Search results for: partial heating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2250

Search results for: partial heating

1380 Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application

Authors: Sadeep Sasidharan, T. B. Isha

Abstract:

Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM.

Keywords: electric vehicles, induction motor, inset permanent magnet motor, loss models, switched reluctance motor, thermal analysis

Procedia PDF Downloads 219
1379 SiC Particulate-Reinforced SiC Composites Fabricated by PIP Method Using Highly Concentrated SiC Slurry

Authors: Jian Gu, Sea-Hoon Lee, Jun-Seop Kim

Abstract:

SiC particulate-reinforced SiC ceramic composites (SiCp/SiC) were successfully fabricated using polymer impregnation and pyrolysis (PIP) method. The effects of green density, infiltrated method, pyrolytic temperature, and heating rate on the densification behavior of the composites were investigated. SiCp/SiC particulate reinforced composites with high relative density up to 88.06% were fabricated after 4 PIP cycles using SiC pellets with high green density. The pellets were prepared by drying 62-70 vol.% aqueous SiC slurries, and the maximum relative density of the pellets was 75.5%. The hardness of the as-fabricated SiCp/SiCs was 21.05 GPa after 4 PIP cycles, which value increased to 23.99 GPa after a heat treatment at 2000℃. Excellent mechanical properties, thermal stability, and short processing time render the SiCp/SiC composite as a challenging candidate for the high-temperature application.

Keywords: high green density, mechanical property, polymer impregnation and pyrolysis, structural application

Procedia PDF Downloads 131
1378 Microstructure and Texture Evolution of Cryo Rolled and Annealed Ductile TaNbHfZrTi Refractory High Entropy Alloy

Authors: Mokali Veeresham

Abstract:

The microstructure and texture evolution of cryo rolled and annealed ductile TaHfNbZrTi refractory high entropy alloy was investigated. To obtain that, the alloy is severely cryo rolled and subsequently annealed for the recrystallization process. The cryo rolled – 90% shows the presence of very fine grains and microstructural heterogeneity. The cryo rolled samples are annealed at a temperature ranging from 800°C to 1400°C, the partial recrystallization is observed at 800°C annealed condition, and at higher annealing temperatures the complete recrystallization process is noticed. The development of ND fiber texture is observed after the annealing.

Keywords: refractory high entropy alloy, cryo-rolling, annealing, microstructure, texture

Procedia PDF Downloads 171
1377 Austenite Transformation in Duplex Stainless Steels under Fast Cooling Rates

Authors: L. O. Luengas, E. V. Morales, L. F. G. De Souza, I. S. Bott

Abstract:

Duplex Stainless Steels are well known for its good mechanical properties, and corrosion resistance. However, when submitted to heating, these features can be lost since the good properties are strongly dependent on the austenite-ferrite phase ratio which has to be approximately 1:1 to keep the phase balance. In a welded joint, the transformation kinetics at the heat affected zone (HAZ) is a function of the cooling rates applied which in turn are dependent on the heat input. The HAZ is usually ferritized at these temperatures, and it has been argued that small variations of the chemical composition can play a role in the solid state transformation sequence of ferrite to austenite during cooling. The δ → γ transformation has been reported to be massive and diffusionless due to the fast cooling rate, but it is also considered a diffusion controlled transformation. The aim of this work is to evaluate the effect of different heat inputs on the HAZ of two duplex stainless steels UNS S32304 and S32750, obtained by physical simulation.

Keywords: duplex stainless steels, HAZ, microstructural characterization, physical simulation

Procedia PDF Downloads 272
1376 Analysis of Evolution of Higher Order Solitons by Numerical Simulation

Authors: K. Khadidja

Abstract:

Solitons are stable solution of nonlinear Schrodinger equation. Their stability is due to the exact combination between nonlinearity and dispersion which causes pulse broadening. Higher order solitons are born when nonlinear length is N multiple of dispersive length. Soliton order is determined by the number N itself. In this paper, evolution of higher order solitons is illustrated by simulation using Matlab. Results show that higher order solitons change their shape periodically, the reason why they are bad for transmission comparing to fundamental solitons which are constant. Partial analysis of a soliton of higher order explains that the periodic shape is due to the interplay between nonlinearity and dispersion which are not equal during a period. This class of solitons has many applications such as generation of supercontinuum and the impulse compression on the Femtosecond scale. As a conclusion, the periodicity which is harmful to transmission can be beneficial in other applications.

