Search results for: restricted user story modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7088

Search results for: restricted user story modeling

6218 Narrative Therapy as a Way of Terrorist Rehabilitation at Mohammad Bin Naif Counselling and Care Center: A Case Study

Authors: Yasser Almazrua

Abstract:

Terrorism is a multidimensional phenomenon that has increased recently. Many countries started combating terrorism through security forces; however, there has been relatively little attention given to rehabilitation programs for people involved in such terrorism acts. In Saudi Arabia, after facing so many terrorist attacks, they started understanding and countering terrorism differently by establishing Mohammad bin Naif Counselling and Care Center in 2006. The center now is considered one of the top experience centers in the world for terrorist rehabilitation and ideology correction. The center offers different programs such as training, educational, social, art and psychological programs. One of the approaches that have been used by psychological experts at the center is Narrative Therapy. It is a therapeutic approach that focuses on the ability of the client to identify their personal life story. The client during therapy works as a storyteller where he or she gets insight, meaning and better understanding of their own lives. Because each client at the center had a story, it can be better fit method for rehabilitation towards healing and personal development. The case describes a 34-years-old man who was involved in some terrorism activities locally by technically and financially supporting a terrorist group related to Al-Qaida. The beneficiary joined Mohammad bin Naif Counseling and Care Center after serving his sentence. Informed of consent has been given to the beneficiary before starting the therapeutic program. Both qualitative and quantitative data on the beneficiary are collected by self-reporting during the initial session, and by using a psychological measurement. The result found that the beneficiary was not insightful about himself, and he had a high level of repression which relatedly moved him to be targeted for recruitment in the terrorist group. With rehabilitation and by using the therapeutic approach, the beneficiary improved on the level of insight, specifically about himself and also about the experience. This case illustrates the importance of considering the effect of Narrative Therapy in terrorist rehabilitation programs.

Keywords: narrative therapy, rehabilitation, Saudi Arabia, terrorism

Procedia PDF Downloads 296
6217 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema

Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy

Abstract:

Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.

Keywords: natural language processing, natural language interfaces, human computer interaction, end user development, dialog systems, data recognition, spreadsheet

Procedia PDF Downloads 313
6216 The Projection of Breaking Sexual Repression: Modern Women in Indian Fictions in Marathi

Authors: Suresh B. Shinde

Abstract:

The present paper examined the selective fictional works of the Indian writers in the Marathi language which reflects the gradual erosion of sexual repression of modern women characters. Furthermore, the study employed the attitudinal survey method to counter check the fictional reality of the Indian women in real life in the modern era. The Indian writers in an early stage from the pre and post-independence period pictured the women characters such as sexually suppressed and adherence to male sexual dominance. Gangadhar Gadgil a ‘Sahitya Akademi’ award winner writer in his story ‘Ek Manus’ shown that a husband, abnormally exploited her wife. G. A. Kulkarni a ‘Sahitya Akademi’ award winner writer shown that a young lady character suppressed her proposal of marriage with she loved due to the social pressure and conventions. Arvind Gokhale and Kamal Desai have also pictured lady characters who suppressed their sexual urges even they were highly educated. In the late 20th century and early 21st century, the trends of Marathi literature is dramatically changed accordingly the women fictions. Gouri Deshpande, the popular story writer, penetrates modern woman very clearly. Two lady characters are living happily together accepting revolts of society for a sexual relationship. Meghna Pethe, another well-known writer in her story, depicts a women character who was lived with her friend as live-in-relationship and enjoying the erotic sex. How so far, it was seen that the pre and post-independence women fictions are gradually changed regarding her sexually urges. This reality leads to design the survey research design in which 100 college girls and 100 middle-aged women were surveyed with sexual attitude scale and feminist identity test. It was hypothesized that the today's college girls would higher on sexual attitude and feminist identity than middle-aged women. Moreover, it was also assumed that sexual attitude and feminist identity would have a strong positive correlation. The obtained data analyzed through Students’ test and Pearson Product Moment Correlation (PPMC). The results reveal that the today's college girls are having a high level of sexual attitude and feminist identity than middle-aged women. Results also reveal that sexual attitude and feminist identity have a strongest positive correlation. How so far the survey research has provided the reality ground to the modern women in Indian fictions in Marathi literature. The findings of the research have been discussed accordingly the gender equality as well as psychological perspectives.

