Search results for: complex simulation suite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9901

Search results for: complex simulation suite

811 Communication Skills Training in Continuing Nursing Education: Enabling Nurses to Improve Competency and Performance in Communication

Authors: Marzieh Moattari Mitra Abbasi, Masoud Mousavinasab, Poorahmad

Abstract:

Background: Nurses in their daily practice need to communicate with patients and their families as well as health professional team members. Effective communication contributes to patients’ satisfaction which is a fundamental outcome of nursing practice. There are some evidences in support of patients' dissatisfaction with nurses’ performance in communication process. Therefore improving nurses’ communication skills is a necessity for nursing scholars and nursing administrators. Objective: The aim of the present study was to evaluate the effect of a 2-days workshop on nurses’ competencies and performances in communication in a central hospital located in the sought of Iran. Materials and Method: This is a randomized controlled trial which comprised of a convenient sample of 70 eligible nurses, working in a central hospital. They were randomly divided into 2 experimental and control groups. Nurses’ competencies was measured by an Objective Structured Clinical Examination (OSCE) and their performance was measured by asking eligible patients hospitalized in the nurses work setting during a one month period to evaluate nurses' communication skills before and 2 months after intervention. The experimental group participated in a 2 day workshop on communication skills. Content included in this workshop were: the importance of communication (verbal and non verbal), basic communication skills such as initiating the communication, active listening and questioning technique. Other subjects were patient teaching, problem solving, and decision making, cross cultural communication and breaking bad news. Appropriate teaching strategies such as brief didactic sessions, small group discussion and reflection were applied to enhance participants learning. The data was analyzed using SPSS 16. Result: A significant between group differences was found in nurses’ communication skills competencies and performances in the posttest. The mean scores of the experimental group was higher than that of the control group in the total score of OSCE as well as all stations of OSCE (p<0.003). Overall posttest mean scores of patient satisfaction with nurse's communication skills and all of its four dimensions significantly differed between the two groups of the study (p<0.001). Conclusion: This study shows that the education of nurses in communication skills, improves their competencies and performances. Measurement of Nurses’ communication skills as a central component of efficient nurse patient relationship by valid and reliable methods of evaluation is recommended. Also it is necessary to integrate teaching of communication skills in continuing nursing education programs. Trial Registration Number: IRCT201204042621N11

Keywords: communication skills, simulation, performance, competency, objective structure, clinical evaluation

Procedia PDF Downloads 218
810 Frequency of Tube Feeding in Aboriginal and Non-aboriginal Head and Neck Cancer Patients and the Impact on Relapse and Survival Outcomes

Authors: Kim Kennedy, Daren Gibson, Stephanie Flukes, Chandra Diwakarla, Lisa Spalding, Leanne Pilkington, Andrew Redfern

Abstract:

Introduction: Head and neck cancer and treatments are known for their profound effect on nutrition and tube feeding is a common requirement to maintain nutrition. Aim: We aimed to evaluate the frequency of tube feeding in Aboriginal and non-Aboriginal patients, and to examine the relapse and survival outcomes in patients who require enteral tube feeding. Methods: We performed a retrospective cohort analysis of 320 head and neck cancer patients from a single centre in Western Australia, identifying 80 Aboriginal patients and 240 non-Aboriginal patients matched on a 1:3 ratio by site, histology, rurality, and age. Data collected included patient demographics, tumour features, treatment details, and cancer and survival outcomes. Results: Aboriginal and non-Aboriginal patients required feeding tubes at similar rates (42.5% vs 46.2% respectively), however Aboriginal patients were far more likely to fail to return to oral nutrition, with 26.3% requiring long-term tube feeding versus only 15% of non-Aboriginal patients. In the overall study population, 27.5% required short-term tube feeding, 17.8% required long-term enteral tube nutrition, and 45.3% of patients did not have a feeding tube at any point. Relapse was more common in patients who required tube feeding, with relapses in 42.1% of the patients requiring long-term tube feeding, 31.8% in those requiring a short-term tube, versus 18.9% in the ‘no tube’ group. Survival outcomes for patients who required a long-term tube were also significantly poorer when compared to patients who only required a short-term tube, or not at all. Long-term tube-requiring patients were half as likely to survive (29.8%) compared to patients requiring a short-term tube (62.5%) or no tube at all (63.5%). Patients requiring a long-term tube were twice as likely to die with active disease (59.6%) as patients with no tube (28%), or a short term tube (33%). This may suggest an increased relapse risk in patients who require long-term feeding, due to consequences of malnutrition on cancer and treatment outcomes, although may simply reflect that patients with recurrent disease were more likely to have longer-term swallowing dysfunction due to recurrent disease and salvage treatments. Interestingly long-term tube patients were also more likely to die with no active disease (10.5%) (compared with short-term tube requiring patients (4.6%), or patients with no tube (8%)), which is likely reflective of the increased mortality associated with long-term aspiration and malnutrition issues. Conclusions: Requirement for tube feeding was associated with a higher rate of cancer relapse, and in particular, long-term tube feeding was associated with a higher likelihood of dying from head and neck cancer, but also a higher risk of dying from other causes without cancer relapse. This data reflects the complex effect of head and neck cancer and its treatments on swallowing and nutrition, and ultimately, the effects of malnutrition, swallowing dysfunction, and aspiration on overall cancer and survival outcomes. Tube feeding was seen at similar rates in Aboriginal and non-Aboriginal patient, however failure to return to oral intake with a requirement for a long-term feeding tube was seen far more commonly in the Aboriginal population.

Keywords: head and neck cancer, enteral tube feeding, malnutrition, survival, relapse, aboriginal patients

Procedia PDF Downloads 103
809 Solutions of Thickening the Sludge from the Wastewater Treatment by a Rotor with Bars

Authors: Victorita Radulescu

Abstract:

Introduction: The sewage treatment plants, in the second stage, are formed by tanks having as main purpose the formation of the suspensions with high possible solid concentration values. The paper presents a solution to produce a rapid concentration of the slurry and sludge, having as main purpose the minimization as much as possible the size of the tanks. The solution is based on a rotor with bars, tested into two different areas of industrial activity: the remediation of the wastewater from the oil industry and, in the last year, into the mining industry. Basic Methods: It was designed, realized and tested a thickening system with vertical bars that manages to reduce sludge moisture content from 94% to 87%. The design was based on the hypothesis that the streamlines of the vortices detached from the rotor with vertical bars accelerate, under certain conditions, the sludge thickening. It is moved at the lateral sides, and in time, it became sediment. The formed vortices with the vertical axis in the viscous fluid, under the action of the lift, drag, weight, and inertia forces participate at a rapid aggregation of the particles thus accelerating the sludge concentration. Appears an interdependence between the Re number attached to the flow with vortex induced by the vertical bars and the size of the hydraulic compaction phenomenon, resulting from an accelerated process of sedimentation, therefore, a sludge thickening depending on the physic-chemical characteristics of the resulting sludge is projected the rotor's dimensions. Major findings/ Results: Based on the experimental measurements was performed the numerical simulation of the hydraulic rotor, as to assure the necessary vortices. The experimental measurements were performed to determine the optimal height and the density of the bars for the sludge thickening system, to assure the tanks dimensions as small as possible. The time thickening/settling was reduced by 24% compared to the conventional used systems. In the present, the thickeners intend to decrease the intermediate stage of water treatment, using primary and secondary settling; but they assume a quite long time, the order of 10-15 hours. By using this system, there are no intermediary steps; the thickening is done automatically when are created the vortices. Conclusions: The experimental tests were carried out in the wastewater treatment plant of the Refinery of oil from Brazi, near the city Ploiesti. The results prove its efficiency in reducing the time for compacting the sludge and the smaller humidity of the evacuated sediments. The utilization of this equipment is now extended and it is tested the mining industry, with significant results, in Lupeni mine, from the Jiu Valley.