Keywords: dispersion, nonlinearity, optical fiber, soliton

Procedia PDF Downloads 166
1375 Perception of the End of a Same Sex Relationship and Preparation towards It: A Qualitative Research about Anticipation, Coping and Conflict Management against the Backdrop of Partial Legal Recognition

Authors: Merav Meiron-Goren, Orna Braun-Lewensohn, Tal Litvak-Hirsh

Abstract:

In recent years, there has been an increasing tendency towards separation and divorce in relationships. Nevertheless, many couples in a first marriage do not anticipate this as a probable possibility and do not make any preparation for it. Same sex couples establishing a family encounter a much more complicated situation than do heterosexual couples. Although there is a trend towards legal recognition of same sex marriage, many countries, including Israel, do not recognize it. The absence of legal recognition or the existence of partial recognition creates complexity for these couples. They have to fight for their right to establish a family, like the recognition of the biological child of a woman, as a child of her woman spouse too, or the option of surrogacy for a male couple who want children, and more. The lack of legal recognition is burden on the lives of these couples. In the absence of clear norms regarding the conduct of the family unit, the couples must define for themselves the family structure, and deal with everyday dilemmas that lack institutional solutions. This may increase the friction between the two couple members, and it is one of the factors that make it difficult for them to maintain the relationship. This complexity exists, perhaps even more so, in separation. The end of relationship is often accompanied by a deep crisis, causing pain and stress. In most cases, there are also other conflicts that must be settled. These are more complicated when rights are in doubt or do not exist at all. Complex issues for separating same sex couples may include matters of property, recognition of parenthood, and care and support for the children. The significance of the study is based on the fact that same sex relationships are becoming more and more widespread, and are an integral part of the society. Even so, there is still an absence of research focusing on such relationships and their ending. The objective of the study is to research the perceptions of same sex couples regarding the possibility of separation, preparing for it, conflict management and resolving disputes through the separation process. It is also important to understand the point of view of couples that have gone through separation, how they coped with the emotional and practical difficulties involved in the separation process. The doctoral research will use a qualitative research method in a phenomenological approach, based on semi-structured in-depth interviews. The interviewees will be divided into three groups- at the beginning of a relationship, during the separation crisis and after separation, with a time perspective, with about 10 couples from each group. The main theoretical model serving as the basis of the study will be the Lazarus and Folkman theory of coping with stress. This model deals with the coping process, including cognitive appraisal of an experience as stressful, appraisal of the coping resources, and using strategies of coping. The strategies are divided into two main groups, emotion-focused forms of coping and problem-focused forms of coping.

Keywords: conflict management, coping, legal recognition, same-sex relationship, separation

Procedia PDF Downloads 139
1374 Constrained RGBD SLAM with a Prior Knowledge of the Environment

Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome

Abstract:

In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.

Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model

Procedia PDF Downloads 405
1373 Modeling Sorption and Permeation in the Separation of Benzene/ Cyclohexane Mixtures through Styrene-Butadiene Rubber Crosslinked Membranes

Authors: Hassiba Benguergoura, Kamal Chanane, Sâad Moulay

Abstract:

