Search results for: urban green open space
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10896

Search results for: urban green open space

1896 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods

Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim

Abstract:

Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.

Keywords: economical analysis, probability of failure, retaining walls, statistical analysis

Procedia PDF Downloads 393
1895 Intercropping Immature Oil Palm (Elaeisguineensis) with Banana, Ginger and Turmeric in Galle District, Sri Lanka

Authors: S. M. Dissanayake, I. R. Palihakkara , K. G. Premathilaka

Abstract:

Oil palm (Elaeisguineensis) is the world’s leading vegetable oil-producing plant and is well established as a perennial plantation crop in tropical countries. Oil palm in Sri Lanka has spread over 10,000 hectares in the wet zone of the Island. In immature plantations, land productivity can be increased with some selected intercrops. At the immature stage of the plantations (age up to 3-5 years), there is a large amount of free space available inside the plantations. This study attempts to determine the suitability of different intercrops during the immature phase of the oil palm. A field experiment is being conducted at Thalgaswella estate (WL2a) in Galle district, Sri Lanka. The objectives of the study are to evaluate and recommend a suitable immature oil palm-based intercropping system/s. This experiment was established with randomized complete block design (RCBD) with four treatments, including control in three replicates. Banana, ginger, and turmeric were selected as intercrops. Growth parameters of intercrops (plant height, length, width of D-leaf, and yield of intercrops) and girth, length, and number of leaflets of 17th frond in oil palms were taken at two months intervals. In addition to this, chlorophyll content was also measured in both intercrops and oil palm trees. Soil chemical parameters were measured annually. Results were statistically analyzed with SAS software. Results revealed that intercropped banana, turmeric, and ginger had given yields of 7.61Mt/ha, 4.92Mt/ha, and 4.53Mt/ha, respectively. When comparing these yields with mono-crop, banana, turmeric, and ginger intercrop yields as percentages of 16.9%, 24.6%, and 30.2%, respectively. The results of this study could be used to make appropriate policies to increase the unit land productivity in oil palm plantations in a low country wet zone (WL2a) of Sri Lanka.

Keywords: inter-cropping, oil palm, policies, mono-crop, land productivity

Procedia PDF Downloads 136
1894 Photocatalytic Active Surface of LWSCC Architectural Concretes

Authors: P. Novosad, L. Osuska, M. Tazky, T. Tazky

Abstract:

Current trends in the building industry are oriented towards the reduction of maintenance costs and the ecological benefits of buildings or building materials. Surface treatment of building materials with photocatalytic active titanium dioxide added into concrete can offer a good solution in this context. Architectural concrete has one disadvantage – dust and fouling keep settling on its surface, diminishing its aesthetic value and increasing maintenance e costs. Concrete surface – silicate material with open porosity – fulfils the conditions of effective photocatalysis, in particular, the self-cleaning properties of surfaces. This modern material is advantageous in particular for direct finishing and architectural concrete applications. If photoactive titanium dioxide is part of the top layers of road concrete on busy roads and the facades of the buildings surrounding these roads, exhaust fumes can be degraded with the aid of sunshine; hence, environmental load will decrease. It is clear that options for removing pollutants like nitrogen oxides (NOx) must be found. Not only do these gases present a health risk, they also cause the degradation of the surfaces of concrete structures. The photocatalytic properties of titanium dioxide can in the long term contribute to the enhanced appearance of surface layers and eliminate harmful pollutants dispersed in the air, and facilitate the conversion of pollutants into less toxic forms (e.g., NOx to HNO3). This paper describes verification of the photocatalytic properties of titanium dioxide and presents the results of mechanical and physical tests on samples of architectural lightweight self-compacting concretes (LWSCC). The very essence of the use of LWSCC is their rheological ability to seep into otherwise extremely hard accessible or inaccessible construction areas, or sections thereof where concrete compacting will be a problem, or where vibration is completely excluded. They are also able to create a solid monolithic element with a large variety of shapes; the concrete will at the same meet the requirements of both chemical aggression and the influences of the surrounding environment. Due to their viscosity, LWSCCs are able to imprint the formwork elements into their structure and thus create high quality lightweight architectural concretes.

Keywords: photocatalytic concretes, titanium dioxide, architectural concretes, Lightweight Self-Compacting Concretes (LWSCC)

Procedia PDF Downloads 278
1893 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning

Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim

Abstract:

The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.

Keywords: apartment unit plan, data-driven design, design methodology, machine learning

Procedia PDF Downloads 244
1892 Surgical Imaging in Ancient Egypt

Authors: Mohamed Ahmed Madkour, Haitham Magdy Hamad

Abstract:

This research aims to study of the surgery science and imaging in ancient Egypt, and how to diagnose the surgical cases, whether due to injuries or disease that requires surgical intervention, Medical diagnosis and how to treat it. The ancient Egyptian physician tried to change over from magic and theological thinking to become a stand-alone experimental science, they were able to distinguish between diseases and they divide them into internal and external diseases even this division exists to date in modern medicine. There is no evidence to recognize the amount of human knowledge in the prehistoric knowledge of medicine and surgery except skeleton. It is not far from the human being in those times familiar with some means of treatment, Surgery in the Stone age was rudimentary, Flint stone was used after trimming in a certain way as a lancet to slit and open the skin. Wooden tree branches were used to make splints to treat bone fractures. Surgery developed further when copper was discovered, it led to the advancement of Egyptian civilization, then modern and advanced tools appeared in the operating theater like a knife or a scalpel. The climate and environmental conditions have preserved medical papyri and human remains that have confirmed their knowledge of surgical methods including sedation. The ancient Egyptians reached a great importance in surgery, evidenced by the scenes that depict the pathological image and the surgical process, but the image alone is not sufficient to prove the pathology, its presence in ancient Egypt and its treatment method. As there are a number of medical papyri, especially Edwin Smith and Ebris, which prove the ancient Egyptian surgeon's knowledge of the pathological condition that It requires a surgical intervention, otherwise its diagnosis and the method of treatment will not be described with such accuracy through these texts. Some surgeries are described in the department of surgery at Ebris papyrus. The level of surgery in ancient Egypt was high, and they performed surgery such as hernias and Aneurysm, however we have not received a lengthy explanation of the various surgeries and the surgeon has usually only said “treated surgically”. It is evident in the Ebris papyrus that they used sharp surgical tools and cautery in operations where bleeding is expected, such as hernias, arterial sacs and tumors.