Keywords: experimental tests, hydrodynamic modeling, rotor efficiency, wastewater treatment

Procedia PDF Downloads 118
808 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations

Procedia PDF Downloads 188
807 Spatial Direct Numerical Simulation of Instability Waves in Hypersonic Boundary Layers

Authors: Jayahar Sivasubramanian

Abstract:

Understanding laminar-turbulent transition process in hyper-sonic boundary layers is crucial for designing viable high speed flight vehicles. The study of transition becomes particularly important in the high speed regime due to the effect of transition on aerodynamic performance and heat transfer. However, even after many years of research, the transition process in hyper-sonic boundary layers is still not understood. This lack of understanding of the physics of the transition process is a major impediment to the development of reliable transition prediction methods. Towards this end, spatial Direct Numerical Simulations are conducted to investigate the instability waves generated by a localized disturbance in a hyper-sonic flat plate boundary layer. In order to model a natural transition scenario, the boundary layer was forced by a short duration (localized) pulse through a hole on the surface of the flat plate. The pulse disturbance developed into a three-dimensional instability wave packet which consisted of a wide range of disturbance frequencies and wave numbers. First, the linear development of the wave packet was studied by forcing the flow with low amplitude (0.001% of the free-stream velocity). The dominant waves within the resulting wave packet were identified as two-dimensional second mode disturbance waves. Hence the wall-pressure disturbance spectrum exhibited a maximum at the span wise mode number k = 0. The spectrum broadened in downstream direction and the lower frequency first mode oblique waves were also identified in the spectrum. However, the peak amplitude remained at k = 0 which shifted to lower frequencies in the downstream direction. In order to investigate the nonlinear transition regime, the flow was forced with a higher amplitude disturbance (5% of the free-stream velocity). The developing wave packet grows linearly at first before reaching the nonlinear regime. The wall pressure disturbance spectrum confirmed that the wave packet developed linearly at first. The response of the flow to the high amplitude pulse disturbance indicated the presence of a fundamental resonance mechanism. Lower amplitude secondary peaks were also identified in the disturbance wave spectrum at approximately half the frequency of the high amplitude frequency band, which would be an indication of a sub-harmonic resonance mechanism. The disturbance spectrum indicates, however, that fundamental resonance is much stronger than sub-harmonic resonance.

Keywords: boundary layer, DNS, hyper sonic flow, instability waves, wave packet

Procedia PDF Downloads 183
806 Applying Image Schemas and Cognitive Metaphors to Teaching/Learning Italian Preposition a in Foreign/Second Language Context

Authors: Andrea Fiorista

Abstract:

The learning of prepositions is a quite problematic aspect in foreign language instruction, and Italian is certainly not an exception. In their prototypical function, prepositions express schematic relations of two entities in a highly abstract, typically image-schematic way. In other terms, prepositions assume concepts such as directionality, collocation of objects in space and time and, in Cognitive Linguistics’ terms, the position of a trajector with respect to a landmark. Learners of different native languages may conceptualize them differently, implying that they are supposed to operate a recategorization (or create new categories) fitting with the target language. However, most current Italian Foreign/Second Language handbooks and didactic grammars do not facilitate learners in carrying out the task, as they tend to provide partial and idiosyncratic descriptions, with the consequent learner’s effort to memorize them, most of the time without success. In their prototypical meaning, prepositions are used to specify precise topographical positions in the physical environment which become less and less accurate as they radiate out from what might be termed a concrete prototype. According to that, the present study aims to elaborate a cognitive and conceptually well-grounded analysis of some extensive uses of the Italian preposition a, in order to propose effective pedagogical solutions in the Teaching/Learning process. Image schemas, cognitive metaphors and embodiment represent efficient cognitive tools in a task like this. Actually, while learning the merely spatial use of the preposition a (e.g. Sono a Roma = I am in Rome; vado a Roma = I am going to Rome,…) is quite straightforward, it is more complex when a appears in constructions such as verbs of motion +a + infinitive (e.g. Vado a studiare = I am going to study), inchoative periphrasis (e.g. Tra poco mi metto a leggere = In a moment I will read), causative construction (e.g. Lui mi ha mandato a lavorare = He sent me to work). The study reports data from a teaching intervention of Focus on Form, in which a basic cognitive schema is used to facilitate both teachers and students to respectively explain/understand the extensive uses of a. The educational material employed translates Cognitive Linguistics’ theoretical assumptions, such as image schemas and cognitive metaphors, into simple images or proto-scenes easily comprehensible for learners. Illustrative material, indeed, is supposed to make metalinguistic contents more accessible. Moreover, the concept of embodiment is pedagogically applied through activities including motion and learners’ bodily involvement. It is expected that replacing rote learning with a methodology that gives grammatical elements a proper meaning, makes learning process more effective both in the short and long term.

Keywords: cognitive approaches to language teaching, image schemas, embodiment, Italian as FL/SL

Procedia PDF Downloads 88
805 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics

Authors: M. Khorshed Alam, H. Takaba

Abstract:

The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.

Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo

Procedia PDF Downloads 193
804 The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection

Authors: D. Kakulia, L. Shoshiashvili, G. Sapharishvili

Abstract:

The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523).

Keywords: EM induction sensing, detector, plastic mines, remote sensing

Procedia PDF Downloads 149
803 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors

Authors: Adel A. Ghoneim

Abstract:

In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.