Pervaporation (PV), a membrane-based separation technology, has gained much attention because of its energy saving capability and low-cost, especially for separation of azeotropic or close-boiling liquid mixtures. There are two crucial issues for industrial application of pervaporation process. The first is developing membrane material and tailoring membrane structure to obtain high pervaporation performances. The second is modeling pervaporation transport to better understand of the above-mentioned structure–pervaporation relationship. Many models were proposed to predict the mass transfer process, among them, solution-diffusion model is most widely used in describing pervaporation transport including preferential sorption, diffusion and evaporation steps. For modeling pervaporation transport, the permeation flux, which depends on the solubility and diffusivity of components in the membrane, should be obtained first. Traditionally, the solubility was calculated according to the Flory–Huggins theory. Separation of the benzene (Bz)/cyclohexane (Cx) mixture is industrially significant. Numerous papers have been focused on the Bz/Cx system to assess the PV properties of membrane materials. Membranes with both high permeability and selectivity are desirable for practical application. Several new polymers have been prepared to get both high permeability and selectivity. Styrene-butadiene rubbers (SBR), dense membranes cross-linked by chloromethylation were used in the separation of benzene/cyclohexane mixtures. The impact of chloromethylation reaction as a new method of cross-linking SBR on the pervaporation performance have been reported. In contrast to the vulcanization with sulfur, the cross-linking takes places on styrene units of polymeric chains via a methylene bridge. The partial pervaporative (PV) fluxes of benzene/cyclohexane mixtures in styrene-butadiene rubber (SBR) were predicted using Fick's first law. The predicted partial fluxes and the PV separation factor agreed well with the experimental data by integrating Fick's law over the benzene concentration. The effects of feed concentration and operating temperature on the predicted permeation flux by this proposed model are investigated. The predicted permeation fluxes are in good agreement with experimental data at lower benzene concentration in feed, but at higher benzene concentration, the model overestimated permeation flux. The predicted and experimental permeation fluxes all increase with operating temperature increasing. Solvent sorption levels for benzene/ cyclohexane mixtures in a SBR membrane were determined experimentally. The results showed that the solvent sorption levels were strongly affected by the feed composition. The Flory- Huggins equation generates higher R-square coefficient for the sorption selectivity.

Keywords: benzene, cyclohexane, pervaporation, permeation, sorption modeling, SBR

Procedia PDF Downloads 321
1372 Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures

Authors: S. Hachemi, A. Ounis, S. Chabi

Abstract:

This paper presents the results of an experimental study on the effects of elevated temperature on compressive and flexural strength of Normal Strength Concrete (NSC), High Strength Concrete (HSC) and High Performance Concrete (HPC). In addition, the specimen mass and volume were measured before and after heating in order to determine the loss of mass and volume during the test. In terms of non-destructive measurement, ultrasonic pulse velocity test was proposed as a promising initial inspection method for fire damaged concrete structure. 100 Cube specimens for three grades of concrete were prepared and heated at a rate of 3°C/min up to different temperatures (150, 250, 400, 600, and 900°C). The results show a loss of compressive and flexural strength for all the concretes heated to temperature exceeding 400°C. The results also revealed that mass and density of the specimen significantly reduced with an increase in temperature.

Keywords: high temperature, compressive strength, mass loss, ultrasonic pulse velocity

Procedia PDF Downloads 337
1371 Microwave Assisted Synthesis and Metal Complexes of Some Copolymers Based on Itaconic Acid

Authors: Mohamed H. El-Newehy, Sameh M. Osman, Moamen S. Refat, Salem S. Al-Deyab, Ayman El-Faham

Abstract:

The two copolymers itaconic acid-methyl methacrylate and itaconic acid-acrylamide have been prepared in different ratio by radical copolymerization in the presence of azobisisobutyronitrile (AIBN) as initiator and using 2-butanone as reaction medium using microwave irradiation. The microwave technique is safe, fast, and gives high yield of the products with high purity in an optimum time, comparing to the traditional conventional heating. All the prepared copolymers were characterized by FT-IR, thermal analysis and elemental microanalysis. The itaconic acid-based copolymers showed a good sensitivity in alkaline media for scavenging Cu (II) and Pb (II). The chelation behavior of both Cu (II) and Pb (II) complexes were checked using FT-IR, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). The infrared data are in a good agreement with the coordination through carboxylate-to-metal, in which the copolymers acting as a bidentate ligand.

