Search results for: least square estimates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2285

Search results for: least square estimates

1415 Amplified Ribosomal DNA Restriction Analysis Method to Assess Rumen Microbial Diversity of Ruminant

Authors: A. Natsir, M. Nadir, S. Syahrir, A. Mujnisa, N. Purnomo, A. R. Egan, B. J. Leury

Abstract:

Rumen degradation characteristic of feedstuff is one of the prominent factors affecting microbial population in rumen of animal. High rumen degradation rate of faba bean protein may lead to inconstant rumen conditions that could have a prominent impact on rumen microbial diversity. Amplified Ribosomal DNA Restriction Analysis (ARDRA) is utilized to monitor diversity of rumen microbes on sheep fed low quality forage supplemented by faba beans. Four mature merino sheep with existing rumen cannula were used in this study according to 4 x 4 Latin square design. The results of study indicated that there were 37 different ARDRA types identified out of 136 clones examined. Among those clones, five main clone types existed across the treatments with different percentages. In conclusion, the ARDRA method is potential to be used as a routine tool to assess the temporary changes in the rumen community as a result of different feeding strategies.

Keywords: ARDRA method, cattle, genomic diversity, rumen microbes

Procedia PDF Downloads 361
1414 Speech Intelligibility Improvement Using Variable Level Decomposition DWT

Authors: Samba Raju, Chiluveru, Manoj Tripathy

Abstract:

Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methods

Keywords: discrete wavelet transform, speech intelligibility, STOI, standard deviation

Procedia PDF Downloads 148
1413 Mechanical Behavior of CFTR Column Joint under Pull out Testing

Authors: Nasruddin Junus

Abstract:

CFTR column is one of the improvements CFT columns by inserting reinforcing steel bars into infill concrete. The presence of inserting reinforcing steel bars is increasing the excellent structural performance of the CFT column, especially on the fire-resisting performance. Investigation on the mechanical behavior of CFTR column connection is summarized in the three parts; column to column joint, column to beam connection, and column base. Experiment that reported in this paper is concerned on the mechanical behavior of CFTR column joint under pull out testing, especially on its stress transfer mechanism. A number series of the pull out test on the CFT with inserting reinforcing steel bar are conducted. Ten test specimens are designed, constructed, and tested to examine experimentally the effect of the size of square steel tube, size of the bearing plate, length of embedment steel bars, kind of steel bars, and the numbers of rib plate.

Keywords: CFTR column, pull out, stress, transfer mechanism

Procedia PDF Downloads 290
1412 Impact of COVID-19 on Hospital Waste

Authors: Caroline Correia, Stefani Perna, John Gaughan, Elizabeth Cerceo

Abstract:

Introduction: The COVID-19 pandemic has brought unprecedented changes to how hospitals function on a daily basis. Increased personal protective equipment (PPE) usage and measures to pre-package, separate, and decontaminate have the potential to increase the waste load. However, limiting non-essential surgeries drastically reduces operating room (OR) waste, and restricting visitation policies to contain outbreaks may help conserve resources. The impact of these policy changes with increased disposable PPE usage on hospital production of waste is unknown. Methods: Waste produced in pounds (lbs) was measured for January through June during both 2019 and 2020 through Stericycle in Cooper University Hospital in Camden, NJ. This timeframe was selected since the pandemic began in January 2020 in the US. The total waste produced during this time was 328,623 lbs in 2019 and 306,454 lbs in 2020. Using Poisson counts (α=.05), less waste was produced in 2020 (p < 0.001). The amount of sharps and regulated medical waste (grossly bloody items) were both significantly decreased as well (p < 0.0001, p=0.0002), and these account for 10-15% of the total waste produced. Discussion: Despite the increased usage of disposable PPE, overall hospital waste was decreased during the pandemic as compared to prior. As surgeries are estimated to be responsible for up to one-half of waste produced by hospitals, it is possible that constraint on elective procedures contributed to the decreased waste in all three categories; estimates of a 35% decrease in surgical volume would be expected to impact waste production. The effects of the pandemic on waste production should continue to be monitored to understand the environmental impact as health systems resume backlogged surgeries at a higher volume.

