Search results for: strict uncertainty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1286

Search results for: strict uncertainty

416 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things

Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker

Abstract:

Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.

Keywords: CUSUM, evidence theory, kl divergence, quickest change detection, time series data

Procedia PDF Downloads 334
415 Development and Validation of a Green Analytical Method for the Analysis of Daptomycin Injectable by Fourier-Transform Infrared Spectroscopy (FTIR)

Authors: Eliane G. Tótoli, Hérida Regina N. Salgado

Abstract:

Daptomycin is an important antimicrobial agent used in clinical practice nowadays, since it is very active against some Gram-positive bacteria that are particularly challenges for the medicine, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The importance of environmental preservation has receiving special attention since last years. Considering the evident need to protect the natural environment and the introduction of strict quality requirements regarding analytical procedures used in pharmaceutical analysis, the industries must seek environmentally friendly alternatives in relation to the analytical methods and other processes that they follow in their routine. In view of these factors, green analytical chemistry is prevalent and encouraged nowadays. In this context, infrared spectroscopy stands out. This is a method that does not use organic solvents and, although it is formally accepted for the identification of individual compounds, also allows the quantitation of substances. Considering that there are few green analytical methods described in literature for the analysis of daptomycin, the aim of this work was the development and validation of a green analytical method for the quantification of this drug in lyophilized powder for injectable solution, by Fourier-transform infrared spectroscopy (FT-IR). Method: Translucent potassium bromide pellets containing predetermined amounts of the drug were prepared and subjected to spectrophotometric analysis in the mid-infrared region. After obtaining the infrared spectrum and with the assistance of the IR Solution software, quantitative analysis was carried out in the spectral region between 1575 and 1700 cm-1, related to a carbonyl band of the daptomycin molecule, and this band had its height analyzed in terms of absorbance. The method was validated according to ICH guidelines regarding linearity, precision (repeatability and intermediate precision), accuracy and robustness. Results and discussion: The method showed to be linear (r = 0.9999), precise (RSD% < 2.0), accurate and robust, over a concentration range from 0.2 to 0.6 mg/pellet. In addition, this technique does not use organic solvents, which is one great advantage over the most common analytical methods. This fact contributes to minimize the generation of organic solvent waste by the industry and thereby reduces the impact of its activities on the environment. Conclusion: The validated method proved to be adequate to quantify daptomycin in lyophilized powder for injectable solution and can be used for its routine analysis in quality control. In addition, the proposed method is environmentally friendly, which is in line with the global trend.

Keywords: daptomycin, Fourier-transform infrared spectroscopy, green analytical chemistry, quality control, spectrometry in IR region

Procedia PDF Downloads 381
414 Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid

Authors: S. Agheb, G. Ledwich, G.Walker, Z.Tong

Abstract:

Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study.

Keywords: emergency frequency regulation, electric vehicle, EV, aggregation, Lyapunov energy function

Procedia PDF Downloads 100
413 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies

Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey

Abstract:

Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. According to the sixth Intergovernmental Panel on Climate Change (IPCC) Technical Paper on Climate Change and water, changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although many previous research carried on effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.

Keywords: climate change, downscaling, GCM, RCM

Procedia PDF Downloads 406
412 Additional Pathological Findings Using MRI on Patients with First Time Traumatic Lateral Patella Dislocation: A Study of 150 Patients

Authors: Ophir Segal, Daniel Weltsch, Shay Tenenbaum, Ran Thein

Abstract:

Purpose: Patients with lateral patellar dislocation (LPD) are not always referred to perform an MRI. This might be the case in first time LPD patients without surgical indications or in patients with recurrent LPD who had MRI in previous episodes. Unfortunately, in some cases, there are additional knee pathological findings, which include tearing of the collateral or cruciate ligaments and injury to the tendons or menisci. These findings might be overlooked during the physical examination or masked by nonspecific clinical findings like knee pain, effusion, or hemarthrosis. The prevalence of these findings, which can be revealed by MRI, is misreported in literature and is considered rare. In our practice, all patients with LPD are sent for MRI after LPD. Therefore, we have designed a retrospective comparative study to evaluate the prevalence of additional pathological findings in patients with acute traumatic LPD that had performed MRI, comparing different groups of patients according to age, sex, and Tibial Tuberosity-Trochlear Groove(TT-TG) distance. Methods: MRI of the knee in patients after traumatic LPD were evaluated for the presence of additional pathological findings such as injuries to ligaments: Anterior/Posterior cruciate ligament(ACL, PCL), Medial/Lateral collateral ligament(MCL, LCL), injuries to tendons(QUADICEPS, PATELLAR), menisci(Medial/Lateral meniscus(MM, LM)) and tibial plateau, by a fellowship-trained, senior musculoskeletal radiologist. A comparison between different groups of patients was performed according to age (age group < 25 years, age group > 25 years), sex (Male/Female group), and TT-TG distance (TT-TG<15 groups, TT-TG>15 groups). A descriptive and comparative statistical analysis was performed. Results: 150 patients were included in this study. All suffered from LPD between the years 2012-2017 (mean age 21.3( ± SD 8.9), 86 males). ACL, PCL, MCL, and LCL complete or partial tears were found in 17(11.3%), 3(2%), 22(14.6%), and 4(2.7%) of the patients, respectively. MM and LM tears were found in 10(6.7%) and 3(2%) of the patients, respectively. A higher prevalence of PCL injury, MM tear, and LM tear were found in the older age group compared to the younger group of patients (10.5% vs. 1.8%, 18.4% vs. 2.7%, and 7.9% vs. 0%, respectively, p<0.05). A higher prevalence of non-displaced MM tear and LCL injury was found in the male group compared to the female group (8.1% vs. 0% and 8.1% vs. 0% respectively, p<0.05). A higher prevalence of ACL injury was found in the normal TT-TG group compared to the pathologic TT-TG group (17.5% vs. 2.3%, p= 0.0184). Conclusions: Overall, 43 out of 150 (28.7%) of the patient's MRI’s were positive for additional pathological radiological findings. Interestingly, a higher prevalence of additional pathologies was found in the groups of patients with a lower risk for recurrent LPD, including males, patients older than 25, and patients with TT-TG lower than 15mm, and therefore might not be referred for an MRI scan. Thus, we recommend a strict physical examination, awareness to the high prevalence of additional pathological findings, and to consider performing an MRI in all patients after LPD.