Keywords: microwave synthesis, itaconic acid, copolymerization, scavenging, thermal stability

Procedia PDF Downloads 446
1370 Two-Stage Approach for Solving the Multi-Objective Optimization Problem on Combinatorial Configurations

Authors: Liudmyla Koliechkina, Olena Dvirna

Abstract:

The statement of the multi-objective optimization problem on combinatorial configurations is formulated, and the approach to its solution is proposed. The problem is of interest as a combinatorial optimization one with many criteria, which is a model of many applied tasks. The approach to solving the multi-objective optimization problem on combinatorial configurations consists of two stages; the first is the reduction of the multi-objective problem to the single criterion based on existing multi-objective optimization methods, the second stage solves the directly replaced single criterion combinatorial optimization problem by the horizontal combinatorial method. This approach provides the optimal solution to the multi-objective optimization problem on combinatorial configurations, taking into account additional restrictions for a finite number of steps.

Keywords: discrete set, linear combinatorial optimization, multi-objective optimization, Pareto solutions, partial permutation set, structural graph

Procedia PDF Downloads 163
1369 Magnetic, Magnetocaloric, and Electrical Properties of Pr0.7Ca0.3Mn0.9M0.1O3

Authors: A. Selmi, A. Bettaibi, H. Rahmouni, R. M’nassri, N. Chniba Boudjada, A. Chiekhrouhou, K. Khirouni

Abstract:

Investigation of magnetic and magnetocaloric properties of Pr₀.₇Ca₀.₃Mn₀.₉M₀.₁O₃ perovskite manganites (M=Cr and Ni) has been carried out. Our compounds were prepared by the conventional solid-state reaction method at high temperatures. Rietveld refinement of X-ray diffraction pattern using FULLPROF method shows that all compounds adopt the orthorhombic structure with Pnma space group. The partial substitution of Mn-site drives the system from charge order state to ferromagnetic one with a Curie temperature T𝒸=150K, 118k and 116K for M=Cr and Ni, respectively. Magnetization measurements versus temperature in a magnetic applied field of 0.05T show that all our samples exhibit a paramagnetic–ferromagnetic transition with decreasing temperature. From M(H) isotherms, we have deduced the magnetic entropy change, which present maximum values of 2.37 J/kg.K and 2.94 J/kg.K, in a magnetic field change of 5T for M=Cr and Ni, respectively.

Keywords: manganites, magnetocaloric, magnetic, refrigeration

Procedia PDF Downloads 72
1368 Application of Deep Eutectic Solvent in the Extraction of Ferulic Acid from Palm Pressed Fibre

Authors: Ng Mei Han, Nu'man Abdul Hadi

Abstract:

Extraction of ferulic acid from palm pressed fiber using deep eutectic solvent (DES) of choline chloride-acetic acid (ChCl-AA) and choline chloride-citric acid (ChCl-CA) are reported. Influence of water content in DES on the extraction efficiency was investigated. ChCl-AA and ChCl-CA experienced a drop in viscosity from 9.678 to 1.429 and 22.658 ± 1.655 mm2/s, respectively as the water content in the DES increased from 0 to 50 wt% which contributed to higher extraction efficiency for the ferulic acid. Between 41,155 ± 940 mg/kg ferulic acid was obtained after 6 h reflux when ChCl-AA with 30 wt% water was used for the extraction compared to 30,940 ± 621 mg/kg when neat ChCl-AA was used. Although viscosity of the DES could be improved with the addition of water, there is a threshold where the DES could tolerate the presence of water without changing its solvent behavior. The optimum condition for extraction of ferulic acid from palm pressed fiber was heating for 6 h with DES containing 30 wt% water.