Keywords: COVID-19, hospital, surgery, waste

Procedia PDF Downloads 105
1411 Financial Inclusion and Modernization: Secure Energy Performance in Shanghai Cooperation Organization

Authors: Shama Urooj

Abstract:

The present work investigates the relationship among financial inclusion, modernization, and energy performance in SCO member countries during the years 2011–2021. PCA is used to create composite indexes of financial inclusion, modernization, and energy performance. We used panel regression models that are both reliable and heteroscedasticity-consistent to look at the relationship among variables. The findings indicate that financial inclusion (FI) and modernization, along with the increased FDI, all appear to contribute to the energy performance in the SCO member countries. However, per capita GDP has a negative impact on energy performance. These results are unbiased and consistent with the robust results obtained by applying different econometric models. Feasible Generalized Least Square (FGLS) estimation is also used for checking the uniformity of the main model results. This research work concludes that there has been no policy coherence in SCO member countries regarding the coordination of growing financial inclusion and modernization for energy sustainability in recent years. In order to improve energy performance with modern development, policies regarding financial inclusion and modernization need be integrated both at national as well as international levels.

Keywords: financial inclusion, energy performance, modernization, technological development, SCO.

Procedia PDF Downloads 75
1410 Monitoring of Belt-Drive Defects Using the Vibration Signals and Simulation Models

Authors: A. Nabhan, Mohamed R. El-Sharkawy, A. Rashed

Abstract:

The main aim of this paper is to dedicate the belt drive system faults like cogs missing, misalignment and belt worm using vibration analysis technique. Experimentally, the belt drive test-rig is equipped to measure vibrations signals under different operating conditions. Finite element 3D model of belt drive system is created and vibration response analyzed using commercial finite element software ABAQUS/CAE.  Root mean square (RMS) and Crest Factor will serve as indicators of average amplitude of envelope analysis signals. The vibration signals pattern obtained from the simulation model and experimental data have the same characteristics. It can be concluded that each case of the RMS is more effective in detecting the defect for acceleration response. While Crest Factor parameter has a response with the displacement and velocity of vibration signals. Also it can be noticed that the model has difficulty in completing the solution when the misalignment angle is higher than 1 degree.

Keywords: simulation model, misalignment, cogs missing, vibration analysis

Procedia PDF Downloads 284
1409 Capture-recapture to Estimate Completeness of Pulmonary Tuberculosis with Two Sources

Authors: Ratchadaporn Ungcharoen, Lily Ingsrisawang

Abstract:

Capture-recapture methods are popular techniques for indirect estimation the size of wildlife populations and the completeness of cases in epidemiology and social sciences. The aim of this study was to estimate the completeness of pulmonary tuberculosis cases confirmed by two sources of hospital registrations and surveillance systems in 2013 in Nakhon Pathom province, Thailand. Several estimators of population size were considered: the Lincoln-Petersen estimator, the Chapman estimator, the Chao’s lower bound estimator, the Zelterman’s estimator, etc. We focus on the Chapman and Chao’s lower bound estimators for estimating the completeness of pulmonary tuberculosis from two sources. The retrieved pulmonary tuberculosis data from two sources were analyzed and bootstrapped for 30 samples, with 241 observations from source 1 and 305 observations from source 2 per sample, for additional exploration of the completeness of pulmonary tuberculosis. The results from the original data show that the Chapman’s estimator gave the estimation of a total 360 (95% CI: 349-371) pulmonary tuberculosis cases, resulting in 57% estimated completeness cases. But the Chao’s lower bound estimator estimated the total of 365 (95% CI: 354-376) pulmonary tuberculosis cases and its estimated completeness cases was 55.9%. For the results from bootstrap samples, the Chapman and the Chao’s lower bound estimators gave an estimated 347 (95% CI: 309-385) and 353 (95% CI: 315-390) pulmonary tuberculosis cases, respectively. If for two sources recoding systems are available, record-linkage and capture-recapture analysis can be useful for estimating the completeness of different registration system. Both Chapman and Chao’s lower bound estimator approaches produce very close estimates.