Keywords: sexual repression, women in Indian fictions, sexual attitude, feminist perspectives

Procedia PDF Downloads 333
6215 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling

Authors: Md Yeasin, Ranjit Kumar Paul

Abstract:

In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.

Keywords: agriculture, casual inference, machine learning, recommendation system

Procedia PDF Downloads 81
6214 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.

Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability

Procedia PDF Downloads 107
6213 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin

Authors: Hillary Mwongyera

Abstract:

The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.

Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring

Procedia PDF Downloads 533
6212 Emotion Oriented Students' Opinioned Topic Detection for Course Reviews in Massive Open Online Course

Authors: Zhi Liu, Xian Peng, Monika Domanska, Lingyun Kang, Sannyuya Liu

Abstract:

Massive Open education has become increasingly popular among worldwide learners. An increasing number of course reviews are being generated in Massive Open Online Course (MOOC) platform, which offers an interactive feedback channel for learners to express opinions and feelings in learning. These reviews typically contain subjective emotion and topic information towards the courses. However, it is time-consuming to artificially detect these opinions. In this paper, we propose an emotion-oriented topic detection model to automatically detect the students’ opinioned aspects in course reviews. The known overall emotion orientation and emotional words in each review are used to guide the joint probabilistic modeling of emotion and aspects in reviews. Through the experiment on real-life review data, it is verified that the distribution of course-emotion-aspect can be calculated to capture the most significant opinioned topics in each course unit. This proposed technique helps in conducting intelligent learning analytics for teachers to improve pedagogies and for developers to promote user experiences.

Keywords: Massive Open Online Course (MOOC), course reviews, topic model, emotion recognition, topical aspects

Procedia PDF Downloads 262
6211 Co-Design of Accessible Speech Recognition for Users with Dysarthric Speech

Authors: Elizabeth Howarth, Dawn Green, Sean Connolly, Geena Vabulas, Sara Smolley

Abstract:

Through the EU Horizon 2020 Nuvoic Project, the project team recruited 70 individuals in the UK and Ireland to test the Voiceitt speech recognition app and provide user feedback to developers. The app is designed for people with dysarthric speech, to support communication with unfamiliar people and access to speech-driven technologies such as smart home equipment and smart assistants. Participants with atypical speech, due to a range of conditions such as cerebral palsy, acquired brain injury, Down syndrome, stroke and hearing impairment, were recruited, primarily through organisations supporting disabled people. Most had physical or learning disabilities in addition to dysarthric speech. The project team worked with individuals, their families and local support teams, to provide access to the app, including through additional assistive technologies where needed. Testing was user-led, with participants asked to identify and test use cases most relevant to their daily lives over a period of three months or more. Ongoing technical support and training were provided remotely and in-person throughout the testing period. Structured interviews were used to collect feedback on users' experiences, with delivery adapted to individuals' needs and preferences. Informal feedback was collected through ongoing contact between participants, their families and support teams and the project team. Focus groups were held to collect feedback on specific design proposals. User feedback shared with developers has led to improvements to the user interface and functionality, including faster voice training, simplified navigation, the introduction of gamification elements and of switch access as an alternative to touchscreen access, with other feature requests from users still in development. This work offers a case-study in successful and inclusive co-design with the disabled community.

Keywords: co-design, assistive technology, dysarthria, inclusive speech recognition

Procedia PDF Downloads 111
6210 Exploratory Study of Individual User Characteristics That Predict Attraction to Computer-Mediated Social Support Platforms and Mental Health Apps

Authors: Rachel Cherner

Abstract:

Introduction: The current study investigates several user characteristics that may predict the adoption of digital mental health supports. The extent to which individual characteristics predict preferences for functional elements of computer-mediated social support (CMSS) platforms and mental health (MH) apps is relatively unstudied. Aims: The present study seeks to illuminate the relationship between broad user characteristics and perceived attraction to CMSS platforms and MH apps. Methods: Participants (n=353) were recruited using convenience sampling methods (i.e., digital flyers, email distribution, and online survey forums). The sample was 68% male, and 32% female, with a mean age of 29. Participant racial and ethnic breakdown was 75% White, 7%, 5% Asian, and 5% Black or African American. Participants were asked to complete a 25-minute self-report questionnaire that included empirically validated measures assessing a battery of characteristics (i.e., subjective levels of anxiety/depression via PHQ-9 (Patient Health Questionnaire 9-item) and GAD-7 (Generalized Anxiety Disorder 7-item); attachment style via MAQ (Measure of Attachment Qualities); personality types via TIPI (The 10-Item Personality Inventory); growth mindset and mental health-seeking attitudes via GM (Growth Mindset Scale) and MHSAS (Mental Help Seeking Attitudes Scale)) and subsequent attitudes toward CMSS platforms and MH apps. Results: A stepwise linear regression was used to test if user characteristics significantly predicted attitudes towards key features of CMSS platforms and MH apps. The overall regression was statistically significant (R² =.20, F(1,344)=14.49, p<.000). Conclusion: This original study examines the clinical and sociocultural factors influencing decisions to use CMSS platforms and MH apps. Findings provide valuable insight for increasing adoption and engagement with digital mental health support. Fostering a growth mindset may be a method of increasing participant/patient engagement. In addition, CMSS platforms and MH apps may empower under-resourced and minority groups to gain basic access to mental health support. We do not assume this final model contains the best predictors of use; this is merely a preliminary step toward understanding the psychology and attitudes of CMSS platform/MH app users.

Keywords: computer-mediated social support platforms, digital mental health, growth mindset, health-seeking attitudes, mental health apps, user characteristics

Procedia PDF Downloads 92
6209 Precise Spatially Selective Photothermolysis Skin Treatment by Multiphoton Absorption

Authors: Yimei Huang, Harvey Lui, Jianhua Zhao, Zhenguo Wu, Haishan Zeng

Abstract:

Conventional laser treatment of skin diseases and cosmetic surgery is based on the principle of one-photon absorption selective photothermolysis which relies strongly on the difference in the light absorption between the therapeutic target and its surrounding tissue. However, when the difference in one-photon absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To overcome this problem, we developed a spatially selective photothermolysis method based on multiphoton absorption in which the heat generation is restricted to the focal point of a tightly focused near-infrared femtosecond laser beam aligned with the target of interest. A multimodal optical microscope with co-registered reflectance confocal imaging (RCM), two-photon fluorescence imaging (TPF), and second harmonic generation imaging (SHG) capabilities was used to perform and monitor the spatially selective photothermolysis. Skin samples excised from the shaved backs of euthanized NODSCID mice were used in this study. Treatments were performed by focusing and scaning the laser beam in the dermis with a 50µm×50µm target area. Treatment power levels of 200 mW to 400 mW and modulated pulse trains of different duration and period were experimented. Different treatment parameters achieved different degrees of spatial confinement of tissue alterations as visualized by 3-D RCM/TPF/SHG imaging. At 200 mW power level, 0.1 s pulse train duration, 4.1 s pulse train period, the tissue damage was found to be restricted precisely to the 50µm×50µm×10µm volume, where the laser focus spot had scanned through. The overlying epidermis/dermis tissue and the underneath dermis tissue were intact although there was light passing through these regions.

Keywords: multiphoton absorption photothermolysis, reflectance confocal microscopy, second harmonic generation microscopy, spatially selective photothermolysis, two-photon fluorescence microscopy

Procedia PDF Downloads 515
6208 A Technical Solution for Micro Mixture with Micro Fluidic Oscillator in Chemistry

Authors: Brahim Dennai, Abdelhak Bentaleb, Rachid Khelfaoui, Asma Abdenbi

Abstract:

The diffusion flux given by the Fick’s law characterizethe mixing rate. A passive mixing strategy is proposed to enhance mixing of two fluids through perturbed jet low. A numerical study of passive mixers has been presented. This paper is focused on the modeling of a micro-injection systems composed of passive amplifier without mechanical part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design based on a monostable fluidic amplifier is proposed. The characteristic size of the channels is generally about a few hundred of microns. The numerical results indicate that the mixing performance can be as high as 99 % within a typical mixing chamber of 0.20 mm diameter inlet and 2.0 mm distance of nozzle - spliter. In addition, the results confirm that self-rotation in the circular mixer significantly enhances the mixing performance. The novel micro mixing method presented in this study provides a simple solution to mixing problems in microsystem for application in chemistry.

