Search results for: europium dinuclear complex
4378 Study on Accurate Calculation Method of Model Attidude on Wind Tunnel Test
Authors: Jinjun Jiang, Lianzhong Chen, Rui Xu
Abstract:
The accurate of model attitude angel plays an important role on the aerodynamic test results in the wind tunnel test. The original method applies the spherical coordinate system transformation to obtain attitude angel calculation.The model attitude angel is obtained by coordinate transformation and spherical surface mapping applying the nominal attitude angel (the balance attitude angel in the wind tunnel coordinate system) indicated by the mechanism. First, the coordinate transformation of this method is not only complex but also difficult to establish the transformed relationship between the space coordinate systems especially after many steps of coordinate transformation, moreover it cannot realize the iterative calculation of the interference relationship between attitude angels; Second, during the calculate process to solve the problem the arc is approximately used to replace the straight line, the angel for the tangent value, and the inverse trigonometric function is applied. Therefore, in the calculation of attitude angel, the process is complex and inaccurate, which can be solved approximately when calculating small attack angel. However, with the advancing development of modern aerodynamic unsteady research, the aircraft tends to develop high or super large attack angel and unsteadyresearch field.According to engineering practice and vector theory, the concept of vector angel coordinate systemis proposed for the first time, and the vector angel coordinate system of attitude angel is established.With the iterative correction calculation and avoiding the problem of approximate and inverse trigonometric function solution, the model attitude calculation process is carried out in detail, which validates that the calculation accuracy and accuracy of model attitude angels are improved.Based on engineering and theoretical methods, a vector angel coordinate systemis established for the first time, which gives the transformation and angel definition relations between different flight attitude coordinate systems, that can accurately calculate the attitude angel of the corresponding coordinate systemand determine its direction, especially in the channel coupling calculation, the calculation of the attitude angel between the coordinate systems is only related to the angel, and has nothing to do with the change order s of the coordinate system, whichsimplifies the calculation process.Keywords: attitude angel, angel vector coordinate system, iterative calculation, spherical coordinate system, wind tunnel test
Procedia PDF Downloads 1444377 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing
Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed
Abstract:
It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC
Procedia PDF Downloads 1854376 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China
Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li
Abstract:
Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.Keywords: heterogeneity, homogeneous unit, multiscale, shale
Procedia PDF Downloads 4504375 Design Optimisation of a Novel Cross Vane Expander-Compressor Unit for Refrigeration System
Authors: Y. D. Lim, K. S. Yap, K. T. Ooi
Abstract:
In recent years, environmental issue has been a hot topic in the world, especially the global warming effect caused by conventional non-environmentally friendly refrigerants has increased. Several studies of a more energy-efficient and environmentally friendly refrigeration system have been conducted in order to tackle the issue. In search of a better refrigeration system, CO2 refrigeration system has been proposed as a better option. However, the high throttling loss involved during the expansion process of the refrigeration cycle leads to a relatively low efficiency and thus the system is impractical. In order to improve the efficiency of the refrigeration system, it is suggested by replacing the conventional expansion valve in the refrigeration system with an expander. Based on this issue, a new type of expander-compressor combined unit, named Cross Vane Expander-Compressor (CVEC) was introduced to replace the compressor and the expansion valve of a conventional refrigeration system. A mathematical model was developed to calculate the performance of CVEC, and it was found that the machine is capable of saving the energy consumption of a refrigeration system by as much as 18%. Apart from energy saving, CVEC is also geometrically simpler and more compact. To further improve its efficiency, optimization study of the device is carried out. In this report, several design parameters of CVEC were chosen to be the variables of optimization study. This optimization study was done in a simulation program by using complex optimization method, which is a direct search, multi-variables and constrained optimization method. It was found that the main design parameters, which was shaft radius was reduced around 8% while the inner cylinder radius was remained unchanged at its lower limit after optimization. Furthermore, the port sizes were increased to their upper limit after optimization. The changes of these design parameters have resulted in reduction of around 12% in the total frictional loss and reduction of 4% in power consumption. Eventually, the optimization study has resulted in an improvement in the mechanical efficiency CVEC by 4% and improvement in COP by 6%.Keywords: complex optimization method, COP, cross vane expander-compressor, CVEC, design optimization, direct search, energy saving, improvement, mechanical efficiency, multi variables