Keywords: capture-recapture, Chao, Chapman, pulmonary tuberculosis

Procedia PDF Downloads 516
1408 Profit Efficiency and Technology Adoption of Boro Rice Production in Bangladesh

Authors: Fazlul Hoque, Tahmina Akter Joya, Asma Akter, Supawat Rungsuriyawiboon

Abstract:

Rice is the staple food in Bangladesh, and therefore, self-sufficiency in rice production remains a major concern. However, Bangladesh is experiencing insufficiency in rice production due to high production cost and low national average productivity of 2.848 ton/ha in comparison to other rice-growing countries in the world. This study aims to find out the profit efficiency and determinants of profit efficiency in Boro rice cultivation in Manikganj and Dhaka districts of Bangladesh. It also focuses on technology adoption and effect of technology adoption on profit efficiency of Boro rice cultivation in Bangladesh. The data were collected from 300 households growing Boro rice through face to face interviews by one set structured questionnaire; Frontier Version 4.1 and STATA 15 software were employed to analyze the data according to the purpose of the study. Maximum likelihood estimates of the specified profit model showed that profit efficiency of the farmer varied between 23% and 97% with a mean of 76% which implied as 24% of the profit is lost due to a combination of technical and allocative inefficiencies in Boro rice cultivation in the study area. The inefficiency model revealed that the education level of the farmer, farm size, variety of seed, and training and extension service influence the profit inefficiency significantly. The study also explained that the level of technology adoption index affects profit efficiency. The technology adoption in Boro rice cultivation is influenced by the education level of the farmer, farm size and farm capital.

Keywords: farmer, maximum likelihood estimation, profit efficiency, rice

Procedia PDF Downloads 135
1407 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition

Authors: Li Zhang, Yuehong Su

Abstract:

Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.

Keywords: neural network, bended lightpipe, transmittance, Photopia

Procedia PDF Downloads 152
1406 Construction Unit Rate Factor Modelling Using Neural Networks

Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula

Abstract:

Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty-five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using the neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility, overhead and profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.

Keywords: construction cost factors, neural networks, roadworks, Zambian construction industry

Procedia PDF Downloads 363
1405 Rheological Model for Describing Spunlace Nonwoven Behavior

Authors: Sana Ridene, Soumaya Sayeb, Houda Helali, Mohammed Ben Hassen

Abstract:

Nonwoven structures have a range of applications which include Medical, filtration, geotextile and recently this unconventional fabric is finding a niche in fashion apparel. In this paper, a modified form of Vangheluwe rheological model is used to describe the mechanical behavior of nonwovens fabrics in uniaxial tension. This model is an association in parallel of three Maxwell elements characterized by damping coefficients η1, η2 and η3 and E1, E2, E3 elastic modulus and a nonlinear spring C. The model is verified experimentally with two types of nonwovens (50% viscose /50% Polyester) and (40% viscose/60% Polyester) and a range of three square weights values. Comparative analysis of the theoretical model and the experimental results of tensile test proofs a high correlation between them. The proposed model can fairly well replicate the behavior of nonwoven fabrics during relaxation and sample traction. This allowed us to predict the mechanical behavior in tension and relaxation of fabrics starting only from their technical parameters (composition and weight).

Keywords: mechanical behavior, tensile strength, relaxation, rheological model

Procedia PDF Downloads 409
1404 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 149
1403 The Long-Term Impact of Health Conditions on Social Mobility Outcomes: A Modelling Study

Authors: Lise Retat, Maria Carmen Huerta, Laura Webber, Franco Sassi

Abstract:

Background: Intra-generational social mobility (ISM) can be defined as the extent to which individuals change their socio-economic position over a period of time or during their entire life course. The relationship between poor health and ISM is established. Therefore, quantifying the impact that potential health policies have on ISM now and into the future would provide evidence for how social inequality could be reduced. This paper takes the condition of overweight and obesity as an example and estimates the mean earning change per individual if the UK were to introduce policies to effectively reduce overweight and obesity. Methods: The HealthLumen individual-based model was used to estimate the impact of obesity on social mobility measures, such as earnings, occupation, and wealth. The HL tool models each individual's probability of experiencing downward ISM as a result of their overweight and obesity status. For example, one outcome of interest was the cumulative mean earning per person of implementing a policy which would reduce adult overweight and obesity by 1% each year between 2020 and 2030 in the UK. Results: Preliminary analysis showed that by reducing adult overweight and obesity by 1% each year between 2020 and 2030, the cumulative additional mean earnings would be ~1,000 Euro per adult by 2030. Additional analysis will include other social mobility indicators. Conclusions: These projections are important for illustrating the role of health in social mobility and for providing evidence for how health policy can make a difference to social mobility outcomes and, in turn, help to reduce inequality.

Keywords: modelling, social mobility, obesity, health

Procedia PDF Downloads 122
1402 A Survey on Frequency of Cryptosporidiosis and Giardiasis in Horses in Ahvaz South-West of Iran

Authors: Ali R. Ghadrdan-Mashhadi, Hosein Hamidi-Nejat, Parisa Alizadehnia

Abstract:

Cryptosporidia and Giardia are protozoan parasites that have worldwide distribution and infect a variety of animals. Although, the infection to these parasites rarely caused to illness in horses, but some veterinarian recorded the clinical signs (such as diarrhea and malabsorbtion) especially in foals. In present study, the frequency of Cryptosporidiosis and Giardiasis in horses in Ahvaz investigated. The feces samples were taken from 100 horses that keep in seven horse breeding clubs, during spring and summer. The ages of horses were from 1 month to 27 years old. Fecal samples were stained by modified Ziehl-Neelsen and Tri-chrome methods. Results were analyzed with Chi-square Test and Fisher’s exact test. The results showed that the rate of infection to Cryptosporidium and Giardia were 18% and 40%, respectively. There weren't significant differences between infection to Cryptosporidium and Giardia with sex, age and fecal constancy. Although, the rate of infection to Cryptosporidium in studied horses is very similar to other studies but it seems, the rate of infection to Giardia is high in compare to other studies were done in the other countries.

Keywords: Ahvaz, cryptosporidium, giardia, horse

Procedia PDF Downloads 363
1401 A New Sign Subband Adaptive Filter Based on Dynamic Selection of Subbands

Authors: Mohammad Shams Esfand Abadi, Mehrdad Zalaghi, Reza ebrahimpour

Abstract:

In this paper, we propose a sign adaptive filter algorithm with the ability of dynamic selection of subband filters which leads to low computational complexity compared with conventional sign subband adaptive filter (SSAF) algorithm. Dynamic selection criterion is based on largest reduction of the mean square deviation at each adaption. We demonstrate that this simple proposed algorithm has the same performance of the conventional SSAF and somewhat faster than it. In the presence of impulsive interferences robustness of the simple proposed algorithm as well as the conventional SSAF and outperform the conventional normalized subband adaptive filter (NSAF) algorithm. Therefore, it is preferred for environments under impulsive interferences. Simulation results are presented to verify these above considerations very well have been achieved.

Keywords: acoustic echo cancellation (AEC), normalized subband adaptive filter (NSAF), dynamic selection subband adaptive filter (DS-NSAF), sign subband adaptive filter (SSAF), impulsive noise, robust filtering

Procedia PDF Downloads 599
1400 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials

Authors: Rajesh Kumar G

Abstract:

A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.

Keywords: adaptive design, simulation, borrowing data, bayesian model

Procedia PDF Downloads 76
1399 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network

Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar

Abstract:

Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.

Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE

Procedia PDF Downloads 358
1398 Non-Linear Regression Modeling for Composite Distributions

Authors: Mostafa Aminzadeh, Min Deng

Abstract:

Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.

Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions

Procedia PDF Downloads 33
1397 Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles

Authors: Stephen Rathinaraj Benjamin, Flavio Colmati Junior, Maria Izabel Florindo Guedes, Rosa Amalia Fireman Dutra

Abstract:

A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results.

Keywords: cerium dioxide nanoparticles, horseradish peroxidase, multiwall carbon nanotubes, rutin

Procedia PDF Downloads 391
1396 Numerical Simulation of Wishart Diffusion Processes

Authors: Raphael Naryongo, Philip Ngare, Anthony Waititu

Abstract:

This paper deals with numerical simulation of Wishart processes for a single asset risky pricing model whose volatility is described by Wishart affine diffusion processes. The multi-factor specification of volatility will make the model more flexible enough to fit the stock market data for short or long maturities for better returns. The Wishart process is a stochastic process which is a positive semi-definite matrix-valued generalization of the square root process. The aim of the study is to model the log asset stock returns under the double Wishart stochastic volatility model. The solution of the log-asset return dynamics for Bi-Wishart processes will be obtained through Euler-Maruyama discretization schemes. The numerical results on the asset returns are compared to the existing models returns such as Heston stochastic volatility model and double Heston stochastic volatility model

Keywords: euler schemes, log-asset return, infinitesimal generator, wishart diffusion affine processes

Procedia PDF Downloads 378
1395 Higher Education and Empowerment of Women: A Case Study

Authors: Anupam Deka

Abstract:

Gender discrimination has been considered as a major obstacle in granting equal opportunity for woman in Higher education as education plays a pivotal role in a country’s socio-economic development. To examine the empowerment of women in the higher education field of Assam, a case study has been carried out. In the first stage, an overview of enrolment of students in different courses has been made by considering the whole state. In the second stage a study has been conducted regarding the enrolment of students in various degree and P-G courses for the period 2000-2007 under Gauhati University (which is one of the four universities of Assam) and the relevant data has been collected. It has been found that though the enrolment of students in the degree levels has been constantly increasing, but the enrolment of girls are not proportionately increasing, specially in commerce and law. On the other hand, in the post-graduate level, these proportions are higher in almost all the subjects (except some subjects like M. COM., L.L.M, M. C. A., Mathematics, etc.), indicating that more number of girls than boys are taking admission in the P-G courses.

Keywords: field study, enrolment of girls in degree and P G levels, regression lines, Chi Square test, diagrams and statistical tables

Procedia PDF Downloads 263
1394 Asymptotic Analysis of the Viscous Flow through a Pipe and the Derivation of the Darcy-Weisbach Law

Authors: Eduard Marusic-Paloka

Abstract:

The Darcy-Weisbach formula is used to compute the pressure drop of the fluid in the pipe, due to the friction against the wall. Because of its simplicity, the Darcy-Weisbach formula became widely accepted by engineers and is used for laminar as well as the turbulent flows through pipes, once the method to compute the mysterious friction coefficient was derived. Particularly in the second half of the 20th century. Formula is empiric, and our goal is to derive it from the basic conservation law, via rigorous asymptotic analysis. We consider the case of the laminar flow but with significant Reynolds number. In case of the perfectly smooth pipe, the situation is trivial, as the Navier-Stokes system can be solved explicitly via the Poiseuille formula leading to the friction coefficient in the form 64/Re. For the rough pipe, the situation is more complicated and some effects of the roughness appear in the friction coefficient. We start from the Navier-Stokes system in the pipe with periodically corrugated wall and derive an asymptotic expansion for the pressure and for the velocity. We use the homogenization techniques and the boundary layer analysis. The approximation derived by formal analysis is then justified by rigorous error estimate in the norm of the appropriate Sobolev space, using the energy formulation and classical a priori estimates for the Navier-Stokes system. Our method leads to the formula for the friction coefficient. The formula involves resolution of the appropriate boundary layer problems, namely the boundary value problems for the Stokes system in an infinite band, that needs to be done numerically. However, theoretical analysis characterising their nature can be done without solving them.