Keywords: ancient Egypt, archaeology, Egyptian history, ancient asurgical imaging, Egyptian civilization, civilization

Procedia PDF Downloads 59
1891 Free Energy Computation of A G-Quadruplex-Ligand Structure: A Classical Molecular Dynamics and Metadynamics Simulation Study

Authors: Juan Antonio Mondragon Sanchez, Ruben Santamaria

Abstract:

The DNA G-quadruplex is a four-stranded DNA structure formed by stacked planes of four base paired guanines (G-quartet). Guanine rich DNA sequences appear in many sites of genomic DNA and can potential form G-quadruplexes, such as those occurring at 3'-terminus of the human telomeric DNA. The formation and stabilization of a G-quadruplex by small ligands at the telomeric region can inhibit the telomerase activity. In turn, the ligands can be used to down regulate oncogene expression making G-quadruplex an attractive target for anticancer therapy. Many G-quadruplex ligands have been proposed with a planar core to facilitate the pi–pi stacking and electrostatic interactions with the G-quartets. However, many drug candidates are impossibilitated to discriminate a G-quadruplex from a double helix DNA structure. In this context, it is important to investigate the site topology for the interaction of a G-quadruplex with a ligand. In this work, we determine the free energy surface of a G-quadruplex-ligand to study the binding modes of the G-quadruplex (TG4T) with the daunomycin (DM) drug. The complex TG4T-DM is studied using classical molecular dynamics in combination with metadynamics simulations. The metadynamics simulations permit an enhanced sampling of the conformational space with a modest computational cost and obtain free energy surfaces in terms of the collective variables (CV). The free energy surfaces of TG4T-DM exhibit other local minima, indicating the presence of additional binding modes of daunomycin that are not observed in short MD simulations without the metadynamics approach. The results are compared with similar calculations on a different structure (the mutated mu-G4T-DM where the 5' thymines on TG4T-DM have been deleted). The results should be of help to design new G-quadruplex drugs, and understand the differences in the recognition topology sites of the duplex and quadruplex DNA structures in their interaction with ligands.

Keywords: g-quadruplex, cancer, molecular dynamics, metadynamics

Procedia PDF Downloads 440
1890 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow

Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen

Abstract:

Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.

Keywords: flux limiters, implicit SGS, MILES, OpenFOAM, turbulence statistics

Procedia PDF Downloads 168
1889 Piql Preservation Services - A Holistic Approach to Digital Long-Term Preservation

Authors: Alexander Rych

Abstract:

Piql Preservation Services (“Piql”) is a turnkey solution designed for secure, migration-free long- term preservation of digital data. Piql sets an open standard for long- term preservation for the future. It consists of equipment and processes needed for writing and retrieving digital data. Exponentially growing amounts of data demand for logistically effective and cost effective processes. Digital storage media (hard disks, magnetic tape) exhibit limited lifetime. Repetitive data migration to overcome rapid obsolescence of hardware and software bears accelerated risk of data loss, data corruption or even manipulation and adds significant repetitive costs for hardware and software investments. Piql stores any kind of data in its digital as well as analog form securely for 500 years. The medium that provides this is a film reel. Using photosensitive film polyester base, a very stable material that is known for its immutability over hundreds of years, secure and cost-effective long- term preservation can be provided. The film reel itself is stored in a packaging capable of protecting the optical storage medium. These components have undergone extensive testing to ensure longevity of up to 500 years. In addition to its durability, film is a true WORM (write once- read many) medium. It therefore is resistant to editing or manipulation. Being able to store any form of data onto the film makes Piql a superior solution for long-term preservation. Paper documents, images, video or audio sequences – all of those file formats and documents can be preserved in its native file structure. In order to restore the encoded digital data, only a film scanner, a digital camera or any appropriate optical reading device will be needed in the future. Every film reel includes an index section describing the data saved on the film. It also contains a content section carrying meta-data, enabling users in the future to rebuild software in order to read and decode the digital information.

Keywords: digital data, long-term preservation, migration-free, photosensitive film

Procedia PDF Downloads 374
1888 Effect of Hormones Priming on Enzyme Activity and Lipid Peroxidation in Wheat Seed under Accelerated Aging

Authors: Amin Abbasi, Fariborz Shekari, Seyed Bahman Mousavi

Abstract:

Seed aging during storage is a complex biochemical and physiological processes that can lead to reduce seed germination. This phenomenon associated with increasing of total antioxidant activity during aging. To study the effects of hormones on seed aging, aged wheat seeds (control, 90 and 80% viabilities) were treated with GA3, Salicylic Acid, and paclobutrazol and antioxidant system were investigated as molecular biomarkers for seed vigor. The results showed that, seed priming treatment significantly affected germination percentage, normality seedling percentage, H2O2, MDA, CAT, APX, and GPX activates. Maximum germination percentage achieve in GA3 priming in control treatment. Germination percentage and normal seedling percentage increased in other GA3 priming treatment compared with other hormones. Also aging increased MDA, H2O2 content. MDA is considered sensitive marker commonly used for assessing membrane lipid peroxidation and H2O2result in toxicity to cellular membrane system and damages to plant cells. Amount of H2O2 and MDA declined in GA3 treatment. CAT, GPX and APX activities were reduced by increasing the aging time and at different levels of priming. The highest APX activity was observed in Salicylic Acid control treatment and the highest GPX and CAT activity was obtained in GA3 control treatment. The lowest MDA and H2O2 showed in GA3 control treatment, too. Hormone priming increased Antioxidant enzyme activity and decreased amount of reactive oxygen space and malondialdehyde (MDA) under aging treatment. Also, GA3 priming treatments have a significant effect on germination percentage and number of normal seedling. Generally aging seed, increase ROS and lipid peroxidation. Antioxidant enzymes activity of aged seeds increased after hormone priming.