Keywords: building integrated renewable systems, Net-Zero energy building, solar fraction, avoided CO2 emission

Procedia PDF Downloads 611
802 The Role of Islamic Finance and Socioeconomic Factors in Financial Inclusion: A Cross Country Comparison

Authors: Allya Koesoema, Arni Ariani

Abstract:

While religion is only a very minor factor contributing to financial exclusion in most countries, the World Bank 2014 Global Financial Development Report highlighted it as a significant barrier for having a financial account in some Muslim majority countries. This is in part due to the perceived incompatibility between traditional financial institutions practices and Islamic finance principles. In these cases, the development of financial institutions and products that are compatible with the principles of Islamic finance may act as an important lever to increasing formal account ownership. However, there is significant diversity in the relationship between a country’s proportion of Muslim population and its level of financial inclusion. This paper combines data taken from the Global Findex Database, World Development Indicators, and the Pew Research Center to quantitatively explore the relationship between individual and country level religious and socioeconomic factor to financial inclusion. Results from regression analyses show a complex relationship between financial inclusion and religion-related factors in the population both on the individual and country level. Consistent with prior literature, on average the percentage of Islamic population positively correlates with the proportion of unbanked populations who cites religious reasons as a barrier to getting an account. However, its impact varies across several variables. First, a deeper look into countries’ religious composition reveals that the average negative impact of a large Muslim population is not as strong in more religiously diverse countries and less religious countries. Second, on the individual level, among the unbanked, the poorest quintile, least educated, older and the female populations are comparatively more likely to not have an account because of religious reason. Results also show indications that in this case, informal mechanisms partially substitute formal financial inclusion, as indicated by the propensity to borrow from family and friends. The individual level findings are important because the demographic groups that are more likely to cite religious reasons as barriers to formal financial inclusion are also generally perceived to be more vulnerable socially and economically and may need targeted attention. Finally, the number of Islamic financial institutions in a particular country is negatively correlated to the propensity of religious reasons as a barrier to financial inclusion. Importantly, the number of financial institutions in a country also mitigates the negative impact of the proportion of Muslim population, low education and individual age to formal financial inclusion. These results point to the potential importance of Islamic Finance Institutions in increasing global financial inclusion, and highlight the potential importance of looking beyond the proportion of Muslim population to other underlying institutional and socioeconomic factor in maximizing its impact.

Keywords: cross country comparison, financial inclusion, Islamic banking and finance, quantitative methods, socioeconomic factors

Procedia PDF Downloads 193
801 In Vitro Fermentation Of Rich In B-glucan Pleurotus Eryngii Mushroom: Impact On Faecal Bacterial Populations And Intestinal Barrier In Autistic Children

Authors: Georgia Saxami, Evangelia N. Kerezoudi, Evdokia K. Mitsou, Marigoula Vlassopoulou, Georgios Zervakis, Adamantini Kyriacou

Abstract:

Autism Spectrum Disorder (ASD) is a complex group of developmental disorders of the brain, characterized by social and communication dysfunctions, stereotypes and repetitive behaviors. The potential interaction between gut microbiota (GM) and autism has not been fully elucidated. Children with autism often suffer gastrointestinal dysfunctions, while alterations or dysbiosis of GM have also been observed. Treatment with dietary components has been postulated to regulate GM and improve gastrointestinal symptoms, but there is a lack of evidence for such approaches in autism, especially for prebiotics. This study assessed the effects of Pleurotus eryngii mushroom (candidate prebiotic) and inulin (known prebiotic compound) on gut microbial composition, using faecal samples from autistic children in an in vitro batch culture fermentation system. Selected members of GM were enumerated at baseline (0 h) and after 24 h fermentation by quantitative PCR. After 24 h fermentation, inulin and P. eryngii mushroom induced a significant increase in total bacteria and Faecalibacterium prausnitzii compared to the negative control (gut microbiota of each autistic donor with no carbohydrate source), whereas both treatments induced a significant increase in levels of total bacteria, Bifidobacterium spp. and Prevotella spp. compared to baseline (t=0h) (p for all <0.05). Furthermore, this study evaluated the impact of fermentation supernatants (FSs), derived from P. eryngii mushroom or inulin, on the expression levels of tight junctions’ genes (zonulin-1, occludin and claudin-1) in Caco-2 cells stimulated by bacterial lipopolysaccharides (LPS). Pre-incubation of Caco-2 cells with FS from P. eryngii mushroom led to a significant increase in the expression levels of zonulin-1, occludin and claudin-1 genes compared to the untreated cells, the cells that were subjected to LPS and the cells that were challenged with FS from negative control (p for all <0.05). In addition, incubation with FS from P. eryngii mushroom led to the highest mean expression values for zonulin-1 and claudin-1 genes, which differed significantly compared to inulin (p for all <0.05). Overall, this research highlighted the beneficial in vitro effects of P. eryngii mushroom on the composition of GM of autistic children after 24 h of fermentation. Also, our data highlighted the potential preventive effect of P. eryngii FSs against dysregulation of the intestinal barrier, through upregulation of tight junctions’ genes associated with the integrity and function of the intestinal barrier. This research has been financed by "Supporting Researchers with Emphasis on Young Researchers - Round B", Operational Program "Human Resource Development, Education and Lifelong Learning."

Keywords: gut microbiota, intestinal barrier, autism spectrum disorders, Pleurotus Eryngii

Procedia PDF Downloads 166
800 Influence of Confinement on Phase Behavior in Unconventional Gas Condensate Reservoirs

Authors: Szymon Kuczynski

Abstract:

Poland is characterized by the presence of numerous sedimentary basins and hydrocarbon provinces. Since 2006 exploration for hydrocarbons in Poland become gradually more focus on new unconventional targets, particularly on the shale gas potential of the Upper Ordovician and Lower Silurian in the Baltic-Podlasie-Lublin Basin. The first forecast prepared by US Energy Information Administration in 2011 indicated to 5.3 Tcm of natural gas. In 2012, Polish Geological Institute presented its own forecast which estimated maximum reserves on 1.92 Tcm. The difference in the estimates was caused by problems with calculations of the initial amount of adsorbed, as well as free, gas trapped in shale rocks (GIIP - Gas Initially in Place). This value is dependent from sorption capacity, gas saturation and mutual interactions between gas, water, and rock. Determination of the reservoir type in the initial exploration phase brings essential knowledge, which has an impact on decisions related to the production. The study of porosity impact for phase envelope shift eliminates errors and improves production profitability. Confinement phenomenon affects flow characteristics, fluid properties, and phase equilibrium. The thermodynamic behavior of confined fluids in porous media is subject to the basic considerations for industrial applications such as hydrocarbons production. In particular the knowledge of the phase equilibrium and the critical properties of the contained fluid is essential for the design and optimization of such process. In pores with a small diameter (nanopores), the effect of the wall interaction with the fluid particles becomes significant and occurs in shale formations. Nano pore size is similar to the fluid particles’ diameter and the area of particles which flow without interaction with pore wall is almost equal to the area where this phenomenon occurs. The molecular simulation studies have shown an effect of confinement to the pseudo critical properties. Therefore, the critical parameters pressure and temperature and the flow characteristics of hydrocarbons in terms of nano-scale are under the strong influence of fluid particles with the pore wall. It can be concluded that the impact of a single pore size is crucial when it comes to the nanoscale because there is possible the above-described effect. Nano- porosity makes it difficult to predict the flow of reservoir fluid. Research are conducted to explain the mechanisms of fluid flow in the nanopores and gas extraction from porous media by desorption.