Keywords: Darcy-Weisbach law, pipe flow, rough boundary, Navier law

Procedia PDF Downloads 353
1393 Foreign Investment, Technological Diffusion and Competiveness of Exports: A Case for Textile Industry in Pakistan

Authors: Syed Toqueer Akhter, Muhammad Awais

Abstract:

Pakistan is a country which is gifted by naturally abundant resources these resources are a pioneer towards a prospect and developed country. Pakistan is the fourth largest exporter of the textile in the world and with the passage of time the competitiveness of these exports is subject to a decline. With a lot of International players in the textile world like China, Bangladesh, India, and Sri Lanka, Pakistan needs to put up a lot of effort to compete with these countries. This research paper would determine the impact of Foreign Direct Investment upon technological diffusion and that how significantly it may be affecting on export performance of the country. It would also demonstrate that with the increase in Foreign Direct Investment, technological diffusion, strong property rights, and using different policy tools, export competitiveness of the country could be improved. The research has been carried out using time series data from 1995 to 2013 and the results have been estimated by using competing Econometrics modes such as Robust regression and Generalized least squares so that to consolidate the impact of the Foreign Investments and Technological diffusion upon export competitiveness comprehensively. Distributed Lag model has also been used to encompass the lagged effect of policy tools variables used by the government. Model estimates entail that 'FDI' and 'Technological Diffusion' do have a significant impact on the competitiveness of the exports of Pakistan. It may also be inferred that competitiveness of Textile Sector requires integrated policy framework, primarily including the reduction in interest rates, providing subsides, and manufacturing of value added products.

Keywords: high technology export, robust regression, patents, technological diffusion, export competitiveness

Procedia PDF Downloads 500
1392 Benthic Cover in Coral Reef Environments under Influence of Submarine Groundwater Discharges

Authors: Arlett A. Rosado-Torres, Ismael Marino-Tapia

Abstract:

Changes in benthic cover of coral dominated systems to macroalgae dominance are widely studied worldwide. Watershed pollutants are potentially as important as overfishing causing phase shift. In certain regions of the world most of the continental inputs are through submarine groundwater discharges (SGD), which can play a significant ecological role because the concentration of its nutrients is usually greater that the one found in surface seawater. These stressors have adversely affected coral reefs, particularly in the Caribbean. Measurements of benthic cover (with video tracing, through a Go Pro camera), reef roughness (acoustic estimates with an Acoustic Doppler Current Velocity profiler and a differential GPS), thermohaline conditions (conductivity-temperature-depth (CTD) instrument) and nutrient measurements were taken in different sites in the reef lagoon of Puerto Morelos, Q. Roo, Mexico including those with influence of SGD and without it. The results suggest a link between SGD, macroalgae cover and structural complexity. Punctual water samples and data series from a CTD Diver confirm the presence of the SGD. On the site where the SGD is, the macroalgae cover is larger than in the other sites. To establish a causal link between this phase shift and SGD, the DELFT 3D hydrodynamic model (FLOW and WAVE modules) was performed under different environmental conditions and discharge magnitudes. The model was validated using measurements of oceanographic instruments anchored in the lagoon and forereef. The SGD is consistently favoring macroalgae populations and affecting structural complexity of the reef.

Keywords: hydrodynamic model, macroalgae, nutrients, phase shift

Procedia PDF Downloads 152
1391 A Case Study of Assessing the Impact of Electronic Payment System on the Service Delivery of Banks in Nigeria

Authors: Idris Lawal

Abstract:

Electronic payment system is simply a payment or monetary transaction made over the internet or a network of computers. This study was carried out in order to assess how electronic payment system has impacted on banks service delivery, to examine the efficiency of electronic payment system in Nigeria and to determine the level of customer's satisfaction as a direct result of the deployment of electronic payment systems. It is an empirical study conducted using structured questionnaire distributed to officials and customers of Access Bank plc. Chi-square(x2) was adopted for the purpose of data analysis. The result of the study showed that the development of electronic payment system offer great benefit to bank customers including improved services, reduced turn-around time, ease of banking transaction, significant cost saving etc. The study recommends that customer protection laws should be properly put in place to safeguard the interest of end users of e-payment instruments.