Keywords: additional findings, lateral patellar dislocation (LPD), MRI scan, traumatic patellar dislocation, cruciate ligaments injuries, menisci injuries, collateral ligaments injuries

Procedia PDF Downloads 146
411 Privatization and Ensuring Accountability in the Provision of Essential Services: A Case of Water in South Africa

Authors: Odufu Ifakachukwu Clifford

Abstract:

Developing country governments are struggling to meet the basic needs and demands of citizens, especially so for the rural poor. With tightly constrained budgets, these governments have followed the lead of developed countries that have sought to restructure public service delivery through privatization, contracting out, public-private partnerships, and similar reforms. Such reforms in service delivery are generally welcomed when it is believed that private sector partners are better equipped to provide certain services than are governments. With respect to basic and essential services, however, a higher degree of uncertainty and apprehension exists as the focus shifts from simply minimizing the costs of delivering services to broadening access to all citizens. The constitution stipulates that everyone has the right to have access to sufficient food and water. Affordable and/or subsidized water, then, is not a privilege but a basic right of all citizens. Citizens elect political representatives to serve in office, with their sole mandate being to provide for the needs of the citizenry. As governments pass on some amount of responsibility for service delivery to private businesses, these governments must be able to exercise control in order to account to the people for the work done by private partners. This paper examines the legislative and policy frameworks as well as the environment within which PPPs take place in South Africa and the extent to which accountability can be strengthened in this environment. Within the aforementioned backdrop of PPPs and accountability, the constricted focus area of the paper aims to assess the extent to which the provision of clean and safe consumable water in South Africa is sustainable, cost-effective in terms of provision, and affordable to all.

Keywords: privatisation, accountability, essential services, government

Procedia PDF Downloads 65
410 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
409 Investigating the Feasibility of Promoting Safety in Civil Projects by BIM System Using Fuzzy Logic

Authors: Mohammad Reza Zamanian

Abstract:

The construction industry has always been recognized as one of the most dangerous available industries, and the statistics of accidents and injuries resulting from it say that the safety category needs more attention and the arrival of up-to-date technologies in this field. Building information modeling (BIM) is one of the relatively new and applicable technologies in Iran, that the necessity of using it is increasingly evident. The main purposes of this research are to evaluate the feasibility of using this technology in the safety sector of construction projects and to evaluate the effectiveness and operationality of its various applications in this sector. These applications were collected and categorized after reviewing past studies and researches then a questionnaire based on Delphi method criteria was presented to 30 experts who were thoroughly familiar with modeling software and safety guidelines. After receiving and exporting the answers to SPSS software, the validity and reliability of the questionnaire were assessed to evaluate the measuring tools. Fuzzy logic is a good way to analyze data because of its flexibility in dealing with ambiguity and uncertainty issues, and the implementation of the Delphi method in the fuzzy environment overcomes the uncertainties in decision making. Therefore, this method was used for data analysis, and the results indicate the usefulness and effectiveness of BIM in projects and improvement of safety status at different stages of construction. Finally, the applications and the sections discussed were ranked in order of priority for efficiency and effectiveness. Safety planning is considered as the most influential part of the safety of BIM among the four sectors discussed, and planning for the installation of protective fences and barriers to prevent falls and site layout planning with a safety approach based on a 3D model are the most important applications of BIM among the 18 applications to improve the safety of construction projects.

Keywords: building information modeling, safety of construction projects, Delphi method, fuzzy logic

Procedia PDF Downloads 167
408 Comparing Field Displacement History with Numerical Results to Estimate Geotechnical Parameters: Case Study of Arash-Esfandiar-Niayesh under Passing Tunnel, 2.5 Traffic Lane Tunnel, Tehran, Iran

Authors: A. Golshani, M. Gharizade Varnusefaderani, S. Majidian

Abstract:

Underground structures are of those structures that have uncertainty in design procedures. That is due to the complexity of soil condition around. Under passing tunnels are also such affected structures. Despite geotechnical site investigations, lots of uncertainties exist in soil properties due to unknown events. As results, it possibly causes conflicting settlements in numerical analysis with recorded values in the project. This paper aims to report a case study on a specific under passing tunnel constructed by New Austrian Tunnelling Method in Iran. The intended tunnel has an overburden of about 11.3m, the height of 12.2m and, the width of 14.4m with 2.5 traffic lane. The numerical modeling was developed by a 2D finite element program (PLAXIS Version 8). Comparing displacement histories at the ground surface during the entire installation of initial lining, the estimated surface settlement was about four times the field recorded one, which indicates that some local unknown events affect that value. Also, the displacement ratios were in a big difference between the numerical and field data. Consequently, running several numerical back analyses using laboratory and field tests data, the geotechnical parameters were accurately revised to match with the obtained monitoring data. Finally, it was found that usually the values of soil parameters are conservatively low-estimated up to 40 percent by typical engineering judgment. Additionally, it could be attributed to inappropriate constitutive models applied for the specific soil condition.