Keywords: deep eutectic solvent, extraction, ferulic acid, palm fibre

Procedia PDF Downloads 76
1367 Modeling of Enthalpy and Heat Capacity of Phase-Change Materials

Authors: Igor Medved, Anton Trnik, Libor Vozar

Abstract:

Phase-change materials (PCMs) are of great interest in the applications where a temperature level needs to be maintained and/or where there is demand for thermal energy storage. Examples are storage of solar energy, cold, and space heating/cooling of buildings. During a phase change, the enthalpy vs. temperature plot of PCMs shows a jump and there is a distinct peak in the heat capacity plot. We present a theoretical description from which these jumps and peaks can be obtained. We apply our theoretical results to fit experimental data with very good accuracy for selected materials and changes between two phases. The development is based on the observation that PCMs are polycrystalline; i.e., composed of many single-crystalline grains. The enthalpy and heat capacity are thus interpreted as averages of the contributions from the individual grains. We also show how to determine the baseline and excess part of the heat capacity and thus the latent heat corresponding to the phase change.

Keywords: averaging, enthalpy jump, heat capacity peak, phase change

Procedia PDF Downloads 452
1366 The Energy Consumption by the Sector of Transport and His Impact on the Atmospheric Pollution

Authors: Mme Hamani Née Guessas Ghaniya

Abstract:

The transport is the base of the development of the exchanges and the business, being both a recognized determiner of the economic and social development. The development of the transport is in the center of the big challenges of development of countries, but it is also at the heart of big contradictions, since we integrate the environmental issues which are bound to him, in particular through the questions of energy. Indeed, the energy consumption by the sector of transport is one of bigger concerns, because it is increasing and it has a big impact on our environment. The main consequences are, the atmospheric pollution causing an increase of the greenhouse effect which causes a global warming. These global warming risks to engender a partial cast iron of polar caps so raising the level of seas, flooding the low coastal zones, certain islands and the deltas. Thus, the purpose of this communication is to present the impact of the energy consumption by the sector of transport on the air quality, showing its effect on the health and on the global warming.

Keywords: energy consumption, sector of transport, air quality, atmospheric pollution

Procedia PDF Downloads 323
1365 Density Functional Theory Study of the Surface Interactions between Sodium Carbonate Aerosols and Fission Products

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

The interaction of fission products (FP) with sodium carbonate (Na₂CO₃) aerosols is of a high safety concern because of their potential role in the radiological source term mitigation by FP trapping. In a sodium-cooled fast nuclear reactor (SFR) experiencing a severe accident, sodium (Na) aerosols can be formed after the ejection of the liquid Na coolant inside the containment. The surface interactions between these aerosols and different FP species have been investigated using ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package (VASP). In addition, an improved thermodynamic model has been proposed to treat DFT-VASP calculated energies to extrapolate them to temperatures and pressures of interest in our study. A combined experimental and theoretical chemistry study has been carried out to have both atomistic and macroscopic understanding of the chemical processes; the theoretical chemistry part of this approach is presented in this paper. The Perdew, Burke, and Ernzerhof functional were applied in combination with Grimme’s van der Waals correction to compute exchange-correlational energy at 0 K. Seven different surface cleavages were studied of Ƴ-Na₂CO₃ phase (stable at 603.15 K), it was found that for defect-free surfaces, the (001) facet is the most stable. Furthermore, calculations were performed to study surface defects and reconstructions on the ideal surface. All the studied surface defects were found to be less stable than the ideal surface. More than one adsorbate-ligand configurations were found to be stable confirming that FP vapors could be trapped on various adsorption sites. The calculated adsorption energies (Eads, eV) for the three most stable adsorption sites for I₂ are -1.33, -1.088, and -1.085. Moreover, the adsorption of the first molecule of I₂ changes the surface in a way which would favor stronger adsorption of a second molecule of I2 (Eads, eV = -1.261). For HI adsorption, the most favored reactions have the following Eads (eV) -1.982, -1.790, -1.683 implying that HI would be more reactive than I₂. In addition to FP species, adsorption of H₂O was also studied as the hydrated surface can have different reactivity than the bare surface. One thermodynamically favored site for H₂O adsorption was found with an Eads, eV of -0.754. Finally, the calculations of hydrated surfaces of Na₂CO₃ show that a layer of water adsorbed on the surface significantly reduces its affinity for iodine (Eads, eV = -1.066). According to the thermodynamic model built, the required partial pressure at 373 K to have adsorption of the first layer of iodine is 4.57×10⁻⁴ bar. The second layer will be adsorbed at partial pressures higher than 8.56×10⁻⁶ bar; a layer of water on the surface will increase these pressure almost ten folds to 3.71×10⁻³ bar. The surface interacts with elemental Cs with an Eads (eV) of -1.60, while interacts even strongly with CsI with an Eads (eV) of -2.39. More results on the interactions between Na₂CO₃ (001) and cesium-based FP will also be presented in this paper.