Keywords: bank, electronic payment systems, service delivery, customer's satisfaction

Procedia PDF Downloads 398
1390 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 205
1389 Kinetic Modeling of Transesterification of Triacetin Using Synthesized Ion Exchange Resin (SIERs)

Authors: Hafizuddin W. Yussof, Syamsutajri S. Bahri, Adam P. Harvey

Abstract:

Strong anion exchange resins with QN+OH-, have the potential to be developed and employed as heterogeneous catalyst for transesterification, as they are chemically stable to leaching of the functional group. Nine different SIERs (SIER1-9) with QN+OH- were prepared by suspension polymerization of vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers in the presence of n-heptane (pore-forming agent). The amine group was successfully grafted into the polymeric resin beads through functionalization with trimethylamine. These SIERs are then used as a catalyst for the transesterification of triacetin with methanol. A set of differential equations that represents the Langmuir-Hinshelwood-Hougen-Watson (LHHW) and Eley-Rideal (ER) models for the transesterification reaction were developed. These kinetic models of LHHW and ER were fitted to the experimental data. Overall, the synthesized ion exchange resin-catalyzed reaction were well-described by the Eley-Rideal model compared to LHHW models, with sum of square error (SSE) of 0.742 and 0.996, respectively.

Keywords: anion exchange resin, Eley-Rideal, Langmuir-Hinshelwood-Hougen-Watson, transesterification

Procedia PDF Downloads 361
1388 Accounting and Auditing Standards Influence on Income Smoothing Perspective in Islamic Financial Institutions

Authors: Fatma Ezzahra Kateb, Neila Boulila Taktak, Mohamed Kabir Hassan

Abstract:

We examine the impact of Islamic accounting and auditing standards issued by the Accounting and Auditing Organization for Islamic Financial Institutions (AAOIFI) on the income smoothing perspective of Islamic financial institutions located in the Middle East and North Africa region between 2013 and 2018. Based on General Least square regression for panel data, we find a significant and positive relationship between intentional income smoothing and earning persistence and cash flow predictability in all models. However, we discovered that AAOIFI accounting standards (FAS) had a negative and significant effect on intentional income smoothing and earning persistence. As a result, the income smoothing efficiency is lower for IFIs that use FASs than IFIs that use IFRSs. Our findings emphasize the need for specific standards to enhance the relevance of financial reports disclosed by Islamic financial institutions.

Keywords: AAOIFI, financial reporting quality, income smoothing perspective, MENA countries

Procedia PDF Downloads 94
1387 Satellite LiDAR-Based Digital Terrain Model Correction using Gaussian Process Regression

Authors: Keisuke Takahata, Hiroshi Suetsugu

Abstract:

Forest height is an important parameter for forest biomass estimation, and precise elevation data is essential for accurate forest height estimation. There are several globally or nationally available digital elevation models (DEMs) like SRTM and ASTER. However, its accuracy is reported to be low particularly in mountainous areas where there are closed canopy or steep slope. Recently, space-borne LiDAR, such as the Global Ecosystem Dynamics Investigation (GEDI), have started to provide sparse but accurate ground elevation and canopy height estimates. Several studies have reported the high degree of accuracy in their elevation products on their exact footprints, while it is not clear how this sparse information can be used for wider area. In this study, we developed a digital terrain model correction algorithm by spatially interpolating the difference between existing DEMs and GEDI elevation products by using Gaussian Process (GP) regression model. The result shows that our GP-based methodology can reduce the mean bias of the elevation data from 3.7m to 0.3m when we use airborne LiDAR-derived elevation information as ground truth. Our algorithm is also capable of quantifying the elevation data uncertainty, which is critical requirement for biomass inventory. Upcoming satellite-LiDAR missions, like MOLI (Multi-footprint Observation Lidar and Imager), are expected to contribute to the more accurate digital terrain model generation.

Keywords: digital terrain model, satellite LiDAR, gaussian processes, uncertainty quantification

Procedia PDF Downloads 182
1386 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 221