Procedia PDF Downloads 3724374 Fuglede-Putnam Theorem for ∗-Class A Operators
Authors: Mohammed Husein Mohammad Rashid
Abstract:
For a bounded linear operator T acting on a complex infinite dimensional Hilbert space ℋ, we say that T is ∗-class A operator (abbreviation T∈A*) if |T²|≥ |T*|². In this article, we prove the following assertions:(i) we establish some conditions which imply the normality of ∗-class A; (ii) we consider ∗-class A operator T ∈ ℬ(ℋ) with reducing kernel such that TX = XS for some X ∈ ℬ(K, ℋ) and prove the Fuglede-Putnam type theorem when adjoint of S ∈ ℬ(K) is dominant operators; (iii) furthermore, we extend the asymmetric Putnam-Fuglede theorem the class of ∗-class A operators.Keywords: fuglede-putnam theorem, normal operators, ∗-class a operators, dominant operators
Procedia PDF Downloads 864373 Interrogating Student-Teachers’ Transformative Learning Role, Resources and Journey Considering Pedagogical Reform in Teacher Education Continuums
Authors: Nji Clement Bang, Rosemary Shafack M., Kum Henry Asei, Yaro Loveline Y
Abstract:
Scholars perceive learner-centered teaching-learning reform as roles and resources in teacher education (TE) and professional outcome with transformative learning (TL) continuum dimensions. But, teaching-learning reform is fast proliferating amidst debilitating stakeholder systemic dichotomies, resources, commitment, resistance and poor quality outcome that necessitate stronger TE and professional continuums. Scholars keep seeking greater understanding of themes in teaching-learning reform, TE and professional outcome as continuums and how policymakers, student-teachers, teacher trainers and local communities concerned with initial TE can promote continuous holistic quality performance. To sustain the debate continuum and answer the overarching question, we use mixed-methods research-design with diverse literature and 409 sample-data. Onset text, interview and questionnaire analyses reveal debilitating teaching-learning reform in TE continuums that need TL revival. Follow-up focus group discussion and teaching considering TL insights reinforce holistic teaching-learning in TE. Therefore, significant increase in diverse prior-experience articulation1; critical reflection-discourse engagement2; teaching-practice interaction3; complex-activity constrain control4 and formative outcome- reintegration5 reinforce teaching-learning in learning-to-teach role-resource pathways and outcomes. Themes reiterate complex teaching-learning in TE programs that suits TL journeys and student-teachers and students cum teachers, workers/citizens become akin, transformative-learners who evolve personal and collective roles-resources towards holistic-lifelong-learning outcomes. The article could assist debate about quality teaching-learning reform through TL dimensions as TE and professional role-resource continuums.Keywords: transformative learning perspectives, teacher education, initial teacher education, learner-centered pedagogical reform, life-long learning
Procedia PDF Downloads 754372 Characterization of Platelet Mitochondrial Metabolism in COVID-19 Caused Acute Respiratory Distress Syndrome (ARDS)
Authors: Anna Höfer, Johannes Herrmann, Patrick Meybohm, Christopher Lotz
Abstract:
Mitochondria are pivotal for energy supply and regulation of cellular functions. Deficiencies of mitochondrial metabolism have been implicated in diverse stressful conditions including infections. Platelets are key mediators for thrombo-inflammation during development and resolution of acute respiratory distress syndrome (ARDS). Previous data point to an exhausted platelet phenotype in critically-ill patients with coronavirus 19 disease (COVID-19) impacting the course of disease. The objective of this work was to characterize platelet mitochondrial metabolism in patients suffering from COVID-19 ARDSA longitudinal analysis of platelet mitochondrial metabolism in 24 patients with COVID-19 induced ARDS compared to 35 healthy controls (ctrl) was performed. Blood samples were analyzed at two time points (t1=day 1; t2=day 5-7 after study inclusion). The activity of mitochondrial citrate synthase was photometrically measured. The impact of oxidative stress on mitochondrial permeability was assessed by a photometric calcium-induced swelling assay and the activity of superoxide