Keywords: iodine uptake, sodium carbonate surface, sodium-cooled fast nuclear reactor, DFT calculations, fission products

Procedia PDF Downloads 146
1364 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation

Procedia PDF Downloads 393
1363 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants

Authors: N. C. Shahi, Anupama Singh, E. Kate

Abstract:

Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively.

Keywords: overall efficiency, solar tunnel dryer, specific heat consumption, sun drying

Procedia PDF Downloads 307
1362 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance

Authors: Tomofumi Kubota, Mitsuhiro Okayasu

Abstract:

In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.

Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property

Procedia PDF Downloads 122
1361 Effect of Incentives on Knowledge Sharing and Learning: Evidence from the Indian IT Sector

Authors: Asish O. Mathew, Lewlyn L. R. Rodrigues

Abstract:

The organizations in the knowledge economy era have recognized the importance of building knowledge assets for sustainable growth and development. In comparison to other industries, Information Technology (IT) enterprises, holds an edge in developing an effective Knowledge Management (KM) program, thanks to their in-house technological abilities. This paper tries to study the various knowledge-based incentive programs and its effect on Knowledge Sharing and Learning in the context of the Indian IT sector. A conceptual model is developed linking KM incentives, knowledge sharing, and learning. A questionnaire study is conducted to collect primary data from the knowledge workers of the IT organizations located in India. The data was analysed using Structural Equation Modeling using Partial Least Square method. The results show a strong influence of knowledge management incentives on knowledge sharing and an indirect influence on learning.

Keywords: knowledge management, knowledge management incentives, knowledge sharing, learning

Procedia PDF Downloads 466
1360 Extended Arithmetic Precision in Meshfree Calculations

Authors: Edward J. Kansa, Pavel Holoborodko

Abstract:

Continuously differentiable radial basis functions (RBFs) are meshfree, converge faster as the dimensionality increases, and is theoretically spectrally convergent. When implemented on current single and double precision computers, such RBFs can suffer from ill-conditioning because the systems of equations needed to be solved to find the expansion coefficients are full. However, the Advanpix extended precision software package allows computer mathematics to resemble asymptotically ideal Platonic mathematics. Additionally, full systems with extended precision execute faster graphical processors units and field-programmable gate arrays because no branching is needed. Sparse equation systems are fast for iterative solvers in a very limited number of cases.

Keywords: partial differential equations, Meshfree radial basis functions, , no restrictions on spatial dimensions, Extended arithmetic precision.

Procedia PDF Downloads 145
1359 The Use of Thermally Modified Diatomite to Remove Lead Ions

Authors: Hilary Limo Rutto

Abstract:

To better understand the application of diatomite as an adsorbent for the removal of Pb2+ from heavy metal-contaminated water, in this paper, diatomite was used to adsorb Pb2+ from aqueous solution under various conditions. The intrinsic exchange properties were further improved by heating the raw diatomite with fluxing agent at different temperatures and modification with manganese oxides. It is evident that the mass of the adsorbed Pb2+ generally increases after thermal treatment and modification with manganese oxides. The adsorption characteristics of lead on diatomite were studied at pH range of 2.5–12. The favourable pH range was found to be 7.5-8.5. The thermodynamic parameters (i.e.,∆H° ∆G° ∆S°) were evaluated from the temperature dependent adsorption isotherms. The results indicated that the adsorption process of Pb2+ on diatomite was spontaneous, endothermic and physical in nature. The equilibrium data have been analyzed using Langmuir and freundlich isotherm. The Langmuir isotherm was demonstrated to provide the best correlation for the adsorption of lead onto diatomite. The kinetics was studied using Pseudo- first and second-order model on the adsorption of lead onto diatomite. The results give best fit in second-order studies and it can be concluded that the adsorption of lead onto diatomite is second order reaction.