Keywords: NATM, surface displacement history, numerical back-analysis, geotechnical parameters

Procedia PDF Downloads 194
407 Current Methods for Drug Property Prediction in the Real World

Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh

Abstract:

Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.

Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning

Procedia PDF Downloads 81
406 Time Driven Activity Based Costing Capability to Improve Logistics Performance: Application in Manufacturing Context

Authors: Siham Rahoui, Amr Mahfouz, Amr Arisha

Abstract:

In a highly competitive environment characterised by uncertainty and disruptions, such as the recent COVID-19 outbreak, supply chains (SC) face the challenge of maintaining their cost at minimum levels while continuing to provide customers with high-quality products and services. More importantly, businesses in such an economic context strive to maintain survival by keeping the cost of undertaken activities (such as logistics) low and in-house. To do so, managers need to understand the costs associated with different products and services in order to have a clear vision of the SC performance, maintain profitability levels, and make strategic decisions. In this context, SC literature explored different costing models that sought to determine the costs of undertaking supply chain-related activities. While some cost accounting techniques have been extensively explored in the SC context, more contributions are needed to explore the potential of time driven activity-based costing (TDABC). More specifically, more applications are needed in the manufacturing context of the SC, where the debate is ongoing. The aim of the study is to assess the capability of the technique to assess the operational performance of the logistics function. Through a case study methodology applied to a manufacturing company operating in the automotive industry, TDABC evaluates the efficiency of the current configuration and its logistics processes. The study shows that monitoring the process efficiency and cost efficiency leads to strategic decisions that contributed to improve the overall efficiency of the logistics processes.

Keywords: efficiency, operational performance, supply chain costing, time driven activity based costing

Procedia PDF Downloads 165
405 The Shannon Entropy and Multifractional Markets

Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese

Abstract:

Introduced by Shannon in 1948 in the field of information theory as the average rate at which information is produced by a stochastic set of data, the concept of entropy has gained much attention as a measure of uncertainty and unpredictability associated with a dynamical system, eventually depicted by a stochastic process. In particular, the Shannon entropy measures the degree of order/disorder of a given signal and provides useful information about the underlying dynamical process. It has found widespread application in a variety of fields, such as, for example, cryptography, statistical physics and finance. In this regard, many contributions have employed different measures of entropy in an attempt to characterize the financial time series in terms of market efficiency, market crashes and/or financial crises. The Shannon entropy has also been considered as a measure of the risk of a portfolio or as a tool in asset pricing. This work investigates the theoretical link between the Shannon entropy and the multifractional Brownian motion (mBm), stochastic process which recently is the focus of a renewed interest in finance as a driving model of stochastic volatility. In particular, after exploring the current state of research in this area and highlighting some of the key results and open questions that remain, we show a well-defined relationship between the Shannon (log)entropy and the memory function H(t) of the mBm. In details, we allow both the length of time series and time scale to change over analysis to study how the relation modify itself. On the one hand, applications are developed after generating surrogates of mBm trajectories based on different memory functions; on the other hand, an empirical analysis of several international stock indexes, which confirms the previous results, concludes the work.

Keywords: Shannon entropy, multifractional Brownian motion, Hurst–Holder exponent, stock indexes

Procedia PDF Downloads 110
404 Carbohydrate-Based Recommendations as a Basis for Dietary Guidelines

Authors: A. E. Buyken, D. J. Mela, P. Dussort, I. T. Johnson, I. A. Macdonald, A. Piekarz, J. D. Stowell, F. Brouns

Abstract:

Recently a number of renewed dietary guidelines have been published by various health authorities. The aim of the present work was 1) to review the processes (systematic approach/review, inclusion of public consultation) and methodological approaches used to identify and select the underpinning evidence base for the established recommendations for total carbohydrate (CHO), fiber and sugar consumption, and 2) examine how differences in the methods and processes applied may have influenced the final recommendations. A search of WHO, US, Canada, Australia and European sources identified 13 authoritative dietary guidelines with the desired detailed information. Each of these guidelines was evaluated for its scientific basis (types and grading of the evidence) and the processes by which the guidelines were developed Based on the data retrieved the following conclusions can be drawn: 1) Generally, a relatively high total CHO and fiber intake and limited intake of sugars (added or free) is recommended. 2) Even where recommendations are quite similar, the specific, justifications for quantitative/qualitative recommendations differ across authorities. 3) Differences appear to be due to inconsistencies in underlying definitions of CHO exposure and in the concurrent appraisal of CHO-providing foods and nutrients as well the choice and number of health outcomes selected for the evidence appraisal. 4) Differences in the selected articles, time frames or data aggregation method appeared to be of rather minor influence. From this assessment, the main recommendations are for: 1) more explicit quantitative justifications for numerical guidelines and communication of uncertainty; and 2) greater international harmonization, particularly with regard to underlying definitions of exposures and range of relevant nutrition-related outcomes.

