through a task that the examiner will apply and through several items derived from the main task. For the validation of the instrument, we plan to use item response theory (IRT), also known as the latent response theory, that attempts to explain the relationship between latent traits (unobservable cognitive processes) and their manifestations (i.e., observed outcomes, responses, or performance). REMEX represents an ecological scale that integrates a current scientific understanding of emotion regulation and EF and is directly applicable to school contexts, and it can be very useful for developing intervention protocols. We plan to test his convergent validity with the Childhood Executive Functioning Inventory (CHEXI) and Emotion Dysregulation Inventory (EDI) and divergent validity between a group of typically developing children and children with neurodevelopmental disorders, aged between 6 and 9 years old. In a previous pilot study, we enrolled a sample of 40 children with autism spectrum disorders and attention-deficit/hyperactivity disorder aged 6 to 12 years old, and we applied the above-mentioned scales (CHEXI and EDI). Our results showed that deficits in planning, bebavior regulation, inhibition, and working memory predict high levels of emotional reactivity, leading to emotional and behavioural problems. Considering previous results, we expect our findings to provide support for the validity and reliability of the REMEX version as an ecological instrument for assessing emotion regulation and EF in children and for key features of its uses in intervention protocols.

Keywords: executive functions, emotion regulation, children, item response theory, focus group

Procedia PDF Downloads 100
895 Regeneration of Cesium-Exhausted Activated Carbons by Microwave Irradiation

Authors: Pietro P. Falciglia, Erica Gagliano, Vincenza Brancato, Alfio Catalfo, Guglielmo Finocchiaro, Guido De Guidi, Stefano Romano, Paolo Roccaro, Federico G. A. Vagliasindi

Abstract:

Cesium-137 (¹³⁷Cs) is a major radionuclide in spent nuclear fuel processing, and it represents the most important cause of contamination related to nuclear accidents. Cesium-137 has long-term radiological effects representing a major concern for the human health. Several physico-chemical methods have been proposed for ¹³⁷Cs removal from impacted water: ion-exchange, adsorption, chemical precipitation, membrane process, coagulation, and electrochemical. However, these methods can be limited by ionic selectivity and efficiency, or they present very restricted full-scale application due to equipment and chemical high costs. On the other hand, adsorption is considered a more cost-effective solution, and activated carbons (ACs) are known as a low-cost and effective adsorbent for a wide range of pollutants among which radionuclides. However, adsorption of Cs onto ACs has been investigated in very few and not exhaustive studies. In addition, exhausted activated carbons are generally discarded in landfill, that is not an eco-friendly and economic solution. Consequently, the regeneration of exhausted ACs must be considered a preferable choice. Several alternatives, including conventional thermal-, solvent-, biological- and electrochemical-regeneration, are available but are affected by several economic or environmental concerns. Microwave (MW) irradiation has been widely used in industrial and environmental applications and it has attracted many attentions to regenerating activated carbons. The growing interest in MW irradiation is based on the passive ability of the irradiated medium to convert a low power irradiation energy into a rapid and large temperature increase if the media presents good dielectric features. ACs are excellent MW-absorbers, with a high mechanical strength and a good resistance towards heating process. This work investigates the feasibility of MW irradiation for the regeneration of Cs-exhausted ACs. Adsorption batch experiments were carried out using commercially available granular activated carbon (GAC), then Cs-saturated AC samples were treated using a controllable bench-scale 2.45-GHz MW oven and investigating different adsorption-regeneration cycles. The regeneration efficiency (RE), weight loss percentage, and textural properties of the AC samples during the adsorption-regeneration cycles were also assessed. Main results demonstrated a relatively low adsorption capacity for Cs, although the feasibility of ACs was strictly linked to their dielectric nature, which allows a very efficient thermal regeneration by MW irradiation. The weight loss percentage was found less than 2%, and an increase in RE after three cycles was also observed. Furthermore, MW regeneration preserved the pore structure of the regenerated ACs. For a deeper exploration of the full-scale applicability of MW regeneration, further investigations on more adsorption-regeneration cycles or using fixed-bed columns are required.

Keywords: adsorption mechanisms, cesium, granular activated carbons, microwave regeneration

Procedia PDF Downloads 141
894 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading

Authors: Robert Caulk

Abstract:

A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.

Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration

Procedia PDF Downloads 89
893 Formulation and Evaluation of Glimepiride (GMP)-Solid Nanodispersion and Nanodispersed Tablets

Authors: Ahmed. Abdel Bary, Omneya. Khowessah, Mojahed. al-jamrah

Abstract:

Introduction: The major challenge with the design of oral dosage forms lies with their poor bioavailability. The most frequent causes of low oral bioavailability are attributed to poor solubility and low permeability. The aim of this study was to develop solid nanodispersed tablet formulation of Glimepiride for the enhancement of the solubility and bioavailability. Methodology: Solid nanodispersions of Glimepiride (GMP) were prepared using two different ratios of 2 different carriers, namely; PEG6000, pluronic F127, and by adopting two different techniques, namely; solvent evaporation technique and fusion technique. A full factorial design of 2 3 was adopted to investigate the influence of formulation variables on the prepared nanodispersion properties. The best chosen formula of nanodispersed powder was formulated into tablets by direct compression. The Differential Scanning Calorimetry (DSC) analysis and Fourier Transform Infra-Red (FTIR) analysis were conducted for the thermal behavior and surface structure characterization, respectively. The zeta potential and particle size analysis of the prepared glimepiride nanodispersions was determined. The prepared solid nanodispersions and solid nanodispersed tablets of GMP were evaluated in terms of pre-compression and post-compression parameters, respectively. Results: The DSC and FTIR studies revealed that there was no interaction between GMP and all the excipients used. Based on the resulted values of different pre-compression parameters, the prepared solid nanodispersions powder blends showed poor to excellent flow properties. The resulted values of the other evaluated pre-compression parameters of the prepared solid nanodispersion were within the limits of pharmacopoeia. The drug content of the prepared nanodispersions ranged from 89.6 ± 0.3 % to 99.9± 0.5% with particle size ranged from 111.5 nm to 492.3 nm and the resulted zeta potential (ζ ) values of the prepared GMP-solid nanodispersion formulae (F1-F8) ranged from -8.28±3.62 mV to -78±11.4 mV. The in-vitro dissolution studies of the prepared solid nanodispersed tablets of GMP concluded that GMP- pluronic F127 combinations (F8), exhibited the best extent of drug release, compared to other formulations, and to the marketed product. One way ANOVA for the percent of drug released from the prepared GMP-nanodispersion formulae (F1- F8) after 20 and 60 minutes showed significant differences between the percent of drug released from different GMP-nanodispersed tablet formulae (F1- F8), (P<0.05). Conclusion: Preparation of glimepiride as nanodispersed particles proven to be a promising tool for enhancing the poor solubility of glimepiride.

Keywords: glimepiride, solid Nanodispersion, nanodispersed tablets, poorly water soluble drugs

Procedia PDF Downloads 488
892 R&D Diffusion and Productivity in a Globalized World: Country Capabilities in an MRIO Framework

Authors: S. Jimenez, R.Duarte, J.Sanchez-Choliz, I. Villanua

Abstract:

There is a certain consensus in economic literature about the factors that have influenced in historical differences in growth rates observed between developed and developing countries. However, it is less clear what elements have marked different paths of growth in developed economies in recent decades. R&D has always been seen as one of the major sources of technological progress, and productivity growth, which is directly influenced by technological developments. Following recent literature, we can say that ‘innovation pushes the technological frontier forward’ as well as encourage future innovation through the creation of externalities. In other words, productivity benefits from innovation are not fully appropriated by innovators, but it also spread through the rest of the economies encouraging absorptive capacities, what have become especially important in a context of increasing fragmentation of production This paper aims to contribute to this literature in two ways, first, exploring alternative indexes of R&D flows embodied in inter-country, inter-sectorial flows of good and services (as approximation to technology spillovers) capturing structural and technological characteristic of countries and, second, analyzing the impact of direct and embodied R&D on the evolution of labor productivity at the country/sector level in recent decades. The traditional way of calculation through a multiregional input-output framework assumes that all countries have the same capabilities to absorb technology, but it is not, each one has different structural features and, this implies, different capabilities as part of literature, claim. In order to capture these differences, we propose to use a weight based on specialization structure indexes; one related with the specialization of countries in high-tech sectors and the other one based on a dispersion index. We propose these two measures because, as far as we understood, country capabilities can be captured through different ways; countries specialization in knowledge-intensive sectors, such as Chemicals or Electrical Equipment, or an intermediate technology effort across different sectors. Results suggest the increasing importance of country capabilities while increasing the trade openness. Besides, if we focus in the country rankings, we can observe that with high-tech weighted R&D embodied countries as China, Taiwan and Germany arose the top five despite not having the highest intensities of R&D expenditure, showing the importance of country capabilities. Additionally, through a fixed effects panel data model we show that, in fact, R&D embodied is important to explain labor productivity increases, in fact, even more that direct R&D investments. This is reflecting that globalization is more important than has been said until now. However, it is true that almost all analysis done in relation with that consider the effect of t-1 direct R&D intensity over economic growth. Nevertheless, from our point of view R&D evolve as a delayed flow and it is necessary some time to be able to see its effects on the economy, as some authors have already claimed. Our estimations tend to corroborate this hypothesis obtaining a gap between 4-5 years.

Keywords: economic growth, embodied, input-output, technology

Procedia PDF Downloads 124
891 Diverse High-Performing Teams: An Interview Study on the Balance of Demands and Resources

Authors: Alana E. Jansen

Abstract:

With such a large proportion of organisations relying on the use of team-based structures, it is surprising that so few teams would be classified as high-performance teams. While the impact of team composition on performance has been researched frequently, there have been conflicting findings as to the effects, particularly when examined alongside other team factors. To broaden the theoretical perspectives on this topic and potentially explain some of the inconsistencies in research findings left open by other various models of team effectiveness and high-performing teams, the present study aims to use the Job-Demands-Resources model, typically applied to burnout and engagement, as a framework to examine how team composition factors (particularly diversity in team member characteristics) can facilitate or hamper team effectiveness. This study used a virtual interview design where participants were asked to both rate and describe their experiences, in one high-performing and one low-performing team, over several factors relating to demands, resources, team composition, and team effectiveness. A semi-structured interview protocol was developed, which combined the use of the Likert style and exploratory questions. A semi-targeted sampling approach was used to invite participants ranging in age, gender, and ethnic appearance (common surface-level diversity characteristics) and those from different specialties, roles, educational and industry backgrounds (deep-level diversity characteristics). While the final stages of data analyses are still underway, thematic analysis using a grounded theory approach was conducted concurrently with data collection to identify the point of thematic saturation, resulting in 35 interviews being completed. Analyses examine differences in perceptions of demands and resources as they relate to perceived team diversity. Preliminary results suggest that high-performing and low-performing teams differ in perceptions of the type and range of both demands and resources. The current research is likely to offer contributions to both theory and practice. The preliminary findings suggest there is a range of demands and resources which vary between high and low-performing teams, factors which may play an important role in team effectiveness research going forward. Findings may assist in explaining some of the more complex interactions between factors experienced in the team environment, making further progress towards understanding the intricacies of why only some teams achieve high-performance status.

Keywords: diversity, high-performing teams, job demands and resources, team effectiveness

Procedia PDF Downloads 187
890 A Case Study on Problems Originated from Critical Path Method Application in a Governmental Construction Project

Authors: Mohammad Lemar Zalmai, Osman Hurol Turkakin, Cemil Akcay, Ekrem Manisali

Abstract:

In public construction projects, determining the contract period in the award phase is one of the most important factors. The contract period establishes the baseline for creating the cash flow curve and progress payment planning in the post-award phase. If overestimated, project duration causes losses for both the owner and the contractor. Therefore, it is essential to base construction project duration on reliable forecasting. In Turkey, schedules are usually built using the bar chart (Gantt) schedule, especially for governmental construction agencies. The usage of these schedules is limited for bidding purposes. Although the bar-chart schedule is useful in some cases, it lacks logical connections between activities; it would be harder to obtain the activities that have more effects than others on the project's total duration, especially in large complex projects. In this study, a construction schedule is prepared with Critical Path Method (CPM) that addresses the above-mentioned discrepancies. CPM is a simple and effective method that displays project time and critical paths, showing results of forward and backward calculations with considering the logic relationships between activities; it is a powerful tool for planning and managing all kinds of construction projects and is a very convenient method for the construction industry. CPM provides a much more useful and precise approach than traditional bar-chart diagrams that form the basis of construction planning and control. CPM has two main application utilities in the construction field; the first one is obtaining project duration, which is called an as-planned schedule that includes as-planned activity durations with relationships between subsequent activities. Another utility is during the project execution; each activity is tracked, and their durations are recorded in order to obtain as-built schedule, which is named as a black box of the project. The latter is more useful for delay analysis, and conflict resolutions. These features of CPM have been popular around the world. However, it has not been yet extensively used in Turkey. In this study, a real construction project is investigated as a case study; CPM-based scheduling is used for establishing both of as-built and as-planned schedules. Problems that emerged during the construction phase are identified and categorized. Subsequently, solutions are suggested. Two scenarios were considered. In the first scenario, project progress was monitored based as CPM was used to track and manage progress; this was carried out based on real-time data. In the second scenario, project progress was supposedly tracked based on the assumption that the Gantt chart was used. The S-curves of the two scenarios are plotted and interpreted. Comparing the results, possible faults of the latter scenario are highlighted, and solutions are suggested. The importance of CPM implementation has been emphasized and it has been proposed to make it mandatory for preparation of construction schedule based on CPM for public construction projects contracts.

Keywords: as-built, case-study, critical path method, Turkish government sector projects

Procedia PDF Downloads 119
889 Computational Simulations and Assessment of the Application of Non-Circular TAVI Devices

Authors: Jonathon Bailey, Neil Bressloff, Nick Curzen

Abstract:

Transcatheter Aortic Valve Implantation (TAVI) devices are stent-like frames with prosthetic leaflets on the inside, which are percutaneously implanted. The device in a crimped state is fed through the arteries to the aortic root, where the device frame is opened through either self-expansion or balloon expansion, which reveals the prosthetic valve within. The frequency at which TAVI is being used to treat aortic stenosis is rapidly increasing. In time, TAVI is likely to become the favoured treatment over Surgical Valve Replacement (SVR). Mortality after TAVI has been associated with severe Paravalvular Aortic Regurgitation (PAR). PAR occurs when the frame of the TAVI device does not make an effective seal against the internal surface of the aortic root, allowing blood to flow backwards about the valve. PAR is common in patients and has been reported to some degree in as much as 76% of cases. Severe PAR (grade 3 or 4) has been reported in approximately 17% of TAVI patients resulting in post-procedural mortality increases from 6.7% to 16.5%. TAVI devices, like SVR devices, are circular in cross-section as the aortic root is often considered to be approximately circular in shape. In reality, however, the aortic root is often non-circular. The ascending aorta, aortic sino tubular junction, aortic annulus and left ventricular outflow tract have an average ellipticity ratio of 1.07, 1.09, 1.29, and 1.49 respectively. An elliptical aortic root does not severely affect SVR, as the leaflets are completely removed during the surgical procedure. However, an elliptical aortic root can inhibit the ability of the circular Balloon-Expandable (BE) TAVI devices to conform to the interior of the aortic root wall, which increases the risk of PAR. Self-Expanding (SE) TAVI devices are considered better at conforming to elliptical aortic roots, however the valve leaflets were not designed for elliptical function, furthermore the incidence of PAR is greater in SE devices than BE devices (19.8% vs. 12.2% respectively). If a patient’s aortic root is too severely elliptical, they will not be suitable for TAVI, narrowing the treatment options to SVR. It therefore follows that in order to increase the population who can undergo TAVI, and reduce the risk associated with TAVI, non-circular devices should be developed. Computational simulations were employed to further advance our understanding of non-circular TAVI devices. Radial stiffness of the TAVI devices in multiple directions, frame bending stiffness and resistance to balloon induced expansion are all computationally simulated. Finally, a simulation has been developed that demonstrates the expansion of TAVI devices into a non-circular patient specific aortic root model in order to assess the alterations in deployment dynamics, PAR and the stresses induced in the aortic root.