Keywords: micro oscillator, modeling, micro mixture, diffusion, size effect, chemical equation

Procedia PDF Downloads 433
6207 Analytical Modeling of Drain Current for DNA Biomolecule Detection in Double-Gate Tunnel Field-Effect Transistor Biosensor

Authors: Ashwani Kumar

Abstract:

Abstract- This study presents an analytical modeling approach for analyzing the drain current behavior in Tunnel Field-Effect Transistor (TFET) biosensors used for the detection of DNA biomolecules. The proposed model focuses on elucidating the relationship between the drain current and the presence of DNA biomolecules, taking into account the impact of various device parameters and biomolecule characteristics. Through comprehensive analysis, the model offers insights into the underlying mechanisms governing the sensing performance of TFET biosensors, aiding in the optimization of device design and operation. A non-local tunneling model is incorporated with other essential models to accurately trace the simulation and modeled data. An experimental validation of the model is provided, demonstrating its efficacy in accurately predicting the drain current response to DNA biomolecule detection. The sensitivity attained from the analytical model is compared and contrasted with the ongoing research work in this area.

Keywords: biosensor, double-gate TFET, DNA detection, drain current modeling, sensitivity

Procedia PDF Downloads 58
6206 Construction of a Supply Chain Model Using the PREVA Method: The Case of Innovative Sargasso Recovery Projects in Ther Lesser Antilles

Authors: Maurice Bilioniere, Katie Lanneau

Abstract:

Suddenly appeared in 2011, invasions of sargasso seaweeds Fluitans and Natans are a climatic hazard which causes many problems in the Caribbean. Faced with the growth and frequency of the phenomenon of massive sargasso stranding on their coasts, the French West Indies are moving towards the path of industrial recovery. In this context of innovative projects, we will analyze the necessary requirements for the management and performance of the supply chain, taking into account the observed volatility of the sargasso input. Our prospective approach will consist in studying the theoretical framework of modeling a hybrid supply chain by coupling the discreet event simulation (DES) with a valuation of the process costs according to the "activity-based costing" method (ABC). The PREVA approach (PRocess EVAluation) chosen for our modeling has the advantage of evaluating the financial flows of the logistic process using an analytical model chained with an action model for the evaluation or optimization of physical flows.

Keywords: sargasso, PREVA modeling, supply chain, ABC method, discreet event simulation (DES)

Procedia PDF Downloads 177
6205 Multiscale Process Modeling of Ceramic Matrix Composites

Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya

Abstract:

Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.

Keywords: digital engineering, finite elements, manufacturing, molecular dynamics

Procedia PDF Downloads 99
6204 Modeling of Crack Growth in Railway Axles under Static Loading

Authors: Zellagui Redouane, Bellaouar Ahmed, Lachi Mohammed

Abstract:

The railway axles are the essential parts in the bogie of train, and its failure creates a big problem in the railway transport; during the work of this parts we noticed a premature deterioration. The aim has been presented a predictive model allowing the identification of the probable causes that are the cause of these premature deterioration. The results are employed for predicting fatigue crack growth in the railway axle, Also we want to present the variation value of stress intensity factor in different positions of elliptical crack tip. The modeling of axle in performed by the SOLID WORKS software and imported into ANSYS.

Keywords: crack growth, static load, railway axle, lifetime

Procedia PDF Downloads 365
6203 Unsupervised Assistive and Adaptative Intelligent Agent in Smart Enviroment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lorenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in a smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore relying on fixed operational models would be inappropriate. This paper presents a study on developing an Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose an Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 564
6202 Co-payment Strategies for Chronic Medications: A Qualitative and Comparative Analysis at European Level

Authors: Pedro M. Abreu, Bruno R. Mendes

Abstract:

The management of pharmacotherapy and the process of dispensing medicines is becoming critical in clinical pharmacy due to the increase of incidence and prevalence of chronic diseases, the complexity and customization of therapeutic regimens, the introduction of innovative and more expensive medicines, the unbalanced relation between expenditure and revenue as well as due to the lack of rationalization associated with medication use. For these reasons, co-payments emerged in Europe in the 70s and have been applied over the past few years in healthcare. Co-payments lead to a rationing and rationalization of user’s access under healthcare services and products, and simultaneously, to a qualification and improvement of the services and products for the end-user. This analysis, under hospital practices particularly and co-payment strategies in general, was carried out on all the European regions and identified four reference countries, that apply repeatedly this tool and with different approaches. The structure, content and adaptation of European co-payments were analyzed through 7 qualitative attributes and 19 performance indicators, and the results expressed in a scorecard, allowing to conclude that the German models (total score of 68,2% and 63,6% in both elected co-payments) can collect more compliance and effectiveness, the English models (total score of 50%) can be more accessible, and the French models (total score of 50%) can be more adequate to the socio-economic and legal framework. Other European models did not show the same quality and/or performance, so were not taken as a standard in the future design of co-payments strategies. In this sense, we can see in the co-payments a strategy not only to moderate the consumption of healthcare products and services, but especially to improve them, as well as a strategy to increment the value that the end-user assigns to these services and products, such as medicines.