Keywords: carbohydrates, dietary fibres, dietary guidelines, recommendations, sugars

Procedia PDF Downloads 257
403 The Spread of Drugs in Higher Education

Authors: Wantana Amatariyakul, Chumnong Amatariyakul

Abstract:

The research aims to examine the spread of drugs in higher education, especially amphetamine which is rapidly increasing in Thai society, its causes and effects, including the sociological perspective, in order to explain, prevent, control, and solve the problems. The students who participated in this research are regular students of Rajamangala University of Technology Isan, Khon Kaen Campus. The data were collected using questionnaires, group discussions, and in-depth interviews. The quantity data were analyzed using frequency, percentage, mean and standard deviation and using content analysis to analyzed quality data. The result of the study showed that the students had the results of examination on level of knowledge and understanding on drug abuse projected that the majority of sample group attained their knowledge on drug abuse respectively. Despite their uncertainty, the majority of samples presumed that amphetamine, marijuana and grathom (Mitragyna Speciosa Korth) would most likely be abused. The reason for first drug abuse is because they want to try and their friends convince them, as well as, they want to relax or solve the problems in life, respectively. The bad effects appearing to the drug addicts shows that their health deteriorates or worsens, as well as, they not only lose their money but also face with worse mental states. The reasons that respondents tried to avoid using drugs or refused drugs offered by friends were: not wanting to disappoint or upset their family members, fear of rejection by family members, afraid of being arrested by the police, afraid of losing their educational opportunity and ruining their future respectively. Students therefore defended themselves against drug addiction by refusing to try all drugs. Besides this, the knowledge about the danger and the harm of drugs persuaded them to stay away from drugs.

Keywords: drugs, higher education, drug addiction, spread of drugs

Procedia PDF Downloads 319
402 Qualitative Case Studies in Reading Specialist Education

Authors: Carol Leroy

Abstract:

This presentation focuses on the analysis qualitative case studies in the graduate education of reading specialists. The presentation describes the development and application of an integrated conceptual framework for reading specialist education, drawing on Robert Stake’s work on case study research, Kenneth Zeichner’s work on professional learning, and various tools for reading assessment (e.g. the Qualitative Reading Inventory). Social constructivist theory is used to provide intersecting links between the various influences on the processes used to assess and teaching reading within the case study framework. Illustrative examples are described to show the application of the framework in reading specialist education in a teaching clinic at a large urban university. Central to education of reading specialists in this teaching clinic is the collection, analysis and interpretation of data for the design and implementation of reading and writing programs for struggling readers and writers. The case study process involves the integrated interpretation of data, which is central to qualitative case study inquiry. An emerging theme in this approach to graduate education is the ambiguity and uncertainty that governs work with the adults and children who attend the clinic for assistance. Tensions and contradictions are explored insofar as they reveal overlapping but intersecting frameworks for case study analysis in the area of literacy education. An additional theme is the interplay of multiple layers of data with a resulting depth that goes beyond the practical need of the client and toward the deeper pedagogical growth of the reading specialist. The presentation makes a case for the value of qualitative case studies in reading specialist education. Further, the use of social constructivism as a unifying paradigm provides a robustness to the conceptual framework as a tool for understanding the pedagogy that is involved.

Keywords: assessment, case study, professional education, reading

Procedia PDF Downloads 458
401 Digital Platforms: Creating Value through Network Effects under Pandemic Conditions

Authors: S. Łęgowik-Świącik

Abstract:

This article is a contribution to the research into the determinants of value creation via digital platforms in variable operating conditions. The dynamics of the market environment caused by the COVID-19 pandemic have made enterprises built on digital platforms financially successful. While many classic companies are struggling with the uncertainty of conducting a business and difficulties in the process of value creation, digital platforms create value by modifying the existing business model to meet the changing needs of customers. Therefore, the objective of this publication is to understand and explain the relationship between value creation and the conversion of the business model built on digital platforms under pandemic conditions. The considerations relating to the conceptual framework and determining the research objective allowed for adopting the hypothesis, assuming that the processes of value creation are evolving, and the measurement of these processes allows for the protection of value created and enables its growth in changing circumstances. The research methods, such as critical literature analysis and case study, were applied to accomplish the objective pursued and verify the hypothesis formulated. The empirical research was carried out based on the data from enterprises listed on the Nasdaq Stock Exchange: Amazon, Alibaba, and Facebook. The research period was the years 2018-2021. The surveyed enterprises were chosen based on the targeted selection. The problem discussed is important and current since the lack of in-depth theoretical research results in few attempts to identify the determinants of value creation via digital platforms. The above arguments led to an attempt at theoretical analysis and empirical research to fill in the gap perceived by deepening the understanding of the process of value creation through network effects via digital platforms under pandemic conditions.