Keywords: thermally modified, diatomite, adsorption, lead

Procedia PDF Downloads 224
1358 Impact of Flavor on Food Product Quality, A Case Study of Vanillin Stability during Biscuit Preparation

Authors: N. Yang, R. Linforth, I. Fisk

Abstract:

The influence of food processing and choice of flavour solvent was investigated using biscuits prepared with vanillin flavour as an example. Powder vanillin either was added directly into the dough or dissolved into flavour solvent then mixed into the dough. The impact of two commonly used flavour solvents on food quality was compared: propylene glycol (PG) or triacetin (TA). The analytical approach for vanillin detection was developed by chromatography (HPLC-PDA), and the standard extraction method for vanillin was also established. The results indicated the impact of solvent choice on vanillin level during biscuit preparation. After baking, TA as a more heat resistant solvent retained more vanillin than PG, so TA is a better solvent for products that undergo a heating process. The results also illustrated the impact of mixing and baking on vanillin stability in the matrices. The average loss of vanillin was 33% during mixing and 13% during baking, which indicated that the binding of vanillin to fat or flour before baking might cause larger loss than evaporation loss during baking.

Keywords: biscuit, flavour stability, food quality, vanillin

Procedia PDF Downloads 504
1357 The Effect of Non-Normality on CB-SEM and PLS-SEM Path Estimates

Authors: Z. Jannoo, B. W. Yap, N. Auchoybur, M. A. Lazim

Abstract:

The two common approaches to Structural Equation Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and Partial Least Squares SEM (PLS-SEM). There is much debate on the performance of CB-SEM and PLS-SEM for small sample size and when distributions are non-normal. This study evaluates the performance of CB-SEM and PLS-SEM under normality and non-normality conditions via a simulation. Monte Carlo Simulation in R programming language was employed to generate data based on the theoretical model with one endogenous and four exogenous variables. Each latent variable has three indicators. For normal distributions, CB-SEM estimates were found to be inaccurate for small sample size while PLS-SEM could produce the path estimates. Meanwhile, for a larger sample size, CB-SEM estimates have lower variability compared to PLS-SEM. Under non-normality, CB-SEM path estimates were inaccurate for small sample size. However, CB-SEM estimates are more accurate than those of PLS-SEM for sample size of 50 and above. The PLS-SEM estimates are not accurate unless sample size is very large.

Keywords: CB-SEM, Monte Carlo simulation, normality conditions, non-normality, PLS-SEM

Procedia PDF Downloads 400
1356 [Keynote Talk]: Thermal Performance of Common Building Insulation Materials: Operating Temperature and Moisture Effect

Authors: Maatouk Khoukhi

Abstract:

An accurate prediction of the heat transfer through the envelope components of building is required to achieve an accurate cooling/heating load calculation which leads to precise sizing of the hvac equipment. This also depends on the accuracy of the thermal conductivity of the building insulation material. The proper use of thermal insulation in buildings (k-value) contribute significantly to reducing the HVAC size and consequently the annual energy cost. The first part of this paper presents an overview of building thermal insulation and their applications. The second part presents some results related to the change of the polystyrene insulation thermal conductivity with the change of the operating temperature and the moisture. Best-fit linear relationship of the k-value in term of the operating temperatures and different percentage of moisture content by weight has been established. The thermal conductivity of the polystyrene insulation material increases with the increase of both operating temperature and humidity content.