Keywords: adsorption, capillary condensation, phase envelope, nanopores, unconventional natural gas

Procedia PDF Downloads 339
799 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano

Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das

Abstract:

Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.

Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption

Procedia PDF Downloads 416
798 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms

Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat

Abstract:

In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.

Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization

Procedia PDF Downloads 119
797 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures

Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang

Abstract:

Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.

Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation

Procedia PDF Downloads 124
796 A Comparative Laboratory Evaluation of Efficacy of Two Fungi: Beauveria bassiana and Acremonium perscinum, on Dichomeris eridantis Meyrick (Lepidoptera: Gelechiidae) Larvae, an Important Pest of Dalbergia sissoo

Authors: Gunjan Srivastava, Shamila Kalia

Abstract:

Dalbergia sissoo Roxb., (Family- Leguminosae; Subfamily- Papilionoideae), is an economically and ecologically important tree species having medicinal value. Of the rich complex of insect fauna, ten have been recognized as potential pests of nurseries and plantations. Present study was conducted to explore an effective ecofriendly control of Dichomeris eridantis Meyrick, an important defoliator pest of D. sissoo. Health and environmental concerns demanded devising a bio-intensive pest management strategy and employing ecofriendly measures. In the present laboratory bioassay two entomopathogenic fungi Acremonium perscinum and Beauveria bassiana were tested and compared for evaluating the efficacy of their seven different concentrations (besides control) against the 3rd, 4th and 5th instar larvae of D. eridantis, on the basis of mean percent mortality data recorded and tabulated for seven days after treatment application. Analysis showed that both treatments vary significantly among themselves. Also, variations amongst instars and duration with respect to their mortality were highly significant (p < .001). All their interactions were found to vary significantly. B. bassiana at 0.25x107 spores / ml spore concentration caused maximum mean percent mortality (62.38%) followed by mean percent mortality at its 0.25x106 spores / ml concentration (56.67%). Mean percent mortality at maximum spore concentration (0.054x107 spores / ml) and next highest spore concentration (0.054 x106 spores / ml) due to A. perscinum treatment were far less effective (mean percent mortality of 45.40% and 31.29%, respectively). At 168 hours mean percent mortality of larval instars due to both fungal treatment applications reached its maximum (52.99%) whereas, at 24 hours mean percent mortality remained least (5.70%). In both cases, treatments were most effective against 3rd instar larvae and least effective against 5th instar larvae. A comparative acccount of efficacy of B. bassiana and A. perscinum on the 3rd, 4th and 5th instar larvae of D. eridantis on 5th, 6th and 7th post treatment observation days after their application, on the basis of their median lethal concentrations (LC50) proved B. bassiana to be more potential microbial pathogen of the two fungal microbes, for all the three instars (3rd, 4th and 5th) of D. eridantis, on all the three days (5th, 6th and 7th post observation days after application of both treatments). Percent mortality of D. eridantis increased in a dose dependent manner. Koch’s Postulates tested positive, thus confirming the pathogenicity of B. bassiana against the larval instars of D. eridantis. LC90 values of 0.280x1011 spores/ml, 0.301x108 spores/ml and 0.262x108 spores/ml concentrations of B. bassiana were standardized which can effectively cause mortality of all the larval instars of D. eridantis in the field after 5th, 6th and 7th day of their application, respectively. Therefore, these concentrations can be safely used in nurseries as well as plantations of D. sissoo for effective control of D. eridantis larvae.

Keywords: Acremonium perscinum, Beauveria bassiana, Dalbergia sissoo, Dichomeris eridantis

Procedia PDF Downloads 225
795 The Effects of Exercise Training on LDL Mediated Blood Flow in Coronary Artery Disease: A Systematic Review

Authors: Aziza Barnawi

Abstract:

Background: Regular exercise reduces risk factors associated with cardiovascular diseases. Over the past decade, exercise interventions have been introduced to reduce the risk of and prevent coronary artery disease (CAD). Elevated low-density lipoproteins (LDL) contribute to the formation of atherosclerosis, its manifestations on the endothelial narrow the coronary artery and affect the endothelial function. Therefore, flow-mediated dilation (FMD) technique is used to assess the function. The results of previous studies have been inconsistent and difficult to interpret across different types of exercise programs. The relationship between exercise therapy and lipid levels has been extensively studied, and it is known to improve the lipid profile and endothelial function. However, the effectiveness of exercise in altering LDL levels and improving blood flow is controversial. Objective: This review aims to explore the evidence and quantify the impact of exercise training on LDL levels and vascular function by FMD. Methods: Electronic databases were searched PubMed, Google Scholar, Web of Science, the Cochrane Library, and EBSCO using the keywords: “low and/or moderate aerobic training”, “blood flow”, “atherosclerosis”, “LDL mediated blood flow”, “Cardiac Rehabilitation”, “low-density lipoproteins”, “flow-mediated dilation”, “endothelial function”, “brachial artery flow-mediated dilation”, “oxidized low-density lipoproteins” and “coronary artery disease”. The studies were conducted for 6 weeks or more and influenced LDL levels and/or FMD. Studies with different intensity training and endurance training in healthy or CAD individuals were included. Results: Twenty-one randomized controlled trials (RCTs) (14 FMD and 7 LDL studies) with 776 participants (605 exercise participants and 171 control participants) met eligibility criteria and were included in the systematic review. Endurance training resulted in a greater reduction in LDL levels and their subfractions and a better FMD response. Overall, the training groups showed improved physical fitness status compared with the control groups. Participants whose exercise duration was ≥150 minutes /week had significant improvement in FMD and LDL levels compared with those with <150 minutes/week.Conclusion: In conclusion, although the relationship between physical training, LDL levels, and blood flow in CAD is complex and multifaceted, there are promising results for controlling primary and secondary prevention of CAD by exercise. Exercise training, including resistance, aerobic, and interval training, is positively correlated with improved FMD. However, the small body of evidence for LDL studies (resistance and interval training) did not prove to be significantly associated with improved blood flow. Increasing evidence suggests that exercise training is a promising adjunctive therapy to improve cardiovascular health, potentially improving blood flow and contributing to the overall management of CAD.