Keywords: business model, digital platforms, enterprise management, pandemic conditions, value creation process

Procedia PDF Downloads 128
400 Risk Issues for Controlling Floods through Unsafe, Dual Purpose, Gated Dams

Authors: Gregory Michael McMahon

Abstract:

Risk management for the purposes of minimizing the damages from the operations of dams has met with opposition emerging from organisations and authorities, and their practitioners. It appears that the cause may be a misunderstanding of risk management arising from exchanges that mix deterministic thinking with risk-centric thinking and that do not separate uncertainty from reliability and accuracy from probability. This paper sets out those misunderstandings that arose from dam operations at Wivenhoe in 2011, using a comparison of outcomes that have been based on the methodology and its rules and those that have been operated by applying misunderstandings of the rules. The paper addresses the performance of one risk-centric Flood Manual for Wivenhoe Dam in achieving a risk management outcome. A mixture of engineering, administrative, and legal factors appear to have combined to reduce the outcomes from the risk approach. These are described. The findings are that a risk-centric Manual may need to assist administrations in the conduct of scenario training regimes, in responding to healthy audit reporting, and in the development of decision-support systems. The principal assistance needed from the Manual, however, is to assist engineering and the law to a good understanding of how risks are managed – do not assume that risk management is understood. The wider findings are that the critical profession for decision-making downstream of the meteorologist is not dam engineering or hydrology, or hydraulics; it is risk management. Risk management will provide the minimum flood damage outcome where actual rainfalls match or exceed forecasts of rainfalls, that therefore risk management will provide the best approach for the likely history of flooding in the life of a dam, and provisions made for worst cases may be state of the art in risk management. The principal conclusion is the need for training in both risk management as a discipline and also in the application of risk management rules to particular dam operational scenarios.

Keywords: risk management, flood control, dam operations, deterministic thinking

Procedia PDF Downloads 87
399 Effect of Islamic Finance on Jobs Generation in Punjab, Pakistan

Authors: B. Ashraf, A. M. Malik

Abstract:

The study was accomplished at the Department of Economics and Agriculture Economics, Pir Mahar Ali Shah ARID Agriculture University, Punjab, Pakistan during 2013-16 with a purpose to discover the effect of Islamic finance/banking on employment in Punjab, Pakistan. Islamic banking system is sub-component of conventional banking system in various countries of the world; however, in Pakistan, it has been established as a separate Islamic banking system. The Islamic banking operates under the doctrine of Shariah. It is claimed that the referred banking is free of interest (Riba) and addresses the philosophy and basic values of Islam in finance that reduces the factors of uncertainty, risk and others speculative activities. Two Islamic bank’s; Meezan Bank Limited (Pakistan) and Al-Baraka Bank Limited (Pakistan) from North Punjab (Bahawalnagar) and central Punjab (Lahore) west Punjab (Gujrat), Pakistan were randomly selected for the conduct of research. A total of 206 samples were collected from the define areas and banks through questionnaire. The data was analyzed by using the Statistical Package for Social Sciences (SPSS) version 21.0. Multiple linear regressions were applied to prove the hypothesis. The results revealed that the assets formation had significant positive; whereas, the technology, length of business (experience) and bossiness size had significant negative impact with employment generation in Islamic finance/banking in Punjab, Pakistan. This concludes that the employment opportunities may be created in the country by extending the finance to business/firms to start new business and increase the Public awareness by the Islamic banks through intensive publicity. However; Islamic financial institutions may be encouraged by Government as it enhances the employment in the country.

Keywords: assets formation, borrowers, employment generation, Islamic banks, Islamic finance

Procedia PDF Downloads 325
398 Analysis of Organizational Hybrid Agile Methods Environments: Frameworks, Benefits, and Challenges

Authors: Majid Alsubaie, Hamed Sarbazhosseini

Abstract:

Many working environments have experienced increased uncertainty due to the fast-moving and unpredictable world. IT systems development projects, in particular, face several challenges because of their rapidly changing environments and emerging technologies. Information technology organizations within these contexts adapt systems development methodology and new software approaches to address this issue. One of these methodologies is the Agile method, which has gained huge attention in recent years. However, due to failure rates in IT projects, there is an increasing demand for the use of hybrid Agile methods among organizations. The scarce research in the area means that organizations do not have solid evidence-based knowledge for the use of hybrid Agile. This research was designed to provide further insights into the development of hybrid Agile methods within systems development projects, including how frameworks and processes are used and what benefits and challenges are gained and faced as a result of hybrid Agile methods. This paper presents how three organizations (two government and one private) use hybrid Agile methods in their Agile environments. The data was collected through interviews and a review of relevant documents. The results indicate that these organizations do not predominantly use pure Agile. Instead, they are waterfall organizations by virtue of systems nature and complexity, and Agile is used underneath as the delivery model. Prince2 Agile framework, SAFe, Scrum, and Kanban were the identified models and frameworks followed. This study also found that customer satisfaction and the ability to build quickly are the most frequently perceived benefits of using hybrid Agile methods. In addition, team resistance and scope changes are the common challenges identified by research participants in their working environments. The findings can help to understand Agile environmental conditions and projects that can help get better success rates and customer satisfaction.

Keywords: agile, hybrid, IT systems, management, success rate, technology

Procedia PDF Downloads 108
397 A Photographic Look on the Socio-Educational Inclusion of Young Refugees and Asylum-Seekers

Authors: Mara Gabrielli, Jordi Pamies Rovira

Abstract:

From a theoretical and interdisciplinary approach to visual ethnography and visual anthropology, this small scale, in-depth study explores the potential of photography as a participatory ethnographic method for a deep-understanding of the socio-educational integration of young refugees and asylum-seekers in the host society as regards their daily experiences, their needs, desires, expectations, and future goals. Qualitative data is collected by the author by observing 12 young participants in the age group 12-24 years per week for 12 months. The data consists of field notes, participatory observation, in-depth interviews with professionals, and the use of visual participatory ethnographic methods. Therefore, the young participants build their stories through the implementation of two participatory photographic methods - the 'photo-diary' and the 'photo-elicitation' - that permit them to analyse and narrate their social and educational experiences from their perspectives, thus collaborating in the construction of knowledge during the different stages of the research. Preliminary findings show the high resilience and social adaptability of young refugees and asylum-seekers to achieve their goals and overcome structural and socio-cultural barriers. However, the uncertainty of their administrative situation during the asylum submission and the lack of specific resources might impact negatively on their educational pathways and the transition to the labour market. Finally, this study also highlights the benefits of participatory photographic methods in ethnographic research, which impacts positively the well-being of these young people, helps them to develop critical thinking, and it also allows them to access information more respectfully when narrating painful experiences.