Keywords: hormones priming, wheat, aging seed, antioxidant, lipid peroxidation

Procedia PDF Downloads 473
1887 Using Hierarchical Methodology to Assist the Selection of New Business in Brazilian Companies Incubators

Authors: Izabel Cristina Zattar, Gilberto Passos Lima, Guilherme Schünemann de Oliveira

Abstract:

In Brazil, there are several institutions committed to the development of new businesses based on product innovation. Among them are business incubators, universities and science institutes. Business incubators can be defined as nurseries for new companies, which may be in the technology segment, discussed in this article. Business incubators provide services related to infrastructure, such as physical space and meeting rooms. Besides these services, incubators also offer assistance in the form of information and communication, access to finance, relationship networks and business monitoring and mentoring processes. Business incubators support not all technology companies. One of the business incubators tasks is to assess the nature and feasibility of new business proposals. To assist in this goal, this paper proposes a methodology for evaluating new business using the Analytic Hierarchy Process (AHP). This paper presents the concepts used in the assessing methodology application for new business, concepts that have been tested with positive results in practice. This study counts on three main steps: first, a hierarchy was built, based on new business manuals used by the business incubators. These books and manuals relate business selection requirements, such as the innovation status and other technological aspects. Then, a questionnaire was generated, in order to guide incubator experts in the parity comparisons at all hierarchy levels. The weights of each requirement are calculated from information obtained from the questionnaire responses. Finally, the proposed method was applied to evaluate five new business proposals, which were applying to be part of a company incubator. The main result is the classification of these new businesses, which helped the incubator experts to decide what companies were more eligible to work with. This classification may also be helpful to the decision-making process of business incubators in future selection processes.

Keywords: Analytic Hierarchy Process (AHP), Brazilian companies incubators, technology companies, incubator

Procedia PDF Downloads 381
1886 The Effect of Stent Coating on the Stent Flexibility: Comparison of Covered Stent and Bare Metal Stent

Authors: Keping Zuo, Foad Kabinejadian, Gideon Praveen Kumar Vijayakumar, Fangsen Cui, Pei Ho, Hwa Liang Leo

Abstract:

Carotid artery stenting (CAS) is the standard procedure for patients with severe carotid stenosis at high risk for carotid endarterectomy (CAE). A major drawback of CAS is the higher incidence of procedure-related stroke compared with traditional open surgical treatment for carotid stenosis - CEA, even with the use of the embolic protection devices (EPD). As the currently available bare metal stents cannot address this problem, our research group developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet maintaining the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid atherosclerotic stenosis. The purpose of this study is to evaluate the effect of membrane coating on the stent flexibility in order to improve the clinical performance of our novel covered stents. A total of 21 stents were evaluated in this study: 15 self expanding bare nitinol stents and 6 PTFE-covered stents. 10 of the bare stents were coated with 11%, 16% and 22% Polyurethane(PU), 4%, 6.25% and 11% EE, as well as 22% PU plus 5 μm Parylene. Different laser cutting designs were performed on 4 of the PTFE covert stents. All the stents, with or without the covered membrane, were subjected to a three-point flexural test. The stents were placed on two supports that are 30 mm apart, and the actuator is applying a force in the exact middle of the two supports with a loading pin with radius 2.5 mm. The loading pin displacement change, the force and the variation in stent shape were recorded for analysis. The flexibility of the stents was evaluated by the lumen area preservation at three displacement bending levels: 5mm, 7mm, and 10mm. All the lumen areas in all stents decreased with the increase of the displacement from 0 to 10 mm. The bare stents were able to maintain 0.864 ± 0.015, 0.740 ± 0.025 and 0.597 ± 0.031of original lumen area at 5 mm, 7 mm and 10mm displacement respectively. For covered stents, the stents with EE coating membrane showed the best lumen area preservation (0.839 ± 0.005, 0.7334 ± 0.043 and 0.559 ± 0.014), whereas, the stents with PU and Parylene coating were only 0.662, 0.439 and 0.305. Bending stiffness was also calculated and compared. These results provided optimal material information and it was crucial for enhancing clinical performance of our novel covered stents.

Keywords: carotid artery, covered stent, nonlinear, hyperelastic, stress, strain

Procedia PDF Downloads 283
1885 Academic Success, Problem-Based Learning and the Middleman: The Community Voice

Authors: Isabel Medina, Mario Duran

Abstract:

Although Problem-based learning provides students with multiple opportunities for rigorous instructional experiences in which students are challenged to address problems in the community; there are still gaps in connecting community leaders to the PBL process. At a south Texas high school, community participation serves as an integral component of the PBL process. Problem-based learning (PBL) has recently gained momentum due to the increase in global communities that value collaboration and critical thinking. As an instructional approach, PBL engages high school students in meaningful learning experiences. Furthermore, PBL focuses on providing students with a connection to real-world situations that require effective peer collaboration. For PBL leaders, providing students with a meaningful process is as important as the final PBL outcome. To achieve this goal, STEM high school strategically created a space for community involvement to be woven within the PBL fabric. This study examines the impact community members had on PBL students attending a STEM high school in South Texas. At STEM High School, community members represent a support system that works through the PBL process to ensure students receive real-life mentoring from business and industry leaders situated in the community. A phenomenological study using a semi-structured approach was used to collect data about students’ perception of community involvement within the PBL process for one South Texas high school. In our proposed presentation, we will discuss how community involvement in the PBL process academically impacted the educational experience of high school students at STEM high school. We address the instructional concerns PBL critics have with the lack of direct instruction, by providing a representation of how STEM high school utilizes community members to assist in impacting the academic experience of students.

Keywords: phenomenological, STEM education, student engagement, community involvement

Procedia PDF Downloads 74
1884 Thin Film Thermoelectric Generator with Flexible Phase Change Material-Based Heatsink

Authors: Wu Peiqin

Abstract:

Flexible thermoelectric devices are light and flexible, which can be in close contact with any shape of heat source surfaces to minimize heat loss and achieve efficient energy conversion. Among the wide application fields, energy harvesting via flexible thermoelectric generators can adapt to a variety of curved heat sources (such as human body, circular tubes, and surfaces of different shapes) and can drive low-power electronic devices, exhibiting one of the most promising technologies in self-powered systems. The heat flux along the cross-section of the flexible thin-film generator is limited by the thickness, so the temperature difference decreases during the generation process, and the output power is low. At present, most of the heat flow directions of the thin film thermoelectric generator are along the thin-film plane; however, this method is not suitable for attaching to the human body surface to generate electricity. In order to make the film generator more suitable for thermoelectric generation, it is necessary to apply a flexible heatsink on the air sides with the film to maintain the temperature difference. In this paper, Bismuth telluride thermoelectric paste was deposited on polyimide flexible substrate by a screen printing method, and the flexible thermoelectric film was formed after drying. There are ten pairs of thermoelectric legs. The size of the thermoelectric leg is 20 x 2 x 0.1 mm, and adjacent thermoelectric legs are spaced 2 mm apart. A phase change material-based flexible heatsink was designed and fabricated. The flexible heatsink consists of n-octadecane, polystyrene, and expanded graphite. N-octadecane was used as the thermal storage material, polystyrene as the supporting material, and expanded graphite as the thermally conductive additive. The thickness of the flexible phase change material-based heatsink is 2mm. A thermoelectric performance testing platform was built, and its output performance was tested. The results show that the system can generate an open-circuit output voltage of 3.89 mV at a temperature difference of 10K, which is higher than the generator without a heatsink. Therefore, the flexible heatsink can increase the temperature difference between the two ends of the film and improve the output performance of the flexible film generator. This result promotes the application of the film thermoelectric generator in collecting human heat for power generation.

Keywords: flexible thermoelectric generator, screen printing, PCM, flexible heatsink

Procedia PDF Downloads 83
1883 Renewable Natural Gas Production from Biomass and Applications in Industry

Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis

Abstract:

For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.

Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel

Procedia PDF Downloads 92
1882 Use of Geosynthetics as Reinforcement Elements in Unpaved Tertiary Roads

Authors: Vivian A. Galindo, Maria C. Galvis, Jaime R. Obando, Alvaro Guarin

Abstract:

In Colombia, most of the roads of the national tertiary road network are unpaved roads with granular rolling surface. These are very important ways of guaranteeing the mobility of people, products, and inputs from the agricultural sector from the most remote areas to urban centers; however, it has not paid much attention to the search for alternatives to avoid the occurrence of deteriorations that occur shortly after its commissioning. In recent years, geosynthetics have been used satisfactorily to reinforce unpaved roads on soft soils, with geotextiles and geogrids being the most widely used. The interaction of the geogrid and the aggregate minimizes the lateral movement of the aggregate particles and increases the load capacity of the material, which leads to a better distribution of the vertical stresses, consequently reducing the vertical deformations in the subgrade. Taking into account the above, the research aimed at the mechanical behavior of the granular material, used in unpaved roads with and without the presence of geogrids, from the development of laboratory tests through the loaded wheel tester (LWT). For comparison purposes, the reinforced conditions and traffic conditions to which this type of material can be accessed in practice were simulated. In total four types of geogrids, were tested with granular material; this means that five test sets, the reinforced material and the non-reinforced control sample were evaluated. The results of the numbers of load cycles and depth rutting supported by each test body showed the influence of the properties of the reinforcement on the mechanical behavior of the assembly and the significant increases in the number of load cycles of the reinforced specimens in relation to those without reinforcement.

Keywords: geosynthetics, load wheel tester LWT, tertiary roads, unpaved road, vertical deformation

Procedia PDF Downloads 231
1881 Ultra-High Molecular Weight Polyethylene (UHMWPE) for Radiation Dosimetry Applications

Authors: Malik Sajjad Mehmood, Aisha Ali, Hamna Khan, Tariq Yasin, Masroor Ikram

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is one of the polymers belongs to polyethylene (PE) family having monomer –CH2– and average molecular weight is approximately 3-6 million g/mol. Due its chemical, mechanical, physical and biocompatible properties, it has been extensively used in the field of electrical insulation, medicine, orthopedic, microelectronics, engineering, chemistry and the food industry etc. In order to alter/modify the properties of UHMWPE for particular application of interest, certain various procedures are in practice e.g. treating the material with high energy irradiations like gamma ray, e-beam, and ion bombardment. Radiation treatment of UHMWPE induces free radicals within its matrix, and these free radicals are the precursors of chain scission, chain accumulation, formation of double bonds, molecular emission, crosslinking etc. All the aforementioned physical and chemical processes are mainly responsible for the modification of polymers properties to use them in any particular application of our interest e.g. to fabricate LEDs, optical sensors, antireflective coatings, polymeric optical fibers, and most importantly for radiation dosimetry applications. It is therefore, to check the feasibility of using UHMWPE for radiation dosimetery applications, the compressed sheets of UHMWPE were irradiated at room temperature (~25°C) for total dose values of 30 kGy and 100 kGy, respectively while one were kept un-irradiated as reference. Transmittance data (from 400 nm to 800 nm) of e-beam irradiated UHMWPE and its hybrids were measured by using Muller matrix spectro-polarimeter. As a result significant changes occur in the absorption behavior of irradiated samples. To analyze these (radiation induced) changes in polymer matrix Urbach edge method and modified Tauc’s equation has been used. The results reveal that optical activation energy decreases with irradiation. The values of activation energies are 2.85 meV, 2.48 meV, and 2.40 meV for control, 30 kGy, and 100 kGy samples, respectively. Direct and indirect energy band gaps were also found to decrease with irradiation due to variation of C=C unsaturation in clusters. We believe that the reported results would open new horizons for radiation dosimetery applications.

Keywords: electron beam, radiation dosimetry, Tauc’s equation, UHMWPE, Urbach method

Procedia PDF Downloads 393
1880 Migration in Times of Uncertainty

Authors: Harman Jaggi, David Steinsaltz, Shripad Tuljapurkar

Abstract:

Understanding the effect of fluctuations on populations is crucial in the context of increasing habitat fragmentation, climate change, and biological invasions, among others. Migration in response to environmental disturbances enables populations to escape unfavorable conditions, benefit from new environments and thereby ride out fluctuations in variable environments. Would populations disperse if there is no uncertainty? Karlin showed in 1982 that when sub-populations experience distinct but fixed growth rates at different sites, greater mixing of populations will lower the overall growth rate relative to the most favorable site. Here we ask if and when environmental variability favors migration over no-migration. Specifically, in random environments, would a small amount of migration increase the overall long-run growth rate relative to the zero migration case? We use analysis and simulations to show how long-run growth rate changes with migration rate. Our results show that when fitness (dis)advantages fluctuate over time across sites, migration may allow populations to benefit from variability. When there is one best site with highest growth rate, the effect of migration on long-run growth rate depends on the difference in expected growth between sites, scaled by the variance of the difference. When variance is large, there is a substantial probability of an inferior site experiencing higher growth rate than its average. Thus, a high variance can compensate for a difference in average growth rates between sites. Positive correlations in growth rates across sites favor less migration. With multiple sites and large fluctuations, the length of shortest cycle (excursion) from the best site (on average) matters, and we explore the interplay between excursion length, average differences between sites and the size of fluctuations. Our findings have implications for conservation biology: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space may be key to determining the importance of migration.