Keywords: clinical pharmacy, co-payments, healthcare, medicines

Procedia PDF Downloads 251
6201 Unsupervised Assistive and Adaptive Intelligent Agent in Smart Environment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lourenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore, relying on fixed operational models would be inappropriate. This paper presents a study on developing a Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose a Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 645
6200 Modeling in the Middle School: Eighth-Grade Students’ Construction of the Summer Job Problem

Authors: Neslihan Sahin Celik, Ali Eraslan

Abstract:

Mathematical model and modeling are one of the topics that have been intensively discussed in recent years. In line with the results of the PISA studies, researchers in many countries have begun to question how much students in school-education system are prepared to solve the real-world problems they encounter in their future professional lives. As a result, many mathematics educators have begun to emphasize the importance of new skills and understanding such as constructing, Hypothesizing, Describing, manipulating, predicting, working together for complex and multifaceted problems for success in beyond the school. When students increasingly face this kind of situations in their daily life, it is important to make sure that students have enough experience to work together and interpret mathematical situations that enable them to think in different ways and share their ideas with their peers. Thus, model eliciting activities are one of main tools that help students to gain experiences and the new skills required. This research study was carried on the town center of a big city located in the Black Sea region in Turkey. The participants were eighth-grade students in a middle school. After a six-week preliminary study, three students in an eighth-grade classroom were selected using criterion sampling technique and placed in a focus group. The focus group of three students was videotaped as they worked on a model eliciting activity, the Summer Job Problem. The conversation of the group was transcribed, examined with students’ written work and then qualitatively analyzed through the lens of Blum’s (1996) modeling processing cycle. The study results showed that eighth grade students can successfully work with the model eliciting, develop a model based on the two parameters and review the whole process. On the other hand, they had difficulties to relate parameters to each other and take all parameters into account to establish the model.

Keywords: middle school, modeling, mathematical modeling, summer job problem

Procedia PDF Downloads 339
6199 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization

Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson

Abstract:

A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.

Keywords: FCCU modeling, optimization, oxy-combustion, post-combustion

Procedia PDF Downloads 211
6198 Geospatial Modeling of Dry Snow Avalanches Distribution Using Geographic Information Systems and Remote Sensing: A Case Study of the Šar Mountains (Balkan Peninsula)

Authors: Uroš Durlević, Ivan Novković, Nina Čegar, Stefanija Stojković

Abstract:

Snow avalanches represent one of the most dangerous natural phenomena in mountain regions worldwide. Material and human casualties caused by snow avalanches can be very significant. In this study, using geographic information systems and remote sensing, the natural conditions of the Šar Mountains were analyzed for geospatial modeling of dry slab avalanches. For this purpose, the Fuzzy Analytic Hierarchy Process (FAHP) multi-criteria analysis method was used, within which fifteen environmental criteria were analyzed and evaluated. Based on the existing analyzes and results, it was determined that a significant area of the Šar Mountains is very highly susceptible to the occurrence of dry slab avalanches. The obtained data can be of significant use to local governments, emergency services, and other institutions that deal with natural disasters at the local level. To our best knowledge, this is one of the first research in the Republic of Serbia that uses the FAHP method for geospatial modeling of dry slab avalanches.