Keywords: photo-diary, photo-elicitation, resilience, strategies, visual methodologies, young refugees and asylum seekers

Procedia PDF Downloads 119
396 Predicting Ecological Impacts of Sea-Level Change on Coastal Conservation Areas in India

Authors: Mohammad Zafar-ul Islam, Shaily Menon, Xingong Li, A. Townsend Peterson

Abstract:

In addition to the mounting empirical data on direct implications of climate change for natural and human systems, evidence is increasing for other, indirect climate change phenomena such as sea-level rise. Rising sea levels and associated marine intrusion into terrestrial environments are predicted to be among the most serious eventual consequences of climate change. The many complex and interacting factors affecting sea levels create considerable uncertainty in sea-level rise projections: conservative estimates are on the order of 0.5-1.0 m globally, while other estimates are much higher, approaching 6 m. Marine intrusion associated with 1– 6 m sea-level rise will impact species and habitats in coastal ecosystems severely. Examining areas most vulnerable to such impacts may allow design of appropriate adaptation and mitigation strategies. We present an overview of potential effects of 1 and 6 m sea level rise for coastal conservation areas in the Indian Subcontinent. In particular, we examine the projected magnitude of areal losses in relevant biogeographic zones, ecoregions, protected areas (PAs), and Important Bird Areas (IBAs). In addition, we provide a more detailed and quantitative analysis of likely effects of marine intrusion on 22 coastal PAs and IBAs that provide critical habitat for birds in the form of breeding areas, migratory stopover sites, and overwintering habitats. Several coastal PAs and IBAs are predicted to experience higher than 50% losses to marine intrusion. We explore consequences of such inundation levels on species and habitat in these areas.

Keywords: sea-level change, coastal inundation, marine intrusion, biogeographic zones, ecoregions, protected areas, important bird areas, adaptation, mitigation

Procedia PDF Downloads 257
395 Quantifying Wave Attenuation over an Eroding Marsh through Numerical Modeling

Authors: Donald G. Danmeier, Gian Marco Pizzo, Matthew Brennan

Abstract:

Although wetlands have been proposed as a green alternative to manage coastal flood hazards because of their capacity to adapt to sea level rise and provision of multiple ecological and social co-benefits, they are often overlooked due to challenges in quantifying the uncertainty and naturally, variability of these systems. This objective of this study was to quantify wave attenuation provided by a natural marsh surrounding a large oil refinery along the US Gulf Coast that has experienced steady erosion along the shoreward edge. The vegetation module of the SWAN was activated and coupled with a hydrodynamic model (DELFT3D) to capture two-way interactions between the changing water level and wavefield over the course of a storm event. Since the marsh response to relative sea level rise is difficult to predict, a range of future marsh morphologies is explored. Numerical results were examined to determine the amount of wave attenuation as a function of marsh extent and the relative contributions from white-capping, depth-limited wave breaking, bottom friction, and flexing of vegetation. In addition to the coupled DELFT3D-SWAN modeling of a storm event, an uncoupled SWAN-VEG model was applied to a simplified bathymetry to explore a larger experimental design space. The wave modeling revealed that the rate of wave attenuation reduces for higher surge but was still significant over a wide range of water levels and outboard wave heights. The results also provide insights to the minimum marsh extent required to fully realize the potential wave attenuation so the changing coastal hazards can be managed.

Keywords: green infrastructure, wave attenuation, wave modeling, wetland

Procedia PDF Downloads 132
394 An Investigation of Crop Diversity’s Impact on Income Risk of Selected Crops

Authors: Saeed Yazdani, Sima Mohamadi Amidabadi, Amir Mohamadi Nejad, Farahnaz Nekoofar

Abstract:

As a result of uncertainty and doubts about the quantity of agricultural products, greater significance has been attached to risk management in the agricultural sector. Normally, farmers seek to minimize risks, and crop diversity has always been a means to reduce risk. The study at hand seeks to explore the long-term impact of crop diversity on income risk reduction. The timeframe of the study is 1998 to 2018. Initially, the Herfindahl index was used to estimate crop diversity in different periods, and next, the Hodrick-Prescott filter was applied to estimate income risk both in nominal and real terms. Finally, using the Vector Error Correction Model (VECM), the long-term impact of crop diversity on two modes of risk for the farmer's income has been estimated. Given the long-term pattern’s results, it is evident that in the long-run, crop diversity can reduce income fluctuations in two nominal and real terms. Moreover, results showed that in case the fluctuation shock affects the agricultural income in the short run, to balance out the shock in nominal and real terms, 4 and 3 cycles are needed respectively. In other words, in each cycle, 25% and 33% of the shock impact can be removed, respectively. Thus, as the results of the error correction coefficient showed, policies need to be put in place to prevent income shocks. In case of a shock, they need to be balanced out in a four-year period, taking inflation into account, and in a three-year period irrespective of the inflation and reparative policies such as insurance services should be developed.