Keywords: migration, variable-environments, random, dispersal, fluctuations, habitat-quality

Procedia PDF Downloads 122
1879 A Study on Relationship between Firm Managers Environmental Attitudes and Environment-Friendly Practices for Textile Firms in India

Authors: Anupriya Sharma, Sapna Narula

Abstract:

Over the past decade, sustainability has gone mainstream as more people are worried about environment-related issues than ever before. These issues are of even more concern for industries which leave a significant impact on the environment. Following these ecological issues, corporates are beginning to comprehend the impact on their business. Many such initiatives have been made to address these emerging issues in the consumer-driven textile industry. Demand from customers, local communities, government regulations, etc. are considered some of the major factors affecting environmental decision-making. Research also shows that motivations to go green are inevitably determined by the way top managers perceive environmental issues as managers personal values and ethical commitment act as a motivating factor towards corporate social responsibility. Little empirical research has been conducted to examine the relationship between top managers’ personal environmental attitudes and corporate environmental behaviors for the textile industry in the Indian context. The primary purpose of this study is to determine the current state of environmental management in textile industry and whether the attitude of textile firms’ top managers is significantly related to firm’s response to environmental issues and their perceived benefits of environmental management. To achieve the aforesaid objectives of the study, authors used structured questionnaire based on literature review. The questionnaire consisted of six sections with a total length of eight pages. The first section was based on background information on the position of the respondents in the organization, annual turnover, year of firm’s establishment and so on. The other five sections of the questionnaire were based upon (drivers, attitude, and awareness, sustainable business practices, barriers to implementation and benefits achieved). To test the questionnaire, a pretest was conducted with the professionals working in corporate sustainability and had knowledge about the textile industry and was then mailed to various stakeholders involved in textile production thereby covering firms top manufacturing officers, EHS managers, textile engineers, HR personnel and R&D managers. The results of the study showed that most of the textile firms were implementing some type of environmental management practice, even though the magnitude of firm’s involvement in environmental management practices varied. The results also show that textile firms with a higher level of involvement in environmental management were more involved in the process driven technical environmental practices. It also identified that firm’s top managers environmental attitudes were correlated with perceived advantages of environmental management as textile firm’s top managers are the ones who possess managerial discretion on formulating and deciding business policies such as environmental initiatives.

Keywords: attitude and awareness, Environmental management, sustainability, textile industry

Procedia PDF Downloads 219
1878 Peer Support Groups as a Tool to Increase Chances of Passing General Practice UK Qualification Exams

Authors: Thomas Abraham, Garcia de la Vega Felipe, Lubna Nishath, Nzekwe Nduka, Powell Anne-Marie

Abstract:

Introduction: The purpose of this paper is to discuss the effectiveness of a peer support network created to provide medical education, pastoral support, and reliable resources to registrars to help them pass the MRCGP exams. This paper will include a description of the network and its purpose, discuss how it has been used by trainees since its creation, and explain how this methodology can be applied to other areas of medical education and primary care. Background: The peer support network was created in February 2021, using Facebook, Telegram, and WhatsApp platforms to facilitate discussion of cases and answer queries about the exams, share resources, and offer peer support from qualified GPs and specialists. The network was created and is maintained by the authors of this paper and is open to anyone who is registered with the General Medical Council (GMC) and is studying for the MRCGP exams. Purpose: The purpose of the network is to provide medical education, pastoral support, and reliable resources to registrars to help them pass the exams. The network is free to use and is designed to take the onus away from a single medical educator and collate a vast amount of information from multiple medical educators/trainers; thereby creating a digital library of information for all trainees - exam related or otherwise. Methodology The network is managed by a team of moderators who respond to queries and facilitate discussion. Smaller study groups are created from the main group and provide a platform for trainees to work together, share resources, and provide peer support. The network has had thousands of trainees using it since February 2021, with positive feedback from all trainees. Results: The feedback from trainees has been overwhelmingly positive. Word of mouth has spread rapidly, growing the groups exponentially. Trainees add colleagues to the groups and often stay after they pass their exams to 'give back' to their fellow trainees. To date, thousands of trainees have passed the MRCGP exams using the resources and support provided by the network. Conclusion The success of this peer support network demonstrates the effectiveness of creating a network of thousands of doctors to provide medical education and support.

Keywords: peer support, medical education, pastoral support, MRCGP exams

Procedia PDF Downloads 113
1877 Destination Decision Model for Cruising Taxis Based on Embedding Model

Authors: Kazuki Kamada, Haruka Yamashita

Abstract:

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Keywords: taxi industry, decision making, recommendation system, embedding model

Procedia PDF Downloads 123
1876 The Growth Role of Natural Gas Consumption for Developing Countries

Authors: Tae Young Jin, Jin Soo Kim

Abstract:

Carbon emissions have emerged as global concerns. Intergovernmental Panel of Climate Change (IPCC) have published reports about Green House Gases (GHGs) emissions regularly. United Nations Framework Convention on Climate Change (UNFCCC) have held a conference yearly since 1995. Especially, COP21 held at December 2015 made the Paris agreement which have strong binding force differently from former COP. The Paris agreement was ratified as of 4 November 2016, they finally have legal binding. Participating countries set up their own Intended Nationally Determined Contributions (INDC), and will try to achieve this. Thus, carbon emissions must be reduced. The energy sector is one of most responsible for carbon emissions and fossil fuels particularly are. Thus, this paper attempted to examine the relationship between natural gas consumption and economic growth. To achieve this, we adopted the Cobb-Douglas production function that consists of natural gas consumption, economic growth, capital, and labor using dependent panel analysis. Data were preprocessed with Principal Component Analysis (PCA) to remove cross-sectional dependency which can disturb the panel results. After confirming the existence of time-trended component of each variable, we moved to cointegration test considering cross-sectional dependency and structural breaks to describe more realistic behavior of volatile international indicators. The cointegration test result indicates that there is long-run equilibrium relationship between selected variables. Long-run cointegrating vector and Granger causality test results show that while natural gas consumption can contribute economic growth in the short-run, adversely affect in the long-run. From these results, we made following policy implications. Since natural gas has positive economic effect in only short-run, the policy makers in developing countries must consider the gradual switching of major energy source, from natural gas to sustainable energy source. Second, the technology transfer and financing business suggested by COP must be accelerated. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).