dismutase (SOD) by a SOD assay kit. The amount of protein carbonylation and the activity of mitochondria complexes I-IV were photometrically determined. Levels of interleukins (IL)-1α, IL-1β and tumor necrosis factor (TNF-) α were measured by a Multiplex assay kit. Median age was 54 years, 63 % were male and BMI was 29.8 kg/m2. SOFA (12; IQR: 10-15) and APACHE II (27; IQR: 24-30) indicated critical illness. Median Murray Score was 3.4 (IQR: 2.8-3.4), 21/24 (88%) required mechanical ventilation and V-V ECMO support in 14/24 (58%). Platelet counts in ARDS did not change during ICU stay (t1: 212 vs. t2: 209 x109/L). However, mean platelet volume (MPV) significantly increased (t1: 10.6 vs. t2: 11.9 fL; p<0.0001). Citrate synthase activity showed no significant differences between ctrl and ARDS patients. Calcium induced swelling was more pronounced in patients at t1 compared to t2 and to ctrl (50µM; t1: 0.006 vs. ctrl: 0.016 ΔOD; p=0.001). The amount of protein carbonylation as marker for irreversible proteomic modification constantly increased during ICU stay and compared to ctrl., without reaching significance. In parallel, superoxid dismutase activity gradually declined during ICU treatment vs. ctrl (t2: - 29 vs. ctrl.: - 17 %; p=0.0464). Complex I analysis revealed significantly stronger activity in ARDS vs. ctrl. (t1: 0.633 vs. ctrl.: 0.415 ΔOD; p=0.0086). There were no significant differences in complex II, III or IV activity in platelets from ARDS patients compared to ctrl. IL-18 constantly increased during the observation period without reaching significance. IL-1α and TNF-α did not differ from ctrl. However, IL-1β levels were significantly elevated in ARDS (t1: 16.8; t2: 16.6 vs. ctrl.: 12.4 pg/mL; p1=0.0335, p2=0.0032). This study reveals new insights in platelet mitochondrial metabolism during COVID-19 caused ARDS. it data point towards enhanced platelet activity with a pronounced turnover rate. We found increased activity of mitochondria complex I and evidence for enhanced oxidative stress. In parallel, protective mechanisms against oxidative stress were narrowed with elevated levels of IL-1β likely causing a pro-apoptotic environment. These mechanisms may contribute to platelet exhaustion in ARDS.Keywords: acute respiratory distress syndrome (ARDS), coronavirus 19 disease (COVID-19), oxidative stress, platelet mitochondrial metabolism
Procedia PDF Downloads 594371 Integrating Technology into Foreign Language Teaching: A Closer Look at Arabic Language Instruction at the Australian National University
Authors: Kinda Alsamara
Abstract:
Foreign language education is a complex endeavor that often presents educators with a range of challenges and difficulties. This study shed light on the specific challenges encountered in the context of teaching Arabic as a foreign language at the Australian National University (ANU). Drawing from real-world experiences and insights, we explore the multifaceted nature of these challenges and discuss strategies that educators have employed to address them. The challenges in teaching the Arabic language encompass various dimensions, including linguistic intricacies, cultural nuances, and diverse learner backgrounds. The complex Arabic script, grammatical structures, and pronunciation patterns pose unique obstacles for learners. Moreover, the cultural context embedded within the language demands a nuanced understanding of cultural norms and practices. The diverse backgrounds of learners further contribute to the challenge of tailoring instruction to meet individual needs and proficiency levels. This study also underscores the importance of technology in tackling these challenges. Technological tools and platforms offer innovative solutions to enhance language acquisition and engagement. Online resources, interactive applications, and multimedia content can provide learners with immersive experiences, aiding in overcoming barriers posed by traditional teaching methods. Furthermore, this study addresses the role of instructors in mitigating challenges. Educators often find themselves adapting teaching approaches to accommodate different learning styles, abilities, and motivations. Establishing a supportive learning environment and fostering a sense of community can contribute significantly to overcoming challenges related to learner diversity. In conclusion, this study provides a comprehensive overview of the challenges faced in teaching Arabic as a foreign language at ANU. By recognizing these challenges and embracing technological and pedagogical advancements, educators can create more effective and engaging learning experiences for students pursuing Arabic language proficiency.Keywords: Arabic, Arabic online, blended learning, teaching and learning, Arabic language, educational aids, technology
Procedia PDF Downloads 614370 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia PDF Downloads 1414369 Cellular Automata Using Fractional Integral Model
Authors: Yasser F. Hassan
Abstract:
In this paper, a proposed model of cellular automata is studied by means of fractional integral function. A cellular automaton is a decentralized computing model providing an excellent platform for performing complex computation with the help of only local information. The paper discusses how using fractional integral function for representing cellular automata memory or state. The architecture of computing and learning model will be given and the results of calibrating of approach are also given.Keywords: fractional integral, cellular automata, memory, learning
Procedia PDF Downloads 4104368 Bayesian Parameter Inference for Continuous Time Markov Chains with Intractable Likelihood
Authors: Randa Alharbi, Vladislav Vyshemirsky
Abstract:
Systems biology is an important field in science which focuses on studying behaviour of biological systems. Modelling is required to produce detailed description of the elements of a biological system, their function, and their interactions. A well-designed model requires selecting a suitable mechanism which can capture the main features of the system, define the essential components of the system and represent an appropriate law that can define the interactions between its components. Complex biological systems exhibit stochastic behaviour. Thus, using probabilistic models are suitable to describe and analyse biological systems. Continuous-Time Markov Chain (CTMC) is one of the probabilistic models that describe the system as a set of discrete states with continuous time transitions between them. The system is then characterised by a set of probability distributions that describe the transition from one state to another at a given time. The evolution of these probabilities through time can be obtained by chemical master equation which is analytically intractable but it can be simulated. Uncertain parameters of such a model can be inferred using methods of Bayesian inference. Yet, inference in such a complex system is challenging as it requires the evaluation of the likelihood which is intractable in most cases. There are different statistical methods that allow simulating from the model despite intractability of the likelihood. Approximate Bayesian computation is a common approach for tackling inference which relies on simulation of the model to approximate the intractable likelihood. Particle Markov chain Monte Carlo (PMCMC) is another approach which is based on using sequential Monte Carlo to estimate intractable likelihood. However, both methods are computationally expensive. In this paper we discuss the efficiency and possible practical issues for each method, taking into account the computational time for these methods. We demonstrate likelihood-free inference by performing analysing a model of the Repressilator using both methods. Detailed investigation is performed to quantify the difference between these methods in terms of efficiency and computational cost.Keywords: Approximate Bayesian computation(ABC), Continuous-Time Markov Chains, Sequential Monte Carlo, Particle Markov chain Monte Carlo (PMCMC)
Procedia PDF Downloads 2014367 Toward a Coalitional Subject in Contemporary American Feminist Literature
Authors: Su-Lin Yu
Abstract:
Coalition politics has been one of feminists’ persistent concerns. Following recent feminist discussion on new modes of affiliation across difference, she will explore how the process of female subject formation depends on alliances across different cultural locations. First, she will examine how coalition politics is reformulated across difference in contemporary feminist literature. In particular, the paper will identify the particular contexts and locations in which coalition building both enables and constrains the female subject. She will attempt to explore how contemporary feminist literature highlights the possibilities and limitations for solidarity and affiliations. To understand coalition politics in contemporary feminist works, she will engage in close readings of two texts: Rebecca Walker’s Black, White and Jewish: Memoir of a Shifting Self and Danzy Senna’s Caucasia. Both Walker and Senna have articulated the complex nodes of identity that are staged by a politics of location as they refuse to be boxed into simplistic essentialist positions. Their texts are characterized by the characters’ racial ambiguity and their social and geographical mobility of life in the contemporary United States. Their experiences of living through conflictual and contradictory relationships never fully fit the boundaries of racial categorization. Each of these texts demonstrates the limits as well as the possibilities of working with diversity among and within persons and groups, thus, laying the ground for complex alliance formation. Because each of the protagonists must negotiate a set of contradictions, they will have to constantly shift their affiliations. Rather than construct a static alliance, they describe a process of moving ‘beyond boundaries,’ an embracing of multiple locations. As self-identified third wavers, Rebecca Walker and Danzy Senna have been identified and marked with the status of ‘leader’ by the feminist establishment and by mainstream U.S. media. Their texts have captured both mass popularity and critical attention in the feminist and, often, the non-feminist literary community. By analyzing these texts, she will show how contemporary American feminist literature reveals coalition politics which is fraught with complications and unintended consequences. Taken as a whole, then, these works provide an important examination not only of coalition politics of American feminism, but also a snapshot of a central debate among feminist critique of coalition politics as a whole.Keywords: coalition politics, contemporary women’s literature, identity, female subject