Keywords: risk, long-term model, Herfindahl index, time series model, vector error correction model

Procedia PDF Downloads 24
393 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 351
392 Unfolding the Affective Atmospheres during the COVID-19 Pandemic Crisis: The Constitution and Performance of Affective Governance in Taiwan

Authors: Sang-Ju Yu

Abstract:

This paper examines the changing essences and effects of ‘affective atmosphere’ during the COVID-19 pandemic crisis, which have been facilitated and shaped the ‘affective governance’ in Taiwan. Due to long-term uncertainty and unpredictability, the COVID-19 pandemic not only caused unprecedented global crisis but triggered the public’s negative emotional responses. This paper unravels how the shortage of Personal Protective Equipment and the proliferating fake news heightened people’s fear and anxiety and how specific affective atmospheres can be provoked and manipulated to harness emotional appeals of citizens strategically in Taiwan. Through the in-depth interviews with diverse stakeholders involved, it unfolds the dynamics and strategies of affective governance, wherein public emotions and concerns are now given significant consideration in both policy measures and the affective expression of leadership, spatial arrangement, service delivery, and the interaction with citizens. Addressing psychosocial and emotional needs has become the core of crisis response mechanisms suited to dynamic affective atmospheres and pandemic situation. This paper also demonstrates that epidemic prevention and control is not merely the production of neutral or rational policy-making processes, as it is dominated by multiple emotions resulted from unexpected and salient events at different moments. It provides explicit insight into how different prevention scenarios operated effectively through political and affective mobilisation to strengthen emotional bonding and collective identity which energises collective action. Basically, successful affective governance calls for both negative and positive emotions, for both scientific and political decision-making, for both community and bureaucracy, and both quality and efficiency of private–public collaboration.

Keywords: affective atmospheres, affective governance, COVID-19 pandemic, private-public collaboration

Procedia PDF Downloads 94
391 Probabilistic Analysis of Bearing Capacity of Isolated Footing using Monte Carlo Simulation

Authors: Sameer Jung Karki, Gokhan Saygili

Abstract:

The allowable bearing capacity of foundation systems is determined by applying a factor of safety to the ultimate bearing capacity. Conventional ultimate bearing capacity calculations routines are based on deterministic input parameters where the nonuniformity and inhomogeneity of soil and site properties are not accounted for. Hence, the laws of mathematics like probability calculus and statistical analysis cannot be directly applied to foundation engineering. It’s assumed that the Factor of Safety, typically as high as 3.0, incorporates the uncertainty of the input parameters. This factor of safety is estimated based on subjective judgement rather than objective facts. It is an ambiguous term. Hence, a probabilistic analysis of the bearing capacity of an isolated footing on a clayey soil is carried out by using the Monte Carlo Simulation method. This simulated model was compared with the traditional discrete model. It was found out that the bearing capacity of soil was found higher for the simulated model compared with the discrete model. This was verified by doing the sensitivity analysis. As the number of simulations was increased, there was a significant % increase of the bearing capacity compared with discrete bearing capacity. The bearing capacity values obtained by simulation was found to follow a normal distribution. While using the traditional value of Factor of safety 3, the allowable bearing capacity had lower probability (0.03717) of occurring in the field compared to a higher probability (0.15866), while using the simulation derived factor of safety of 1.5. This means the traditional factor of safety is giving us bearing capacity that is less likely occurring/available in the field. This shows the subjective nature of factor of safety, and hence probability method is suggested to address the variability of the input parameters in bearing capacity equations.

Keywords: bearing capacity, factor of safety, isolated footing, montecarlo simulation

Procedia PDF Downloads 187
390 Design of a Fuzzy Expert System for the Impact of Diabetes Mellitus on Cardiac and Renal Impediments

Authors: E. Rama Devi Jothilingam

Abstract:

Diabetes mellitus is now one of the most common non communicable diseases globally. India leads the world with largest number of diabetic subjects earning the title "diabetes capital of the world". In order to reduce the mortality rate, a fuzzy expert system is designed to predict the severity of cardiac and renal problems of diabetic patients using fuzzy logic. Since uncertainty is inherent in medicine, fuzzy logic is used in this research work to remove the inherent fuzziness of linguistic concepts and uncertain status in diabetes mellitus which is the prime cause for the cardiac arrest and renal failure. In this work, the controllable risk factors "blood sugar, insulin, ketones, lipids, obesity, blood pressure and protein/creatinine ratio" are considered as input parameters and the "the stages of cardiac" (SOC)" and the stages of renal" (SORD) are considered as the output parameters. The triangular membership functions are used to model the input and output parameters. The rule base is constructed for the proposed expert system based on the knowledge from the medical experts. Mamdani inference engine is used to infer the information based on the rule base to take major decision in diagnosis. Mean of maximum is used to get a non fuzzy control action that best represent possibility distribution of an inferred fuzzy control action. The proposed system also classifies the patients with high risk and low risk using fuzzy c means clustering techniques so that the patients with high risk are treated immediately. The system is validated with Matlab and is used as a tracking system with accuracy and robustness.