Keywords: exercise training, low density lipoprotein, flow mediated dilation, coronary artery disease

Procedia PDF Downloads 74
794 Phytochemical and Antimicrobial Properties of Zinc Oxide Nanocomposites on Multidrug-Resistant E. coli Enzyme: In-vitro and in-silico Studies

Authors: Callistus I. Iheme, Kenneth E. Asika, Emmanuel I. Ugwor, Chukwuka U. Ogbonna, Ugonna H. Uzoka, Nneamaka A. Chiegboka, Chinwe S. Alisi, Obinna S. Nwabueze, Amanda U. Ezirim, Judeanthony N. Ogbulie

Abstract:

Antimicrobial resistance (AMR) is a major threat to the global health sector. Zinc oxide nanocomposites (ZnONCs), composed of zinc oxide nanoparticles and phytochemicals from Azadirachta indica aqueous leaf extract, were assessed for their physico-chemicals, in silico and in vitro antimicrobial properties on multidrug-resistant Escherichia coli enzymes. Gas chromatography coupled with mass spectroscope (GC-MS) analysis on the ZnONCs revealed the presence of twenty volatile phytochemical compounds, among which is scoparone. Characterization of the ZnONCs was done using ultraviolet-visible spectroscopy (UV-vis), energy dispersive spectroscopy (EDX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray diffractometer (XRD). Dehydrogenase enzyme converts colorless 2,3,5-triphenyltetrazolium chloride to the red triphenyl formazan (TPF). The rate of formazan formation in the presence of ZnONCs is proportional to the enzyme activities. The color formation is extracted and determined at 500 nm, and the percentage of enzyme activity is calculated. To determine the bioactive components of the ZnONCs, characterize their binding to enzymes, and evaluate the enzyme-ligand complex stability, respectively Discrete Fourier Transform (DFT) analysis, docking, and molecular dynamics simulations will be employed. The results showed arrays of ZnONCs nanorods with maximal absorption wavelengths of 320 nm and 350 nm and thermally stable at the temperature range of 423.77 to 889.69 ℃. In vitro study assessed the dehydrogenase inhibitory properties of the ZnONCs, conjugate of ZnONCs and ampicillin (ZnONCs-amp), the aqueous leaf extract of A. indica, and ampicillin (standard drug). The findings revealed that at the concentration of 500 μm/mL, 57.89 % of the enzyme activities were inhibited by ZnONCs compared to 33.33% and 21.05% of the standard drug (Ampicillin), and the aqueous leaf extract of the A. indica respectively. The inhibition of the enzyme activities by the ZnONCs at 500 μm/mL was further enhanced to 89.74 % by conjugating with Ampicillin. In silico study on the ZnONCs revealed scoparone as the most viable competitor of nicotinamide adenine dinucleotide (NAD⁺) for the coenzyme binding pocket on E. coli malate and histidinol dehydrogenase. From the findings, it can be concluded that the scoparone components of the nanocomposites in synergy with the zinc oxide nanoparticles inhibited E. coli malate and histidinol dehydrogenase by competitively binding to the NAD⁺ pocket and that the conjugation of the ZnONCs with ampicillin further enhanced the antimicrobial efficiency of the nanocomposite against multidrug resistant E. coli.

Keywords: antimicrobial resistance, dehydrogenase activities, E. coli, zinc oxide nanocomposites

Procedia PDF Downloads 51
793 The Development of Traffic Devices Using Natural Rubber in Thailand

Authors: Weeradej Cheewapattananuwong, Keeree Srivichian, Godchamon Somchai, Wasin Phusanong, Nontawat Yoddamnern

Abstract:

Natural rubber used for traffic devices in Thailand has been developed and researched for several years. When compared with Dry Rubber Content (DRC), the quality of Rib Smoked Sheet (RSS) is better. However, the cost of admixtures, especially CaCO₃ and sulphur, is higher than the cost of RSS itself. In this research, Flexible Guideposts and Rubber Fender Barriers (RFB) are taken into consideration. In case of flexible guideposts, the materials used are both RSS and DRC60%, but for RFB, only RSS is used due to the controlled performance tests. The objective of flexible guideposts and RFB is to decrease a number of accidents, fatal rates, and serious injuries. Functions of both devices are to save road users and vehicles as well as to absorb impact forces from vehicles so as to decrease of serious road accidents. This leads to the mitigation methods to remedy the injury of motorists, form severity to moderate one. The solution is to find the best practice of traffic devices using natural rubber under the engineering concepts. In addition, the performances of materials, such as tensile strength and durability, are calculated for the modulus of elasticity and properties. In the laboratory, the simulation of crashes, finite element of materials, LRFD, and concrete technology methods are taken into account. After calculation, the trials' compositions of materials are mixed and tested in the laboratory. The tensile test, compressive test, and weathering or durability test are followed and based on ASTM. Furthermore, the Cycle-Repetition Test of Flexible Guideposts will be taken into consideration. The final decision is to fabricate all materials and have a real test section in the field. In RFB test, there will be 13 crash tests, 7 Pickup Truck tests, and 6 Motorcycle Tests. The test of vehicular crashes happens for the first time in Thailand, applying the trial and error methods; for example, the road crash test under the standard of NCHRP-TL3 (100 kph) is changed to the MASH 2016. This is owing to the fact that MASH 2016 is better than NCHRP in terms of speed, types, and weight of vehicles and the angle of crash. In the processes of MASH, Test Level 6 (TL-6), which is composed of 2,270 kg Pickup Truck, 100 kph, and 25 degree of crash-angle is selected. The final test for real crash will be done, and the whole system will be evaluated again in Korea. The researchers hope that the number of road accidents will decrease, and Thailand will be no more in the top tenth ranking of road accidents in the world.

Keywords: LRFD, load and resistance factor design, ASTM, american society for testing and materials, NCHRP, national cooperation highway research program, MASH, manual for assessing safety hardware

Procedia PDF Downloads 130
792 Stability of a Biofilm Reactor Able to Degrade a Mixture of the Organochlorine Herbicides Atrazine, Simazine, Diuron and 2,4-Dichlorophenoxyacetic Acid to Changes in the Composition of the Supply Medium

Authors: I. Nava-Arenas, N. Ruiz-Ordaz, C. J. Galindez-Mayer, M. L. Luna-Guido, S. L. Ruiz-López, A. Cabrera-Orozco, D. Nava-Arenas

Abstract:

Among the most important herbicides, the organochlorine compounds are of considerable interest due to their recalcitrance to the chemical, biological, and photolytic degradation, their persistence in the environment, their mobility, and their bioacummulation. The most widely used herbicides in North America are primarily 2,4-dichlorophenoxyacetic acid (2,4-D), the triazines (atrazine and simazine), and to a lesser extent diuron. The contamination of soils and water bodies frequently occurs by mixtures of these xenobiotics. For this reason, in this work, the operational stability to changes in the composition of the medium supplied to an aerobic biofilm reactor was studied. The reactor was packed with fragments of volcanic rock that retained a complex microbial film, able to degrade a mixture of organochlorine herbicides atrazine, simazine, diuron and 2,4-D, and whose members have microbial genes encoding the main catabolic enzymes atzABCD, tfdACD and puhB. To acclimate the attached microbial community, the biofilm reactor was fed continuously with a mineral minimal medium containing the herbicides (in mg•L-1): diuron, 20.4; atrazine, 14.2, simazine, 11.4, and 2,4-D, 59.7, as carbon and nitrogen sources. Throughout the bioprocess, removal efficiencies of 92-100% for herbicides, 78-90% for COD, 92-96% for TOC and 61-83% for dehalogenation were reached. In the microbial community, the genes encoding catabolic enzymes of different herbicides tfdACD, puhB and, occasionally, the genes atzA and atzC were detected. After the acclimatization, the triazine herbicides were eliminated from the mixture formulation. Volumetric loading rates of the mixture 2,4-D and diuron were continuously supplied to the reactor (1.9-21.5 mg herbicides •L-1 •h-1). Along the bioprocess, the removal efficiencies obtained were 86-100% for the mixture of herbicides, 63-94% for for COD, 90-100% for COT, and dehalogenation values of 63-100%. It was also observed that the genes encoding the enzymes in the catabolism of both herbicides, tfdACD and puhB, were consistently detected; and, occasionally, the atzA and atzC. Subsequently, the triazine herbicide atrazine and simazine were restored to the medium supply. Different volumetric charges of this mixture were continuously fed to the reactor (2.9 to 12.6 mg herbicides •L-1 •h-1). During this new treatment process, removal efficiencies of 65-95% for the mixture of herbicides, 63-92% for COD, 66-89% for TOC and 73-94% of dehalogenation were observed. In this last case, the genes tfdACD, puhB and atzABC encoding for the enzymes involved in the catabolism of the distinct herbicides were consistently detected. The atzD gene, encoding the cyanuric hydrolase enzyme, could not be detected, though it was determined that there was partial degradation of cyanuric acid. In general, the community in the biofilm reactor showed some catabolic stability, adapting to changes in loading rates and composition of the mixture of herbicides, and preserving their ability to degrade the four herbicides tested; although, there was a significant delay in the response time to recover to degradation of the herbicides.

Keywords: biodegradation, biofilm reactor, microbial community, organochlorine herbicides

Procedia PDF Downloads 435
791 The Impact of Encapsulated Raspberry Juice on the Surface Colour of Enriched White Chocolate

Authors: Ivana Loncarevic, Biljana Pajin, Jovana Petrovic, Aleksandar Fistes, Vesna Tumbas Saponjac, Danica Zaric

Abstract:

Chocolate is a complex rheological system usually defined as a suspension consisting of non-fat particles dispersed in cocoa butter as a continuous fat phase. Dark chocolate possesses polyphenols as major constituents whose dietary consumption has been associated with beneficial effects. Milk chocolate is formulated with a lower percentage of cocoa bean liquor than dark chocolate and it often contains lower amounts of polyphenols, while in white chocolate the fat-free cocoa solids are left out completely. Following the current trend of development of functional foods, there is an idea to create enriched white chocolate with the addition of encapsulated bioactive compounds from berry fruits. The aim of this study was to examine the surface colour of enriched white chocolate with the addition of 6, 8, and 10% of raspberry juice encapsulated in maltodextrins, in order to preserve the stability, bioactivity, and bioavailability of the active ingredients. The surface color of samples was measured by MINOLTA Chroma Meter CR-400 (Minolta Co., Ltd., Osaka, Japan) using D 65 lighting, a 2º standard observer angle and an 8-mm aperture in the measuring head. The following CIELab color coordinates were determined: L* – lightness, a* – redness to greenness and b* – yellowness to blueness. The addition of raspberry encapsulates led to the creation of new type of enriched chocolate. Raspberry encapsulate changed the values of the lightness (L*), a* (red tone) and b* (yellow tone) measured on the surface of enriched chocolate in accordance with applied concentrations. White chocolate has significantly (p < 0.05) highest L* (74.6) and b* (20.31) values of all samples indicating the bright surface of the white chocolate, as well as a high share of a yellow tone. At the same time, white chocolate has the negative a* value (-1.00) on its surface which includes green tones. Raspberry juice encapsulate has the darkest surface with significantly (p < 0.05) lowest value of L* (42.75), where increasing of its concentration in enriched chocolates decreases their L* values. Chocolate with 6% of encapsulate has significantly (p < 0.05) highest value of L* (60.56) in relation to enriched chocolate with 8% of encapsulate (53.57), and 10% of encapsulate (51.01). a* value measured on the surface of white chocolate is negative (-1.00) tending towards green tones. Raspberry juice encapsulates increases red tone in enriched chocolates in accordance with the added amounts (23.22, 30.85, and 33.32 in enriched chocolates with 6, 8, and 10% encapsulated raspberry juice, respectively). The presence of yellow tones in enriched chocolates significantly (p < 0.05) decreases with the addition of E (with b* value 5.21), from 10.01 in enriched chocolate with a minimal amount of raspberry juice encapsulates to 8.91 in chocolate with a maximum concentration of raspberry juice encapsulate. The addition of encapsulated raspberry juice to white chocolate led to the creation of new type of enriched chocolate with attractive color. The research in this paper was conducted within the project titled ‘Development of innovative chocolate products fortified with bioactive compounds’ (Innovation Fund Project ID 50051).

Keywords: color, encapsulated raspberry juice, polyphenols, white chocolate

Procedia PDF Downloads 183
790 Cessna Citation X Business Aircraft Stability Analysis Using Linear Fractional Representation LFRs Model

Authors: Yamina Boughari, Ruxandra Mihaela Botez, Florian Theel, Georges Ghazi

Abstract:

Clearance of flight control laws of a civil aircraft is a long and expensive process in the Aerospace industry. Thousands of flight combinations in terms of speeds, altitudes, gross weights, centers of gravity and angles of attack have to be investigated, and proved to be safe. Nonetheless, in this method, a worst flight condition can be easily missed, and its missing would lead to a critical situation. Definitively, it would be impossible to analyze a model because of the infinite number of cases contained within its flight envelope, that might require more time, and therefore more design cost. Therefore, in industry, the technique of the flight envelope mesh is commonly used. For each point of the flight envelope, the simulation of the associated model ensures the satisfaction or not of specifications. In order to perform fast, comprehensive and effective analysis, other varying parameters models were developed by incorporating variations, or uncertainties in the nominal models, known as Linear Fractional Representation LFR models; these LFR models were able to describe the aircraft dynamics by taking into account uncertainties over the flight envelope. In this paper, the LFRs models are developed using the speeds and altitudes as varying parameters; The LFR models were built using several flying conditions expressed in terms of speeds and altitudes. The use of such a method has gained a great interest by the aeronautical companies that have seen a promising future in the modeling, and particularly in the design and certification of control laws. In this research paper, we will focus on the Cessna Citation X open loop stability analysis. The data are provided by a Research Aircraft Flight Simulator of Level D, that corresponds to the highest level flight dynamics certification; this simulator was developed by CAE Inc. and its development was based on the requirements of research at the LARCASE laboratory. The acquisition of these data was used to develop a linear model of the airplane in its longitudinal and lateral motions, and was further used to create the LFR’s models for 12 XCG /weights conditions, and thus the whole flight envelope using a friendly Graphical User Interface developed during this study. Then, the LFR’s models are analyzed using Interval Analysis method based upon Lyapunov function, and also the ‘stability and robustness analysis’ toolbox. The results were presented under the form of graphs, thus they have offered good readability, and were easily exploitable. The weakness of this method stays in a relatively long calculation, equal to about four hours for the entire flight envelope.