Keywords: developing countries, economic growth, natural gas consumption, panel data analysis

Procedia PDF Downloads 210
1875 Cable De-Commissioning of Legacy Accelerators at CERN

Authors: Adya Uluwita, Fernando Pedrosa, Georgi Georgiev, Christian Bernard, Raoul Masterson

Abstract:

CERN is an international organisation founded by 23 countries that provide the particle physics community with excellence in particle accelerators and other related facilities. Founded in 1954, CERN has a wide range of accelerators that allow groundbreaking science to be conducted. Accelerators bring particles to high levels of energy and make them collide with each other or with fixed targets, creating specific conditions that are of high interest to physicists. A chain of accelerators is used to ramp up the energy of particles and eventually inject them into the largest and most recent one: the Large Hadron Collider (LHC). Among this chain of machines is, for instance the Proton Synchrotron, which was started in 1959 and is still in operation. These machines, called "injectors”, keep evolving over time, as well as the related infrastructure. Massive decommissioning of obsolete cables started in 2015 at CERN in the frame of the so-called "injectors de-cabling project phase 1". Its goal was to replace aging cables and remove unused ones, freeing space for new cables necessary for upgrades and consolidation campaigns. To proceed with the de-cabling, a project co-ordination team was assembled. The start of this project led to the investigation of legacy cables throughout the organisation. The identification of cables stacked over half a century proved to be arduous. Phase 1 of the injectors de-cabling was implemented for 3 years with success after overcoming some difficulties. Phase 2, started 3 years later, focused on improving safety and structure with the introduction of a quality assurance procedure. This paper discusses the implementation of this quality assurance procedure throughout phase 2 of the project and the transition between the two phases. Over hundreds of kilometres of cable were removed in the injectors complex at CERN from 2015 to 2023.

Keywords: CERN, de-cabling, injectors, quality assurance procedure

Procedia PDF Downloads 14
1874 Investigations on the Influence of Web Openings on the Load Bearing Behavior of Steel Beams

Authors: Felix Eyben, Simon Schaffrath, Markus Feldmann

Abstract:

A building should maximize the potential for use through its design. Therefore, flexible use is always important when designing a steel structure. To create flexibility, steel beams with web openings are increasingly used, because these offer the advantage that cables, pipes and other technical equipment can easily be routed through without detours, allowing for more space-saving and aesthetically pleasing construction. This can also significantly reduce the height of ceiling systems. Until now, beams with web openings were not explicitly considered in the European standard. However, this is to be done with the new EN 1993-1-13, in which design rules for different opening forms are defined. In order to further develop the design concepts, beams with web openings under bending are therefore to be investigated in terms of damage mechanics as part of a German national research project aiming to optimize the verifications for steel structures based on a wider database and a validated damage prediction. For this purpose, first, fundamental factors influencing the load-bearing behavior of girders with web openings under bending load were investigated numerically without taking material damage into account. Various parameter studies were carried out for this purpose. For example, the factors under study were the opening shape, size and position as well as structural aspects as the span length, arrangement of stiffeners and loading situation. The load-bearing behavior is evaluated using resulting load-deformation curves. These results are compared with the design rules and critically analyzed. Experimental tests are also planned based on these results. Moreover, the implementation of damage mechanics in the form of the modified Bai-Wierzbicki model was examined. After the experimental tests will have been carried out, the numerical models are validated and further influencing factors will be investigated on the basis of parametric studies.

Keywords: damage mechanics, finite element, steel structures, web openings

Procedia PDF Downloads 149
1873 Study of the Impact of Synthesis Method and Chemical Composition on Photocatalytic Properties of Cobalt Ferrite Catalysts

Authors: Katerina Zaharieva, Vicente Rives, Martin Tsvetkov, Raquel Trujillano, Boris Kunev, Ivan Mitov, Maria Milanova, Zara Cherkezova-Zheleva

Abstract:

The nanostructured cobalt ferrite-type materials Sample A - Co0.25Fe2.75O4, Sample B - Co0.5Fe2.5O4, and Sample C - CoFe2O4 were prepared by co-precipitation in our previous investigations. The co-precipitated Sample B and Sample C were mechanochemically activated in order to produce Sample D - Co0.5Fe2.5O4 and Sample E- CoFe2O4. The PXRD, Moessbauer and FTIR spectroscopies, specific surface area determination by the BET method, thermal analysis, element chemical analysis and temperature-programmed reduction were used to investigate the prepared nano-sized samples. The changes of the Malachite green dye concentration during reaction of the photocatalytic decolorization using nanostructured cobalt ferrite-type catalysts with different chemical composition are included. The photocatalytic results show that the increase in the degree of incorporation of cobalt ions in the magnetite host structure for co-precipitated cobalt ferrite-type samples results in an increase of the photocatalytic activity: Sample A (4 х10-3 min-1) < Sample B (5 х10-3 min-1) < Sample C (7 х10-3 min-1). Mechanochemically activated photocatalysts showed a higher activity than the co-precipitated ferrite materials: Sample D (16 х10-3 min-1) > Sample E (14 х10-3 min-1) > Sample C (7 х10-3 min-1) > Sample B (5 х10-3 min-1) > Sample A (4 х10-3 min-1). On decreasing the degree of substitution of iron ions by cobalt ones a higher sorption ability of the dye after the dark period for the co-precipitated cobalt ferrite materials was observed: Sample C (72 %) < Sample B (78 %) < Sample A (80 %). Mechanochemically treated ferrite catalysts and co-precipitated Sample B possess similar sorption capacities, Sample D (78 %) ~ Sample E (78 %) ~ Sample B (78 %). The prepared nano-sized cobalt ferrite-type materials demonstrate good photocatalytic and sorption properties. Mechanochemically activated Sample D - Co0.5Fe2.5O4 (16х10-3 min-1) and Sample E-CoFe2O4 (14х10-3 min-1) possess higher photocatalytic activity than that of the most common used UV-light catalyst Degussa P25 (12х10-3 min-1). The dependence of the photo-catalytic activity and sorption properties on the preparation method and different degree of substitution of iron ions by cobalt ions in synthesized cobalt ferrite samples is established. The mechanochemical activation leads to formation of nano-structured cobalt ferrite-type catalysts (Sample D and Sample E) with higher rate constants than those of the ferrite materials (Sample A, Sample B, and Sample C) prepared by the co-precipitation procedure. The increase in the degree of substitution of iron ions by cobalt ones leads to improved photocatalytic properties and lower sorption capacities of the co-precipitated ferrite samples. The good sorption properties between 72 and 80% of the prepared ferrite-type materials show that they could be used as potential cheap absorbents for purification of polluted waters.