Keywords: tavi, tavr, fea, par, fem

Procedia PDF Downloads 438
888 Nano-Pesticides: Recent Emerging Tool for Sustainable Agricultural Practices

Authors: Ekta, G. K. Darbha

Abstract:

Nanotechnology offers the potential of simultaneously increasing efficiency as compared to their bulk material as well as reducing harmful environmental impacts of pesticides in field of agriculture. The term nanopesticide covers different pesticides that are cumulative of several surfactants, polymers, metal ions, etc. of nanometer size ranges from 1-1000 nm and exhibit abnormal behavior (high efficacy and high specific surface area) of nanomaterials. Commercial formulations of pesticides used by farmers nowadays cannot be used effectively due to a number of problems associated with them. For example, more than 90% of applied formulations are either lost in the environment or unable to reach the target area required for effective pest control. Around 20−30% of pesticides are lost through emissions. A number of factors (application methods, physicochemical properties of the formulations, and environmental conditions) can influence the extent of loss during application. It is known that among various formulations, polymer-based formulations show the greatest potential due to their greater efficacy, slow release and protection against premature degradation of active ingredient as compared to other commercial formulations. However, the nanoformulations can have a significant effect on the fate of active ingredient as well as may release some new ingredients by reacting with existing soil contaminants. Environmental fate of these newly generated species is still not explored very well which is essential to field scale experiments and hence a lot to be explored in the field of environmental fate, nanotoxicology, transport properties and stability of such formulations. In our preliminary work, we have synthesized polymer based nanoformulation of commercially used weedicide atrazine. Atrazine belongs to triazine class of herbicide, which is used in the effective control of seed germinated dicot weeds and grasses. It functions by binding to the plastoquinone-binding protein in PS-II. Plant death results from starvation and oxidative damage caused by breakdown in electron transport system. The stability of the suspension of nanoformulation containing herbicide has been evaluated by considering different parameters like polydispersity index, particle diameter, zeta-potential under different environmental relevance condition such as pH range 4-10, temperature range from 25°C to 65°C and stability of encapsulation also have been studied for different amount of added polymer. Morphological characterization has been done by using SEM.

Keywords: atrazine, nanoformulation, nanopesticide, nanotoxicology

Procedia PDF Downloads 256
887 Modeling Floodplain Vegetation Response to Groundwater Variability Using ArcSWAT Hydrological Model, Moderate Resolution Imaging Spectroradiometer - Normalised Difference Vegetation Index Data, and Machine Learning

Authors: Newton Muhury, Armando A. Apan, Tek Maraseni

Abstract:

This study modelled the relationships between vegetation response and available water below the soil surface using the Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) generated Normalised Difference Vegetation Index (NDVI) and soil water content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001-2010) of monthly streamflow data. The average Nash-Sutcliffe Efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Twenty years (2001-2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet season. For example, the model generated high positive relationships (r=0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the study area against the groundwater flow (GW), soil water content (SWC), and the combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r=0.48) and 13.6% (r=0.63) against GW and SWC, respectively, in the wet season. On the other hand, the model predicted a moderate positive relationship (r=0.63) between shrub vegetation type and soil water content during the dry season, which was reduced by 31.7% (r=0.43) during the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r=0.78, and 0.70) during the dry season. The results of this study indicate the study region is suitable for seasonal crop production in dry season. Moreover, the results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 119
886 Carbon Based Wearable Patch Devices for Real-Time Electrocardiography Monitoring

Authors: Hachul Jung, Ahee Kim, Sanghoon Lee, Dahye Kwon, Songwoo Yoon, Jinhee Moon

Abstract:

We fabricated a wearable patch device including novel patch type flexible dry electrode based on carbon nanofibers (CNFs) and silicone-based elastomer (MED 6215) for real-time ECG monitoring. There are many methods to make flexible conductive polymer by mixing metal or carbon-based nanoparticles. In this study, CNFs are selected for conductive nanoparticles because carbon nanotubes (CNTs) are difficult to disperse uniformly in elastomer compare with CNFs and silver nanowires are relatively high cost and easily oxidized in the air. Wearable patch is composed of 2 parts that dry electrode parts for recording bio signal and sticky patch parts for mounting on the skin. Dry electrode parts were made by vortexer and baking in prepared mold. To optimize electrical performance and diffusion degree of uniformity, we developed unique mixing and baking process. Secondly, sticky patch parts were made by patterning and detaching from smooth surface substrate after spin-coating soft skin adhesive. In this process, attachable and detachable strengths of sticky patch are measured and optimized for them, using a monitoring system. Assembled patch is flexible, stretchable, easily skin mountable and connectable directly with the system. To evaluate the performance of electrical characteristics and ECG (Electrocardiography) recording, wearable patch was tested by changing concentrations of CNFs and thickness of the dry electrode. In these results, the CNF concentration and thickness of dry electrodes were important variables to obtain high-quality ECG signals without incidental distractions. Cytotoxicity test is conducted to prove biocompatibility, and long-term wearing test showed no skin reactions such as itching or erythema. To minimize noises from motion artifacts and line noise, we make the customized wireless, light-weight data acquisition system. Measured ECG Signals from this system are stable and successfully monitored simultaneously. To sum up, we could fully utilize fabricated wearable patch devices for real-time ECG monitoring easily.

Keywords: carbon nanofibers, ECG monitoring, flexible dry electrode, wearable patch

Procedia PDF Downloads 185
885 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 132
884 Composite Materials from Beer Bran Fibers and Polylactic Acid: Characterization and Properties

Authors: Camila Hurtado, Maria A. Morales, Diego Torres, L.H. Reyes, Alejandro Maranon, Alicia Porras

Abstract:

This work presents the physical and chemical characterization of beer brand fibers and the properties of novel composite materials made of these fibers and polylactic acid (PLA). Treated and untreated fibers were physically characterized in terms of their moisture content (ASTM D1348), density, and particle size (ASAE S319.2). A chemical analysis following TAPPI standards was performed to determine ash, extractives, lignin, and cellulose content on fibers. Thermal stability was determined by TGA analysis, and an FTIR was carried out to check the influence of the alkali treatment in fiber composition. An alkali treatment with NaOH (5%) of fibers was performed for 90 min, with the objective to improve the interfacial adhesion with polymeric matrix in composites. Composite materials based on either treated or untreated beer brand fibers and polylactic acid (PLA) were developed characterized in tension (ASTM D638), bending (ASTM D790) and impact (ASTM D256). Before composites manufacturing, PLA and brand beer fibers (10 wt.%) were mixed in a twin extruder with a temperature profile between 155°C and 180°C. Coupons were manufactured by compression molding (110 bar) at 190°C. Physical characterization showed that alkali treatment does not affect the moisture content (6.9%) and the density (0.48 g/cm³ for untreated fiber and 0.46 g/cm³ for the treated one). Chemical and FTIR analysis showed a slight decrease in ash and extractives. Also, a decrease of 47% and 50% for lignin and hemicellulose content was observed, coupled with an increase of 71% for cellulose content. Fiber thermal stability was improved with the alkali treatment at about 10°C. Tensile strength of composites was found to be between 42 and 44 MPa with no significant statistical difference between coupons with either treated or untreated fibers. However, compared to neat PLA, composites with beer bran fibers present a decrease in tensile strength of 27%. Young modulus increases by 10% with treated fiber, compared to neat PLA. Flexural strength decreases in coupons with treated fiber (67.7 MPa), while flexural modulus increases (3.2 GPa) compared to neat PLA (83.3 MPa and 2.8 GPa, respectively). Izod impact test results showed an improvement of 99.4% in coupons with treated fibers - compared with neat PLA.

Keywords: beer bran, characterization, green composite, polylactic acid, surface treatment

Procedia PDF Downloads 133
883 Polish Adversarial Trial: Analysing the Fairness of New Model of Appeal Proceedings in the Context of Delivered Research

Authors: Cezary Kulesza, Katarzyna Lapinska

Abstract:

Regarding the nature of the notion of fair trial, one must see the source of the fair trial principle in the following acts of international law: art. 6 of the ECHR of 1950 and art.14 the International Covenant on Civil and Political Rights of 1966, as well as in art. 45 of the Polish Constitution. However, the problem is that the above-mentioned acts essentially apply the principle of a fair trial to the main hearing and not to appeal proceedings. Therefore, the main thesis of the work is to answer the question whether the Polish model of appeal proceedings is fair. The paper presents the problem of fair appeal proceedings in Poland in comparative perspective. Thus, the authors discuss the basic features of English, German and Russian appeal systems. The matter is also analysed in the context of the last reforms of Polish criminal procedure, because since 2013 Polish parliament has significantly changed criminal procedure almost three times: by the Act of 27th September, 2013, the Act of 20th February, 2015 which came into effect on 1st July, 2015 and the Act of 11th March, 2016. The most astonishing is that these three amendments have been varying from each other – changing Polish criminal procedure to more adversarial one and then rejecting all measures just involved in previous acts. Additional intent of the Polish legislator was amending the forms of plea bargaining: conviction of the defendant without trial or voluntary submission to a penalty, which were supposed to become tools allowing accelerating the criminal process and, at the same time, implementing the principle of speedy procedure. The next part of the paper will discuss the matter, how the changes of plea bargaining and the main trial influenced the appellate procedure in Poland. The authors deal with the right to appeal against judgments issued in negotiated case-ending settlements in the light of Art. 2 of Protocol No. 7 to the ECHR and the Polish Constitution. The last part of the presentation will focus on the basic changes in the appeals against judgments issued after the main trial. This part of the paper also presents the results of examination of court files held in the Polish Appeal Courts in Białystok, Łódź and Warsaw. From these considerations it is concluded that the Polish CCP of 1997 in ordinary proceedings basically meets both standards: the standard adopted in Protocol No. 7 of the Convention and the Polish constitutional standard. But the examination of case files shows in particular the following phenomena: low effectiveness of appeals and growing stability of the challenged judgments of district courts, extensive duration of appeal proceedings and narrow scope of evidence proceedings before the appellate courts. On the other hand, limitations of the right to appeal against the judgments issued in consensual modes of criminal proceedings justify the fear that such final judgments may violate the principle of criminal accurate response or the principle of material truth.