Keywords: building insulation material, moisture content, operating temperature, thermal conductivity

Procedia PDF Downloads 314
1355 The Effect of Mineral Addition (Natural Pozzolana) on the Capillary Absorption and Compressive Strength of Environmental Mortar

Authors: W. Deboucha, M. N. Oudjit, A. Bouzid, L. Belagraa, A.Noui

Abstract:

The cement manufacturing is the one of the factors that pollutes the atmosphere in the industrial sector. The common way to reduce this pollution is using mineral additions as partial replacement of Portland cement. Particularly, natural pozzolana (NP) is component in which they can be used to decrease the rate of pollution. The main objective of this experimental work is the study of the effect of mineral addition (natural pozzolana) on the capillary water absorption and compressive-flexural strength of cement mortar. The results obtained in the present research showed that the higher dosages of natural pozzolana added could be the principal parameter of such decrease in strength at early and medium term. Further, this increase of incorporated addition has been believed to reduce the capillary water absorption.

Keywords: Natural pozzolana, mortar, strength, capillary absorption

Procedia PDF Downloads 338
1354 Development of Partial Sulphonated Poly(Vinylidene Fluoride - Hexafluoro Propylene)–Montmorillonite Nano-Composites as Proton Exchange Membranes

Authors: K. Selvakumar, J. Kalaiselvimary, B. Jansirani, M. Ramesh Prabhu

Abstract:

Proton conducting sulphonated poly (vinylidene fluoride- hexafluoro propylene) PVdF-HFP membranes were modified with nano – sized montmorillonite (MMT) through homogeneous dispersive mixing and solution casting technique for fuel cell applications. The prepared composite membranes were characterized using Fourier Transform Infrared Spectroscopy and 1HNMR technique. The suitability of the composite membranes for fuel cell application was evaluated in terms of water uptake, swelling behavior, and proton conductivity. These composites showed good conductivities and durability and expected to be used in the development of proton exchange membrane for fuel cells.

Keywords: composite, proton conduction, sulphonation, water uptake

Procedia PDF Downloads 240
1353 Effect of Moisture Removal from Molten Salt on Corrosion of Alloys

Authors: Bhavesh D. Gajbhiye, Divya Raghunandanan, C. S. Sona, Channamallikarjun S. Mathpati

Abstract:

Molten fluoride salt FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) is a promising candidate as high temperature coolant for next generation nuclear reactors due to its superior thermophysical properties. Corrosion of alloys in molten FLiNaK has however been recognized as a serious issue in the selection of structural materials. Corrosion experiments of alloys Inconel-625 (Fe-Ni alloy) and Hastelloy-B (Ni-Mo alloy) were performed in FLiNaK salt. The tests were carried out at a temperature of 650°C in graphite crucibles for 60 hours under inert atmosphere. Corrosion experiments were performed to study the effect of moisture removal in the salt by pre heating and vacuum drying. Weight loss of the alloy samples due to corrosion was measured and corrosion rate was estimated. The surface morphology of the alloy samples was analyzed by Scanning Electron Microscopy. A significant decrease in the corrosion rate was observed for the alloys studied in moisture removed salt.

Keywords: FLiNaK, hastelloy, inconel, weight loss

Procedia PDF Downloads 487
1352 Differentiation of the Functional in an Optimization Problem for Coefficients of Elliptic Equations with Unbounded Nonlinearity

Authors: Aigul Manapova

Abstract:

We consider an optimal control problem in the higher coefficient of nonlinear equations with a divergent elliptic operator and unbounded nonlinearity, and the Dirichlet boundary condition. The conditions imposed on the coefficients of the state equation are assumed to hold only in a small neighborhood of the exact solution to the original problem. This assumption suggests that the state equation involves nonlinearities of unlimited growth and considerably expands the class of admissible functions as solutions of the state equation. We obtain formulas for the first partial derivatives of the objective functional with respect to the control functions. To calculate the gradients the numerical solutions of the state and adjoint problems are used. We also prove that the gradient of the cost function is Lipchitz continuous.

Keywords: cost functional, differentiability, divergent elliptic operator, optimal control, unbounded nonlinearity

Procedia PDF Downloads 167
1351 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species

Authors: Kamel Al-Khaled

Abstract:

Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.

Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species

Procedia PDF Downloads 364