Keywords: nanodimensional cobalt ferrites, photocatalyst, synthesis, mechanochemical activation

Procedia PDF Downloads 251
1872 Systematic Review of Digital Interventions to Reduce the Carbon Footprint of Primary Care

Authors: Anastasia Constantinou, Panayiotis Laouris, Stephen Morris

Abstract:

Background: Climate change has been reported as one of the worst threats to healthcare. The healthcare sector is a significant contributor to greenhouse gas emissions with primary care being responsible for 23% of the NHS’ total carbon footprint. Digital interventions, primarily focusing on telemedicine, offer a route to change. This systematic review aims to quantify and characterize the carbon footprint savings associated with the implementation of digital interventions in the setting of primary care. Methods: A systematic review of published literature was conducted according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) guidelines. MEDLINE, PubMed, and Scopus databases as well as Google scholar were searched using key terms relating to “carbon footprint,” “environmental impact,” “sustainability”, “green care”, “primary care,”, and “general practice,” using citation tracking to identify additional articles. Data was extracted and analyzed in Microsoft Excel. Results: Eight studies were identified conducted in four different countries between 2010 and 2023. Four studies used interventions to address primary care services, three studies focused on the interface between primary and specialist care, and one study addressed both. Digital interventions included the use of mobile applications, online portals, access to electronic medical records, electronic referrals, electronic prescribing, video-consultations and use of autonomous artificial intelligence. Only one study carried out a complete life cycle assessment to determine the carbon footprint of the intervention. It estimate that digital interventions reduced the carbon footprint at primary care level by 5.1 kgCO2/visit, and at the interface with specialist care by 13.4 kg CO₂/visit. When assessing the relationship between travel-distance saved and savings in emissions, we identified a strong correlation, suggesting that most of the carbon footprint reduction is attributed to reduced travel. However, two studies also commented on environmental savings associated with reduced use of paper. Patient savings in the form of reduced fuel cost and reduced travel time were also identified. Conclusion: All studies identified significant reductions in carbon footprint following implementation of digital interventions. In the future, controlled, prospective studies incorporating complete life cycle assessments and accounting for double-consulting effects, use of additional resources, technical failures, quality of care and cost-effectiveness are needed to fully appreciate the sustainable benefit of these interventions

Keywords: carbon footprint, environmental impact, primary care, sustainable healthcare

Procedia PDF Downloads 44
1871 Phytomining for Rare Earth Elements: A Comparative Life Cycle Assessment

Authors: Mohsen Rabbani, Trista McLaughlin, Ehsan Vahidi

Abstract:

the remediation of polluted sites with heavy metals, such as rare earth elements (REEs), has been a primary concern of researchers to decontaminate the soil. Among all developed methods to address this concern, phytoremediation has been established as efficient, cost-effective, easy-to-use, and environmentally friendly way, providing a long-term solution for addressing this global concern. Furthermore, this technology has another great potential application in the metals production sector through returning metals buried in soil via metals cropping. Considering the significant metal concentration in hyper-accumulators, the utilization of bioaccumulated metals to extract metals from plant matter has been proposed as a sub-economic area called phytomining. As a recent, more advanced technology to eliminate such pollutants from the soil and produce critical metals, bioharvesting (phytomining/agromining) has been considered another compromising way to produce metals and meet the global demand for critical/target metals. The bio-ore obtained from phytomining can be safely disposed of or introduced to metal production pathways to obtain the most demanded metals, such as REEs. It is well-known that some hyperaccumulators, e.g., fern Dicranopteris linearis, can be used to absorb REE metals from the polluted soils and accumulate them in plant organs, such as leaves and stems. After soil remediation, the plant species can be harvested and introduced to the downstream steps, namely crushing/grinding, leaching, and purification processes, to extract REEs from plant matter. This novel interdisciplinary field can fill the gap between agriculture, mining, metallurgy, and the environment. Despite the advantages of agromining for the REEs production industry, key issues related to the environmental sustainability of the entire life cycle of this new concept have not been assessed yet. Hence, a comparative life cycle assessment (LCA) study was conducted to quantify the environmental footprints of REEs phytomining. The current LCA study aims to estimate and calculate environmental effects associated with phytomining by considering critical factors, such as climate change, land use, and ozone depletion. The results revealed that phytomining is an easy-to-use and environmentally sustainable approach to either eliminate REEs from polluted sites or produce REEs, offering a new source of such metals production. This LCA research provides guidelines for researchers active in developing a reliable relationship between agriculture, mining, metallurgy, and the environment to encounter soil pollution and keep the earth green and clean.

Keywords: phytoremediation, phytomining, life cycle assessment, environmental impacts, rare earth elements, hyperaccumulator

Procedia PDF Downloads 49
1870 Challenges and Future Prospects of Teaching English in Secondary Schools of Jharkhand Board: An Extensive Survey of the Present Status

Authors: Neha Toppo

Abstract:

Plans and programs for successful secondary education are incomplete without the inclusion of teaching English as an important area. Even after sixteen years of the formation of Jharkhand as a separate state, the students are still struggling to achieve quality education of English. This paper intends to account the present condition of teaching English in Jharkhand board secondary level schools through discussion on various issues of English language teaching, language need and learning challenges of its students. The study is to analyze whether the learning environment, teaching methods and materials, teaching resources, goals of language curriculum are appropriately convincing for the students of the board or require to be reanalyzed and also to provide appropriate suggestions for improvement. Immediate attention must be drawn towards the problem for benefitting those students, who despite their knowledge and talent are lagging behind in numerous fields only due to the lack of proficiency in English. The data and discussion provided are on the basis of a survey, in which semi structured interview with teachers, students and administrators in several schools including both rural and urban area has been taken. Questionnaire, observation and testing were used as important tools. The survey has been conducted in Ranchi district, as it covers large geographical area which includes number of villages and at the same time several towns. The district primarily possesses tribes as well as different class of people including immigrants from all over and outside Jharkhand with their social, economical strata. The observation makes it clear that the English language teaching at the state board is not complementing its context and the whole language teaching system should be re-examined to establish learner oriented environment.