Keywords: GIS, FAHP, Šar Mountains, snow avalanches, environmental protection

Procedia PDF Downloads 92
6197 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection

Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay

Abstract:

With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey

Procedia PDF Downloads 122
6196 Exploring the Relationship Between Past and Present Reviews: The Influence of User Generated Content on Future Hotel Guest Experience Perceptions

Authors: Sacha Joseph-Mathews, Leili Javadpour

Abstract:

In the tourism industry, hoteliers spend millions annually on marketing and positioning efforts for their respective hotels, all in an effort to create a specific image in the minds of the consumer. Yet despite extensive efforts to seduce potential hotel guests with sophisticated advertising messages generated by hotel entities, consumers continue to mistrust corporate branding, preferring instead to place their trust in the reviews of their consumer peers. In today’s complex and cluttered marketplace, online reviews can serve as a mediator for consumers who do not have actual knowledge and experiences with the brand, but are in the process of deciding whether or not to engage in a consumption exercise. Traditionally, consumers have used online reviews as a source of comfort and confirmation of a product/service’s positioning. But today, very few customers make any purchase decisions without first researching existing user reviews, making reviews more of a necessity, rather than a luxury in the purchase decision process. The influence of user generated content (UGC) is amplified in the tourism industry; as more than a third of potential hotel guests will not book a room without first reading a review. As corporate branding becomes less relevant and online reviews become more important, how much of the consumer’s stay expectations are being dictated by existing UGC? Moreover, as hotel guest experience a hotel through the lens of an existing review, how much of their stay and in turn their review, would have been influenced by those reviews that they read? Ultimately, there is the potential for UGC to dictate what potential guests will be most critical about, and or most focused on during their stay. If UGC is a stronger influencer in the purchase decision process than corporate branding, doesn’t it have the potential to dictate, the entire stay experience by influencing the expectations of the guest prior to them arriving on the property? For example, if a hotel is an eco-destination and they focus their branding on their website around sustainability and the retreat nature of the hotel. Yet, guest reviews constantly discuss how dissatisfactory the service and food was with no mention of nature or sustainability, will future reviews then focus primarily on the food? Using text analysis software to examine over 25,000 online reviews, we explore the extent to which new reviews are influenced by wording used in previous reviews for a hotel property, versus content generated by corporate positioning. Additionally, we investigate how distinct hotel related UGC is across different types of tourism destinations. Our findings suggest that UGC can have a greater impact on future reviews, than corporate branding and there is more cohesiveness across UGC of different types of hotel properties than anticipated. A model of User Generated Content Influence is presented and the managerial impact of the power of online reviews to trump corporate branding and shape future user experiences is discussed.

Keywords: user generated content, UGC, corporate branding, online reviews, hotels and tourism

Procedia PDF Downloads 96
6195 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231
6194 Hydrological Modeling and Climate Change Impact Assessment Using HBV Model, A Case Study of Karnali River Basin of Nepal

Authors: Sagar Shiwakoti, Narendra Man Shakya

Abstract:

The lumped conceptual hydrological model HBV is applied to the Karnali River Basin to estimate runoff at several gauging stations and to analyze the changes in catchment hydrology and future flood magnitude due to climate change. The performance of the model is analyzed to assess its suitability to simulate streamflow in snow fed mountainous catchments. Due to the structural complexity, the model shows difficulties in modeling low and high flows accurately at the same time. It is observed that the low flows were generally underestimated and the peaks were correctly estimated except for some sharp peaks due to isolated precipitation events. In this study, attempt has been made to evaluate the importance of snow melt discharge in the runoff regime of the basin. Quantification of contribution of snowmelt to annual, summer and winter runoff has been done. The contribution is highest at the beginning of the hot months as the accumulated snow begins to melt. Examination of this contribution under conditions of increased temperatures indicate that global warming leading to increase in average basin temperature will significantly lead to higher contributions to runoff from snowmelt. Forcing the model with the output of HadCM3 GCM and the A1B scenario downscaled to the station level show significant changes to catchment hydrology in the 2040s. It is observed that the increase in runoff is most extreme in June - July. A shift in the hydrological regime is also observed.

Keywords: hydrological modeling, HBV light, rainfall runoff modeling, snow melt, climate change

Procedia PDF Downloads 542
6193 “In Their Own Words”: An Exploration of the Use of Narratives with Children in Counselling

Authors: Alison Brown

Abstract:

Through stories, children make sense of their world, see themselves through the eyes of another, and process emotions and lived experiences in a non-threatening and indirect manner. Building on research around the use of narrative techniques with adults and families, this research looked directly at the use of narratives as a therapeutic technique with children in counseling. Based on individual therapy sessions with children over a six-year period, this work of collective case studies tells the story of a practice incorporating children’s narratives, of children’s experiences in writing and sharing their narratives, and of the clinical impact of the use of narratives with children. Not all stories were narratives of success or happiness. Children documented their fears and anger as well as their achievements and hope for the future. What emerged through this study was an awareness of recurring themes in the way children responded to the narrative process and in the benefits and limitations of story writing with children. Consistent with previous studies focusing on narrative work with adults and families, the use of narratives with children provided opportunities for healing, acceptance, developing greater understanding, externalizing, and re-authoring a preferred future. In terms of the children’s experiences in writing and sharing their narratives, consistent themes emerged again, with many children finding the experience cathartic and liberating, empowering and hopeful, but most importantly, an opportunity that allowed them to feel and understand that they were not alone. Whilst a small collection of case studies tells the stories of a limited number of children, it is hoped that this research provides both a model and inspiration for others to explore similar uses of narratives with children. As a greater number of children’s narratives are created, the potential to share and benefit from the many rich stories and experiences of other children becomes more of a reality. Across cultures, economic and social settings, rural and urban environments, and varying family structures, it is important that we hear the voices of our children – ‘In their own words’.

Keywords: narrative therapy children counselling, social, emotional, zone of proximal development, scaffolding

Procedia PDF Downloads 92
6192 Incentive-Based Motivation to Network with Coworkers: Strengthening Professional Networks via Online Social Networks

Authors: Jung Lee

Abstract:

The last decade has witnessed more people than ever before using social media and broadening their social circles. Social media users connect not only with their friends but also with professional acquaintances, primarily coworkers, and clients; personal and professional social circles are mixed within the same social media platform. Considering the positive aspect of social media in facilitating communication and mutual understanding between individuals, we infer that social media interactions with co-workers could indeed benefit one’s professional life. However, given privacy issues, sharing all personal details with one’s co-workers is not necessarily the best practice. Should one connect with coworkers via social media? Will social media connections with coworkers eventually benefit one’s long-term career? Will the benefit differ across cultures? To answer, this study examines how social media can contribute to organizational communication by tracing the foundation of user motivation based on social capital theory, leader-member exchange (LMX) theory and expectancy theory of motivation. Although social media was originally designed for personal communication, users have shown intentions to extend social media use for professional communication, especially when the proper incentive is expected. To articulate the user motivation and the mechanism of the incentive expectation scheme, this study applies those three theories and identify six antecedents and three moderators of social media use motivation including social network flaunt, shared interest, perceived social inclusion. It also hypothesizes that the moderating effects of those constructs would significantly differ based on the relationship hierarchy among the workers. To validate, this study conducted a survey of 329 active social media users with acceptable levels of job experiences. The analysis result confirms the specific roles of the three moderators in social media adoption for organizational communication. The present study contributes to the literature by developing a theoretical modeling of ambivalent employee perceptions about establishing social media connections with co-workers. This framework shows not only how both positive and negative expectations of social media connections with co-workers are formed based on expectancy theory of motivation, but also how such expectations lead to behavioral intentions using career success model. It also enhances understanding of how various relationships among employees can be influenced through social media use and such usage can potentially affect both performance and careers. Finally, it shows how cultural factors induced by social media use can influence relations among the coworkers.

Keywords: the social network, workplace, social capital, motivation

Procedia PDF Downloads 124
6191 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling

Procedia PDF Downloads 441
6190 Time Dependent Biodistribution Modeling of 177Lu-DOTATOC Using Compartmental Analysis

Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri

Abstract:

In this study, 177Lu-DOTATOC was prepared under optimized conditions (radiochemical purity: > 99%, radionuclidic purity: > 99%). The percentage of injected dose per gram (%ID/g) was calculated for organs up to 168 h post injection. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. The biodistribution data showed the significant excretion of the radioactivity from the kidneys. The adrenal and pancreas, as major expression sites for somatostatin receptor (SSTR), had significant uptake. A pharmacokinetic model of 177Lu-DOTATOC was presented by compartmental analysis which demonstrates the behavior of the complex.

Keywords: biodistribution, compartmental modeling, ¹⁷⁷Lu, Octreotide

Procedia PDF Downloads 221
6189 Turbulence Modeling of Source and Sink Flows

Authors: Israt Jahan Eshita

Abstract:

Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.

Keywords: hydraulic diameter, k-epsilon model, meshes convergence, Reynolds number, RNG model, sink flow, source flow, wall y+

Procedia PDF Downloads 538