Keywords: Diabetes mellitus, fuzzy expert system, Mamdani, MATLAB

Procedia PDF Downloads 290
389 Exploring Leadership Adaptability in the Private Healthcare Organizations in the UK in Times of Crises

Authors: Sade Ogundipe

Abstract:

The private healthcare sector in the United Kingdom has experienced unprecedented challenges during times of crisis, necessitating effective leadership adaptability. This qualitative study delves into the dynamic landscape of leadership within the sector, particularly during crises, employing the lenses of complexity theory and institutional theory to unravel the intricate mechanisms at play. Through in-depth interviews with 25 various levels of leaders in the UK private healthcare sector, this research explores how leaders in UK private healthcare organizations navigate complex and often chaotic environments, shedding light on their adaptive strategies and decision-making processes during crises. Complexity theory is used to analyze the complicated, volatile nature of healthcare crises, emphasizing the need for adaptive leadership in such contexts. Institutional theory, on the other hand, provides insights into how external and internal institutional pressures influence leadership behavior. Findings from this study highlight the multifaceted nature of leadership adaptability, emphasizing the significance of leaders' abilities to embrace uncertainty, engage in sensemaking, and leverage the institutional environment to enact meaningful changes. Furthermore, this research sheds light on the challenges and opportunities that leaders face when adapting to crises within the UK private healthcare sector. The study's insights contribute to the growing body of literature on leadership in healthcare, offering practical implications for leaders, policymakers, and stakeholders within the UK private healthcare sector. By employing the dual perspectives of complexity theory and institutional theory, this research provides a holistic understanding of leadership adaptability in the face of crises, offering valuable guidance for enhancing the resilience and effectiveness of healthcare leadership within this vital sector.

Keywords: leadership, adaptability, decision-making, complexity, complexity theory, institutional theory, organizational complexity, complex adaptive system (CAS), crises, healthcare

Procedia PDF Downloads 50
388 Disrupted or Discounted Cash Flow: Impact of Digitisation on Business Valuation

Authors: Matthias Haerri, Tobias Huettche, Clemens Kustner

Abstract:

This article discusses the impact of digitization on business valuation. In order to become and remain ‘digital’, investments are necessary whose return on investment (ROI) often remains vague. This uncertainty is contradictory for a valuation, that rely on predictable cash flows, fixed capital structures and the steady state. However digitisation does not make a company valuation impossible, but traditional approaches must be reconsidered. The authors identify four areas that are to be changing: (1) Tools instead of intuition - In the future, company valuation will neither be art nor science, but craft. This does not require intuition, but experience and good tools. Digital evaluation tools beyond Excel will therefore gain in importance. (2) Real-time instead of deadline - At present, company valuations are always carried out on a case-by-case basis and on a specific key date. This will change with the digitalization and the introduction of web-based valuation tools. Company valuations can thus not only be carried out faster and more efficiently, but can also be offered more frequently. Instead of calculating the value for a previous key date, current and real-time valuations can be carried out. (3) Predictive planning instead of analysis of the past - Past data will also be needed in the future, but its use will not be limited to monovalent time series or key figure analyses. With pictures of ‘black swans’ and the ‘turkey illusion’ it was made clear to us that we build forecasts on too few data points of the past and underestimate the power of chance. Predictive planning can help here. (4) Convergence instead of residual value - Digital transformation shortens the lifespan of viable business models. If companies want to live forever, they have to change forever. For the company valuation, this means that the business model valid on the valuation date only has a limited service life.

Keywords: business valuation, corporate finance, digitisation, disruption

Procedia PDF Downloads 133
387 Factors Affecting Entrepreneurial Behavior and Performance of Youth Entrepreneurs in Malaysia

Authors: Mohd Najib Mansor, Nur Syamilah Md. Noor, Abdul Rahim Anuar, Shazida Jan Mohd Khan, Ahmad Zubir Ibrahim, Badariah Hj Din, Abu Sufian Abu Bakar, Kalsom Kayat, Wan Nurmahfuzah Jannah Wan Mansor

Abstract:

This study aimed and focused on the behavior of youth entrepreneurs’ especially entrepreneurial self-efficacy and the performance in micro SMEs in Malaysia. Entrepreneurship development calls for support from various quarters, and mostly the need exists to initiate a youth entrepreneurship culture and drive amongst the youth in the society. Although backed up by the government and non-government organizations, micro-entrepreneurs are still facing challenges which greatly delay their progress, growth and consequently their input towards economic advancement. Micro-entrepreneurs are confronted with unique difficulties such as uncertainty, innovation, and evolution. Reviews on the development of entrepreneurial characteristics such as need for achievement, internal locus of control, risk-taking and innovation and have been recognized as highly associated with entrepreneurial behavior. The data in this study was obtained from the Department of Statistics, Malaysia. A random sampling of 830 respondents was distributed to 14 states that involve of micro-entrepreneurs. The study adopted a quantitative approach whereby a set of questionnaire was used to gather data. Multiple regression analysis was chosen as a method of analysis testing. The result of this study is expected to provide insight into the factor affecting entrepreneurial behavior and performance of youth entrepreneurs in micro SMEs. The finding showed that the Malaysian youth entrepreneurs do not have the entrepreneurial self-efficacy within themselves in order to accomplish greater success in their business venture. The establishment of entrepreneurial schools to allow our youth to be exposed to entrepreneurship from an early age and the development of special training focuses on the creation of business network so that the continuous entrepreneurial culture is crafted.

Keywords: youth entrepreneurs, micro entrepreneurs, entrepreneurial self-efficacy, entrepreneurial performance

Procedia PDF Downloads 303