Keywords: adversarial trial, appeal, ECHR, England, evidence, fair trial, Germany, Polish criminal procedure, reform, Russia

Procedia PDF Downloads 147
882 Production of Rhamnolipids from Different Resources and Estimating the Kinetic Parameters for Bioreactor Design

Authors: Olfat A. Mohamed

Abstract:

Rhamnolipids biosurfactants have distinct properties given them importance in many industrial applications, especially their great new future applications in cosmetic and pharmaceutical industries. These applications have encouraged the search for diverse and renewable resources to control the cost of production. The experimental results were then applied to find a suitable mathematical model for obtaining the design criteria of the batch bioreactor. This research aims to produce Rhamnolipids from different oily wastewater sources such as petroleum crude oil (PO) and vegetable oil (VO) by using Pseudomonas aeruginosa ATCC 9027. Different concentrations of the PO and the VO are added to the media broth separately are in arrangement (0.5 1, 1.5, 2, 2.5 % v/v) and (2, 4, 6, 8 and 10%v/v). The effect of the initial concentration of oil residues and the addition of glycerol and palmitic acid was investigated as an inducer in the production of rhamnolipid and the surface tension of the broth. It was found that 2% of the waste (PO) and 6% of the waste (VO) was the best initial substrate concentration for the production of rhamnolipids (2.71, 5.01 g rhamnolipid/l) as arrangement. Addition of glycerol (10-20% v glycerol/v PO) to the 2% PO fermentation broth led to increase the rhamnolipid production (about 1.8-2 times fold). However, the addition of palmitic acid (5 and 10 g/l) to fermentation broth contained 6% VO rarely enhanced the production rate. The experimental data for 2% initially (PO) was used to estimate the various kinetic parameters. The following results were obtained, maximum rate or velocity of reaction (Vmax) = 0.06417 g/l.hr), yield of cell weight per unit weight of substrate utilized (Yx/s = 0.324 g Cx/g Cs) maximum specific growth rate (μmax = 0.05791 hr⁻¹), yield of rhamnolipid weight per unit weight of substrate utilized (Yp/s)=0.2571gCp/g Cs), maintenance coefficient (Ms =0.002419), Michaelis-Menten constant, (Km=6.1237 gmol/l), endogenous decay coefficient (Kd=0.002375 hr⁻¹). Predictive parameters and advanced mathematical models were applied to evaluate the time of the batch bioreactor. The results were as follows: 123.37, 129 and 139.3 hours in respect of microbial biomass, substrate and product concentration, respectively compared with experimental batch time of 120 hours in all cases. The expected mathematical models are compatible with the laboratory results and can, therefore, be considered as tools for expressing the actual system.

Keywords: batch bioreactor design, glycerol, kinetic parameters, petroleum crude oil, Pseudomonas aeruginosa, rhamnolipids biosurfactants, vegetable oil

Procedia PDF Downloads 131
881 A Modified QuEChERS Method Using Activated Carbon Fibers as r-DSPE Sorbent for Sample Cleanup: Application to Pesticides Residues Analysis in Food Commodities Using GC-MS/MS

Authors: Anshuman Srivastava, Shiv Singh, Sheelendra Pratap Singh

Abstract:

A simple, sensitive and effective gas chromatography tandem mass spectrometry (GC-MS/MS) method was developed for simultaneous analysis of multi pesticide residues (organophosphate, organochlorines, synthetic pyrethroids and herbicides) in food commodities using phenolic resin based activated carbon fibers (ACFs) as reversed-dispersive solid phase extraction (r-DSPE) sorbent in modified QuEChERS (Quick Easy Cheap Effective Rugged Safe) method. The acetonitrile-based QuEChERS technique was used for the extraction of the analytes from food matrices followed by sample cleanup with ACFs instead of traditionally used primary secondary amine (PSA). Different physico-chemical characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and Brunauer-Emmet-Teller surface area analysis were employed to investigate the engineering and structural properties of ACFs. The recovery of pesticides and herbicides was tested at concentration levels of 0.02 and 0.2 mg/kg in different commodities such as cauliflower, cucumber, banana, apple, wheat and black gram. The recoveries of all twenty-six pesticides and herbicides were found in acceptable limit (70-120%) according to SANCO guideline with relative standard deviation value < 15%. The limit of detection and limit of quantification of the method was in the range of 0.38-3.69 ng/mL and 1.26 -12.19 ng/mL, respectively. In traditional QuEChERS method, PSA used as r-DSPE sorbent plays a vital role in sample clean-up process and demonstrates good recoveries for multiclass pesticides. This study reports that ACFs are better in terms of removal of co-extractives in comparison of PSA without compromising the recoveries of multi pesticides from food matrices. Further, ACF replaces the need of charcoal in addition to the PSA from traditional QuEChERS method which is used to remove pigments. The developed method will be cost effective because the ACFs are significantly cheaper than the PSA. So the proposed modified QuEChERS method is more robust, effective and has better sample cleanup efficiency for multiclass multi pesticide residues analysis in different food matrices such as vegetables, grains and fruits.