Keywords: flight control clearance, LFR, stability analysis, robustness analysis

Procedia PDF Downloads 352
789 Fields of Power, Visual Culture, and the Artistic Practice of Two 'Unseen' Women of Central Brazil

Authors: Carolina Brandão Piva

Abstract:

In our visual culture, images play a newly significant role in the basis of a complex dialogue between imagination, creativity, and social practice. Insofar as imagination has broken out of the 'special expressive space of art' to become a part of the quotidian mental work of ordinary people, it is pertinent to recognize that visual representation can no longer be assumed as if in a domain detached from everyday life or exclusively 'centered' within the limited frame of 'art history.' The approach of Visual Culture as a field of study is, in this sense, indispensable to comprehend that not only 'the image,' but also 'the imagined' and 'the imaginary' are produced in the plurality of social interactions; crucial enough, this assertion directs us to something new in contemporary cultural processes, namely both imagination and image production constitute a social practice. This paper starts off with this approach and seeks to examine the artistic practice of two women from the State of Goiás, Brazil, who are ordinary citizens with their daily activities and narratives but also dedicated to visuality production. With no formal training from art schools, branded or otherwise, Maria Aparecida de Souza Pires deploys 'waste disposal' of daily life—from car tires to old work clothes—as a trampoline for art; also adept at sourcing raw materials collected from her surroundings, she manipulates raw hewn wood, tree trunks, plant life, and various other pieces she collects from nature giving them new meaning and possibility. Hilda Freire works with sculptures in clay using different scales and styles; her art focuses on representations of women and pays homage to unprivileged groups such as the practitioners of African-Brazilian religions, blue-collar workers, poor live-in housekeepers, and so forth. Although they have never been acknowledged by any mainstream art institution in Brazil, whose 'criterion of value' still favors formally trained artists, Maria Aparecida de Souza Pires, and Hilda Freire have produced visualities that instigate 'new ways of seeing,' meriting cultural significance in many ways. Their artworks neither descend from a 'traditional' medium nor depend on 'canonical viewing settings' of visual representation; rather, they consist in producing relationships with the world which do not result in 'seeing more,' but 'at least differently.' From this perspective, the paper finally demonstrates that grouping this kind of artistic production under the label of 'mere craft' has much more to do with who is privileged within the fields of power in art system, who we see and who we do not see, and whose imagination of what is fed by which visual images in Brazilian contemporary society.

Keywords: visual culture, artistic practice, women's art in the Brazilian State of Goiás, Maria Aparecida de Souza Pires, Hilda Freire

Procedia PDF Downloads 152
788 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks

Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed

Abstract:

This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.

Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)

Procedia PDF Downloads 77
787 Thinking Historiographically in the 21st Century: The Case of Spanish Musicology, a History of Music without History

Authors: Carmen Noheda

Abstract:

This text provides a reflection on the way of thinking about the study of the history of music by examining the production of historiography in Spain at the turn of the century. Based on concepts developed by the historical theorist Jörn Rüsen, the article focuses on the following aspects: the theoretical artifacts that structure the interpretation of the limits of writing the history of music, the narrative patterns used to give meaning to the discourse of history, and the orientation context that functions as a source of criteria of significance for both interpretation and representation. This analysis intends to show that historical music theory is not only a means to abstractly explore the complex questions connected to the production of historical knowledge, but also a tool for obtaining concrete images about the intellectual practice of professional musicologists. Writing about the historiography of contemporary Spanish music is a task that requires both a knowledge of the history that is being written and investigated, as well as a familiarity with current theoretical trends and methodologies that allow for the recognition and definition of the different tendencies that have arisen in recent decades. With the objective of carrying out these premises, this project takes as its point of departure the 'immediate historiography' in relation to Spanish music at the beginning of the 21st century. The hesitation that Spanish musicology has shown in opening itself to new anthropological and sociological approaches, along with its rigidity in the face of the multiple shifts in dynamic forms of thinking about history, have produced a standstill whose consequences can be seen in the delayed reception of the historiographical revolutions that have emerged in the last century. Methodologically, this essay is underpinned by Rüsen’s notion of the disciplinary matrix, which is an important contribution to the understanding of historiography. Combined with his parallel conception of differing paradigms of historiography, it is useful for analyzing the present-day forms of thinking about the history of music. Following these theories, the article will in the first place address the characteristics and identification of present historiographical currents in Spanish musicology to thereby carry out an analysis based on the theories of Rüsen. Finally, it will establish some considerations for the future of musical historiography, whose atrophy has not only fostered the maintenance of an ingrained positivist tradition, but has also implied, in the case of Spain, an absence of methodological schools and an insufficient participation in international theoretical debates. An update of fundamental concepts has become necessary in order to understand that thinking historically about music demands that we remember that subjects are always linked by reciprocal interdependencies that structure and define what it is possible to create. In this sense, the fundamental aim of this research departs from the recognition that the history of music is embedded in the conditions that make it conceivable, communicable and comprehensible within a society.

Keywords: historiography, Jörn Rüssen, Spanish musicology, theory of history of music

Procedia PDF Downloads 191
786 Analysis of Resistance and Virulence Genes of Gram-Positive Bacteria Detected in Calf Colostrums

Authors: C. Miranda, S. Cunha, R. Soares, M. Maia, G. Igrejas, F. Silva, P. Poeta

Abstract:

The worldwide inappropriate use of antibiotics has increased the emergence of antimicrobial-resistant microorganisms isolated from animals, humans, food, and the environment. To combat this complex and multifaceted problem is essential to know the prevalence in livestock animals and possible ways of transmission among animals and between these and humans. Enterococci species, in particular E. faecalis and E. faecium, are the most common nosocomial bacteria, causing infections in animals and humans. Thus, the aim of this study was to characterize resistance and virulence factors genes among two enterococci species isolated from calf colostrums in Portuguese dairy farms. The 55 enterococci isolates (44 E. faecalis and 11 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB, and ermC), tetracycline (tetL, tetM, tetK, and tetO), quinupristin/dalfopristin (vatD and vatE) and vancomycin (vanB). Of which, 25 isolates (15 E. faecalis and 10 E. faecium) were tested until now for 8 virulence factors genes (esp, ace, gelE, agg, cpd, cylA, cylB, and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. All enterococci isolates showed resistance to erythromicyn and tetracycline through the presence of the genes: ermB (n=29, 53%), ermC (n=10, 18%), tetL (n=49, 89%), tetM (n=39, 71%) and tetK (n=33, 60%). Only two (4%) E. faecalis isolates showed the presence of tetO gene. No resistance genes for vancomycin were found. The virulence genes detected in both species were cpd (n=17, 68%), agg (n=16, 64%), ace (n=15, 60%), esp (n=13, 52%), gelE (n=13, 52%) and cylLL (n=8, 32%). In general, each isolate showed at least three virulence genes. In three E. faecalis isolates was not found virulence genes and only E. faecalis isolates showed virulence genes for cylA (n=4, 16%) and cylB (n=6, 24%). In conclusion, these colostrum samples that were consumed by calves demonstrated the presence of antibiotic-resistant enterococci harbored virulence genes. This genotypic characterization is crucial to control the antibiotic-resistant bacteria through the implementation of restricts measures safeguarding public health. Acknowledgements: This work was funded by the R&D Project CAREBIO2 (Comparative assessment of antimicrobial resistance in environmental biofilms through proteomics - towards innovative theragnostic biomarkers), with reference NORTE-01-0145-FEDER-030101 and PTDC/SAU-INF/30101/2017, financed by the European Regional Development Fund (ERDF) through the Northern Regional Operational Program (NORTE 2020) and the Foundation for Science and Technology (FCT). This work was supported by the Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).

Keywords: antimicrobial resistance, calf, colostrums, enterococci

Procedia PDF Downloads 200
785 Perception of the End of a Same Sex Relationship and Preparation towards It: A Qualitative Research about Anticipation, Coping and Conflict Management against the Backdrop of Partial Legal Recognition

Authors: Merav Meiron-Goren, Orna Braun-Lewensohn, Tal Litvak-Hirsh

Abstract:

In recent years, there has been an increasing tendency towards separation and divorce in relationships. Nevertheless, many couples in a first marriage do not anticipate this as a probable possibility and do not make any preparation for it. Same sex couples establishing a family encounter a much more complicated situation than do heterosexual couples. Although there is a trend towards legal recognition of same sex marriage, many countries, including Israel, do not recognize it. The absence of legal recognition or the existence of partial recognition creates complexity for these couples. They have to fight for their right to establish a family, like the recognition of the biological child of a woman, as a child of her woman spouse too, or the option of surrogacy for a male couple who want children, and more. The lack of legal recognition is burden on the lives of these couples. In the absence of clear norms regarding the conduct of the family unit, the couples must define for themselves the family structure, and deal with everyday dilemmas that lack institutional solutions. This may increase the friction between the two couple members, and it is one of the factors that make it difficult for them to maintain the relationship. This complexity exists, perhaps even more so, in separation. The end of relationship is often accompanied by a deep crisis, causing pain and stress. In most cases, there are also other conflicts that must be settled. These are more complicated when rights are in doubt or do not exist at all. Complex issues for separating same sex couples may include matters of property, recognition of parenthood, and care and support for the children. The significance of the study is based on the fact that same sex relationships are becoming more and more widespread, and are an integral part of the society. Even so, there is still an absence of research focusing on such relationships and their ending. The objective of the study is to research the perceptions of same sex couples regarding the possibility of separation, preparing for it, conflict management and resolving disputes through the separation process. It is also important to understand the point of view of couples that have gone through separation, how they coped with the emotional and practical difficulties involved in the separation process. The doctoral research will use a qualitative research method in a phenomenological approach, based on semi-structured in-depth interviews. The interviewees will be divided into three groups- at the beginning of a relationship, during the separation crisis and after separation, with a time perspective, with about 10 couples from each group. The main theoretical model serving as the basis of the study will be the Lazarus and Folkman theory of coping with stress. This model deals with the coping process, including cognitive appraisal of an experience as stressful, appraisal of the coping resources, and using strategies of coping. The strategies are divided into two main groups, emotion-focused forms of coping and problem-focused forms of coping.

Keywords: conflict management, coping, legal recognition, same-sex relationship, separation

Procedia PDF Downloads 143
784 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments

Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora

Abstract:

Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.

Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver

Procedia PDF Downloads 316
783 Plotting of an Ideal Logic versus Resource Outflow Graph through Response Analysis on a Strategic Management Case Study Based Questionnaire

Authors: Vinay A. Sharma, Shiva Prasad H. C.

Abstract:

The initial stages of any project are often observed to be in a mixed set of conditions. Setting up the project is a tough task, but taking the initial decisions is rather not complex, as some of the critical factors are yet to be introduced into the scenario. These simple initial decisions potentially shape the timeline and subsequent events that might later be plotted on it. Proceeding towards the solution for a problem is the primary objective in the initial stages. The optimization in the solutions can come later, and hence, the resources deployed towards attaining the solution are higher than what they would have been in the optimized versions. A ‘logic’ that counters the problem is essentially the core of the desired solution. Thus, if the problem is solved, the deployment of resources has led to the required logic being attained. As the project proceeds along, the individuals working on the project face fresh challenges as a team and are better accustomed to their surroundings. The developed, optimized solutions are then considered for implementation, as the individuals are now experienced, and know better of the consequences and causes of possible failure, and thus integrate the adequate tolerances wherever required. Furthermore, as the team graduates in terms of strength, acquires prodigious knowledge, and begins its efficient transfer, the individuals in charge of the project along with the managers focus more on the optimized solutions rather than the traditional ones to minimize the required resources. Hence, as time progresses, the authorities prioritize attainment of the required logic, at a lower amount of dedicated resources. For empirical analysis of the stated theory, leaders and key figures in organizations are surveyed for their ideas on appropriate logic required for tackling a problem. Key-pointers spotted in successfully implemented solutions are noted from the analysis of the responses and a metric for measuring logic is developed. A graph is plotted with the quantifiable logic on the Y-axis, and the dedicated resources for the solutions to various problems on the X-axis. The dedicated resources are plotted over time, and hence the X-axis is also a measure of time. In the initial stages of the project, the graph is rather linear, as the required logic will be attained, but the consumed resources are also high. With time, the authorities begin focusing on optimized solutions, since the logic attained through them is higher, but the resources deployed are comparatively lower. Hence, the difference between consecutive plotted ‘resources’ reduces and as a result, the slope of the graph gradually increases. On an overview, the graph takes a parabolic shape (beginning on the origin), as with each resource investment, ideally, the difference keeps on decreasing, and the logic attained through the solution keeps increasing. Even if the resource investment is higher, the managers and authorities, ideally make sure that the investment is being made on a proportionally high logic for a larger problem, that is, ideally the slope of the graph increases with the plotting of each point.

Keywords: decision-making, leadership, logic, strategic management

Procedia PDF Downloads 110
782 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects

Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town

Abstract:

The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.

Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry

Procedia PDF Downloads 92