Keywords: material, method, secondary level, teaching resources

Procedia PDF Downloads 548
1869 A PHREEQC Reactive Transport Simulation for Simply Determining Scaling during Desalination

Authors: Andrew Freiburger, Sergi Molins

Abstract:

Freshwater is a vital resource; yet, the supply of clean freshwater is diminishing as the consequence of melting snow and ice from global warming, pollution from industry, and an increasing demand from human population growth. The unsustainable trajectory of diminishing water resources is projected to jeopardize water security for billions of people in the 21st century. Membrane desalination technologies may resolve the growing discrepancy between supply and demand by filtering arbitrary feed water into a fraction of renewable, clean water and a fraction of highly concentrated brine. The leading hindrance of membrane desalination is fouling, whereby the highly concentrated brine solution encourages micro-organismal colonization and/or the precipitation of occlusive minerals (i.e. scale) upon the membrane surface. Thus, an understanding of brine formation is necessary to mitigate membrane fouling and to develop efficacious desalination technologies that can bolster the supply of available freshwater. This study presents a reactive transport simulation of brine formation and scale deposition during reverse osmosis (RO) desalination. The simulation conceptually represents the RO module as a one-dimensional domain, where feed water directionally enters the domain with a prescribed fluid velocity and is iteratively concentrated in the immobile layer of a dual porosity model. Geochemical PHREEQC code numerically evaluated the conceptual model with parameters for the BW30-400 RO module and for real water feed sources – e.g. the Red and Mediterranean seas, and produced waters from American oil-wells, based upon peer-review data. The presented simulation is computationally simpler, and hence less resource intensive, than the existent and more rigorous simulations of desalination phenomena, like TOUGHREACT. The end-user may readily prepare input files and execute simulations on a personal computer with open source software. The graphical results of fouling-potential and brine characteristics may therefore be particularly useful as the initial tool for screening candidate feed water sources and/or informing the selection of an RO module.

Keywords: desalination, PHREEQC, reactive transport, scaling

Procedia PDF Downloads 118
1868 Comparative Analysis of a Self-Supporting Wall of Granite Slabs in a Multi-Leaves Enclosure System

Authors: Miguel Angel Calvo Salve

Abstract:

Building enclosures and façades not only have an aesthetic component they must also ensure thermal comfort and improve the acoustics and air quality in buildings. The role of facades design, its assemblies, and construction are key in developing a greener future in architecture. This research and study focus on the design of a multi-leaves building envelope, with a self-supporting wall of granite slabs. The study will demonstrate the advantages of its use in compare with the hanging stone veneer in a vented cladding system. Using the Design of the School of Music and Theatre of the Atlantic Area in Spain as a case study where the multi-leaves enclosure system consists in a self-supported outer leaf of large granite slabs of 15cm. of thickness, a vent cavity with thermal isolation, a brick wall, and a series of internal layers. The methodology used were simulations and data collected in building. The advantages of the self-supporting wall of granite slabs in the outer leaf (15cm). compared with a hanging stone veneer in a vented cladding system can summarize the goals as follows: Using the stone in more natural way, by compression. The weight of the stone slabs goes directly to a strip-footing and don't overload the reinforced concrete structure of the building. The weight of the stone slabs provides an external aerial soundproofing, preventing the sound transmission to the structure. The thickness of the stone slabs is enough to provide the external waterproofing of the building envelope. The self-supporting system with minimum anchorages allows having a continuous and external thermal isolation without thermal bridges. The thickness of ashlars masonry provides a thermal inertia that balances the temperatures between day and night in the external thermal insulation layer. The absence of open joints gives the quality of a continuous envelope transmitting the sensations of the stone, the heaviness in the facade, the rhythm of the music and the sequence of the theatre. The main cost of stone due his bigger thickness is more than compensated with the reduction in assembly costs. Don´t need any substructure systems for hanging stone veneers.

Keywords: self-supporting wall, stone cladding systems, hanging veneer cladding systems, sustainability of facade systems

Procedia PDF Downloads 41
1867 Constitutional Identity: The Connection between National Constitutions and EU Law

Authors: Norbert Tribl

Abstract:

European contemporary scientific public opinion considers the concept of constitutional identity as a highlighted issue. Some scholars interpret the matter as the manifestation of a conflict of Europe. Nevertheless, constitutional identity is a bridge between the Member States and the EU rather than a river that will wash away the achievements of the integration. In accordance with the opinion of the author, the main problem of constitutional identity in Europe is the undetermined nature: the exact concept of constitutional identity has not been defined until now. However, this should be the first step to understand and use identity as a legal institution. Having regard to this undetermined nature, the legal-theoretical examination of constitutional identity is the main purpose of this study. The concept of constitutional identity appears in the Anglo-Saxon legal systems by a different approach than in the supranational system of European Integration. While the interpretation of legal institutions in conformity with the constitution is understood under it, the European concept is applied when possible conflicts arise between the legal system of the European supranational space and certain provisions of the national constitutions of the member states. The European concept of constitutional identity intends to offer input in determining the nature of the relationship between the constitutional provisions of the member states and the legal acts of the EU integration. In the EU system of multilevel constitutionalism, a long-standing central debate on integration surrounds the conflict between EU legal acts and the constitutional provisions of the member states. In spite of the fact that the Court of Justice of the European Union stated in Costa v. E.N.E.L. that the member states cannot refer to the provisions of their respective national constitutions against the integration. Based on the experience of more than 50 years since the above decision, and also in light of the Treaty of Lisbon, we now can clearly see that EU law has itself identified an obligation for the EU to protect the fundamental constitutional features of the Member States under Article 4 (2) of Treaty on European Union, by respecting the national identities of member states. In other words, the European concept intends to offer input for the determination of the nature of the relationship between the constitutional provisions of the member states and the legal acts of the EU integration.

Keywords: constitutional identity, EU law, European Integration, supranationalism

Procedia PDF Downloads 132