Keywords: QuEChERS, activated carbon fibers, primary secondary amine, pesticides, sample preparation, carbon nanomaterials

Procedia PDF Downloads 271
880 Technical Option Brought Solution for Safe Waste Water Management in Urban Public Toilet and Improved Ground Water Table

Authors: Chandan Kumar

Abstract:

Background and Context: Population growth and rapid urbanization resulted nearly 2 Lacs migrants along with families moving to Delhi each year in search of jobs. Most of these poor migrant families end up living in slums and constitute an estimated population of 1.87 lacs every year. Further, more than half (52 per cent) of Delhi’s population resides in places such as unauthorized and resettled colonies. Slum population is fully dependent on public toilet to defecate. In Public toilets, manholes either connected with Sewer line or septic tank. Septic tank connected public toilet faces major challenges to dispose of waste water. They have to dispose of waste water in outside open drain and waste water struck out side of public toilet complex and near to the slum area. As a result, outbreak diseases such as Malaria, Dengue and Chikungunya in slum area due to stagnated waste water. Intervention and Innovation took place by Save the Children in 21 Public Toilet Complexes of South Delhi and North Delhi. These public toilet complexes were facing same waste water disposal problem. They were disposing of minimum 1800 liters waste water every day in open drain. Which caused stagnated water-borne diseases among the nearest community. Construction of Soak Well: Construction of soak well in urban context was an innovative approach to minimizing the problem of waste water management and increased water table of existing borewell in toilet complex. This technique made solution in Ground water recharging system, and additional water was utilized in vegetable gardening within the complex premises. Soak well had constructed with multiple filter media with inlet and safeguarding bed on surrounding surface. After construction, soak well started exhausting 2000 liters of waste water to raise ground water level through different filter media. Finally, we brought a change in the communities by constructing soak well and with zero maintenance system. These Public Toilet Complexes were empowered by safe disposing waste water mechanism and reduced stagnated water-borne diseases.

Keywords: diseases, ground water recharging system, soak well, toilet complex, waste water

Procedia PDF Downloads 551
879 Land Degradation Vulnerability Modeling: A Study on Selected Micro Watersheds of West Khasi Hills Meghalaya, India

Authors: Amritee Bora, B. S. Mipun

Abstract:

Land degradation is often used to describe the land environmental phenomena that reduce land’s original productivity both qualitatively and quantitatively. The study of land degradation vulnerability primarily deals with “Environmentally Sensitive Areas” (ESA) and the amount of topsoil loss due to erosion. In many studies, it is observed that the assessment of the existing status of land degradation is used to represent the vulnerability. Moreover, it is also noticed that in most studies, the primary emphasis of land degradation vulnerability is to assess its sensitivity to soil erosion only. However, the concept of land degradation vulnerability can have different objectives depending upon the perspective of the study. It shows the extent to which changes in land use land cover can imprint their effect on the land. In other words, it represents the susceptibility of a piece of land to degrade its productive quality permanently or in the long run. It is also important to mention that the vulnerability of land degradation is not a single factor outcome. It is a probability assessment to evaluate the status of land degradation and needs to consider both biophysical and human induce parameters. To avoid the complexity of the previous models in this regard, the present study has emphasized on to generate a simplified model to assess the land degradation vulnerability in terms of its current human population pressure, land use practices, and existing biophysical conditions. It is a “Mixed-Method” termed as the land degradation vulnerability index (LDVi). It was originally inspired by the MEDALUS model (Mediterranean Desertification and Land Use), 1999, and Farazadeh’s 2007 revised version of it. It has followed the guidelines of Space Application Center, Ahmedabad / Indian Space Research Organization for land degradation vulnerability. The model integrates the climatic index (Ci), vegetation index (Vi), erosion index (Ei), land utilization index (Li), population pressure index (Pi), and cover management index (CMi) by giving equal weightage to each parameter. The final result shows that the very high vulnerable zone primarily indicates three (3) prominent circumstances; land under continuous population pressure, high concentration of human settlement, and high amount of topsoil loss due to surface runoff within the study sites. As all the parameters of the model are amalgamated with equal weightage further with the help of regression analysis, the LDVi model also provides a strong grasp of each parameter and how far they are competent to trigger the land degradation process.

Keywords: population pressure, land utilization, soil erosion, land degradation vulnerability

Procedia PDF Downloads 167
878 Preparation of Metallic Nanoparticles with the Use of Reagents of Natural Origin

Authors: Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec

Abstract:

Nowadays, nano-size materials are very popular group of materials among scientists. What is more, these materials find an application in a wide range of various areas. Therefore constantly increasing demand for nanomaterials including metallic nanoparticles such as silver of gold ones is observed. Therefore, new routes of their preparation are sought. Considering potential application of nanoparticles, it is important to select an adequate methodology of their preparation because it determines their size and shape. Among the most commonly applied methods of preparation of nanoparticles chemical and electrochemical techniques are leading. However, currently growing attention is directed into the biological or biochemical aspects of syntheses of metallic nanoparticles. This is associated with a trend of developing of new routes of preparation of given compounds according to the principles of green chemistry. These principles involve e.g. the reduction of the use of toxic compounds in the synthesis as well as the reduction of the energy demand or minimization of the generated waste. As a result, a growing popularity of the use of such components as natural plant extracts, infusions or essential oils is observed. Such natural substances may be used both as a reducing agent of metal ions and as a stabilizing agent of formed nanoparticles therefore they can replace synthetic compounds previously used for the reduction of metal ions or for the stabilization of obtained nanoparticles suspension. Methods that proceed in the presence of previously mentioned natural compounds are environmentally friendly and proceed without the application of any toxic reagents. Methodology: Presented research involves preparation of silver nanoparticles using selected plant extracts, e.g. artichoke extract. Extracts of natural origin were used as reducing and stabilizing agents at the same time. Furthermore, syntheses were carried out in the presence of additional polymeric stabilizing agent. Next, such features of obtained suspensions of nanoparticles as total antioxidant activity as well as content of phenolic compounds have been characterized. First of the mentioned studies involved the reaction with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical. The content of phenolic compounds was determined using Folin-Ciocalteu technique. Furthermore, an essential issue was also the determining of the stability of formed suspensions of nanoparticles. Conclusions: In the research it was demonstrated that metallic nanoparticles may be obtained using plant extracts or infusions as stabilizing or reducing agent. The methodology applied, i.e. a type of plant extract used during the synthesis, had an impact on the content of phenolic compounds as well as on the size and polydispersity of obtained nanoparticles. What is more, it is possible to prepare nano-size particles that will be characterized by properties desirable from the viewpoint of their potential application and such an effect may be achieved with the use of non-toxic reagents of natural origin. Furthermore, proposed methodology stays in line with the principles of green chemistry.

Keywords: green chemistry principles, metallic nanoparticles, plant extracts, stabilization of nanoparticles

Procedia PDF Downloads 125
877 Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress

Authors: Lubaina Soni, Claire Farrell, Christopher Szota, Tim D. Fletcher

Abstract:

Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention.

Keywords: green roof, plant cover, plant drought stress, rainfall retention

Procedia PDF Downloads 115
876 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 267
875 Effect of Locally Injected Mesenchymal Stem Cells on Bone Regeneration of Rat Calvaria Defects

Authors: Gileade P. Freitas, Helena B. Lopes, Alann T. P. Souza, Paula G. F. P. Oliveira, Adriana L. G. Almeida, Paulo G. Coelho, Marcio M. Beloti, Adalberto L. Rosa

Abstract:

Bone tissue presents great capacity to regenerate when injured by trauma, infectious processes, or neoplasia. However, the extent of injury may exceed the inherent tissue regeneration capability demanding some kind of additional intervention. In this scenario, cell therapy has emerged as a promising alternative to treat challenging bone defects. This study aimed at evaluating the effect of local injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on bone regeneration of rat calvaria defects. BM-MSCs and AT-MSCs were isolated and characterized by expression of surface markers; cell viability was evaluated after injection through a 21G needle. Defects of 5 mm in diameter were created in calvaria and after two weeks a single injection of BM-MSCs, AT-MSCs or vehicle-PBS without cells (Control) was carried out. Cells were tracked by bioluminescence and at 4 weeks post-injection bone formation was evaluated by micro-computed tomography (μCT) and histology, nanoindentation, and through gene expression of bone remodeling markers. The data were evaluated by one-way analysis of variance (p≤0.05). BM-MSCs and AT-MSCs presented characteristics of mesenchymal stem cells, kept viability after passing through a 21G needle and remained in the defects until day 14. In general, injection of both BM-MSCs and AT-MSCs resulted in higher bone formation compared to Control. Additionally, this bone tissue displayed elastic modulus and hardness similar to the pristine calvaria bone. The expression of all evaluated genes involved in bone formation was upregulated in bone tissue formed by BM-MSCs compared to AT-MSCs while genes involved in bone resorption were upregulated in AT-MSCs-formed bone. We show that cell therapy based on the local injection of BM-MSCs or AT-MSCs is effective in delivering viable cells that displayed local engraftment and induced a significant improvement in bone healing. Despite differences in the molecular cues observed between BM-MSCs and AT-MSCs, both cells were capable of forming bone tissue at comparable amounts and properties. These findings may drive cell therapy approaches toward the complete bone regeneration of challenging sites.

Keywords: cell therapy, mesenchymal stem cells, bone repair, cell culture

Procedia PDF Downloads 184