Procedia PDF Downloads 2884366 Site Specific Nutrient Management Need in India Now
Authors: A. H. Nanher, N. P. Singh, Shashidhar Yadav, Sachin Tyagi
Abstract:
Agricultural production system is an outcome of a complex interaction of seed, soil, water and agro-chemicals (including fertilizers). Therefore, judicious management of all the inputs is essential for the sustainability of such a complex system. Precision agriculture gives farmers the ability to use crop inputs more effectively including fertilizers, pesticides, tillage and irrigation water. More effective use of inputs means greater crop yield and/or quality, without polluting the environment the focus on enhancing the productivity during the Green Revolution coupled with total disregard of proper management of inputs and without considering the ecological impacts, has resulted into environmental degradation. To evaluate a new approach for site-specific nutrient management (SSNM). Large variation in initial soil fertility characteristics and indigenous supply of N, P, and K was observed among Field- and season-specific NPK applications were calculated by accounting for the indigenous nutrient supply, yield targets, and nutrient demand as a function of the interactions between N, P, and K. Nitrogen applications were fine-tuned based on season-specific rules and field-specific monitoring of crop N status. The performance of SSNM did not differ significantly between high-yielding and low-yielding climatic seasons, but improved over time with larger benefits observed in the second year Future, strategies for nutrient management in intensive rice systems must become more site-specific and dynamic to manage spatially and temporally variable resources based on a quantitative understanding of the congruence between nutrient supply and crop demand. The SSNM concept has demonstrated promising agronomic and economic potential. It can be used for managing plant nutrients at any scale, i.e., ranging from a general recommendation for homogenous management of a larger domain to true management of between-field variability. Assessment of pest profiles in FFP and SSNM plots suggests that SSNM may also reduce pest incidence, particularly diseases that are often associated with excessive N use or unbalanced plant nutrition.Keywords: nutrient, pesticide, crop, yield
Procedia PDF Downloads 4284365 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1664364 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1584363 Mesoporous Na2Ti3O7 Nanotube-Constructed Materials with Hierarchical Architecture: Synthesis and Properties
Authors: Neumoin Anton Ivanovich, Opra Denis Pavlovich
Abstract:
Materials based on titanium oxide compounds are widely used in such areas as solar energy, photocatalysis, food industry and hygiene products, biomedical technologies, etc. Demand for them has also formed in the battery industry (an example of this is the commercialization of Li4Ti5O12), where much attention has recently been paid to the development of next-generation systems and technologies, such as sodium-ion batteries. This dictates the need to search for new materials with improved characteristics, as well as ways to obtain them that meet the requirements of scalability. One of the ways to solve these problems can be the creation of nanomaterials that often have a complex of physicochemical properties that radically differ from the characteristics of their counterparts in the micro- or macroscopic state. At the same time, it is important to control the texture (specific surface area, porosity) of such materials. In view of the above, among other methods, the hydrothermal technique seems to be suitable, allowing a wide range of control over the conditions of synthesis. In the present study, a method was developed for the preparation of mesoporous nanostructured sodium trititanate (Na2Ti3O7) with a hierarchical architecture. The materials were synthesized by hydrothermal processing and exhibit a complex hierarchically organized two-layer architecture. At the first level of the hierarchy, materials are represented by particles having a roughness surface, and at the second level, by one-dimensional nanotubes. The products were found to have high specific surface area and porosity with a narrow pore size distribution (about 6 nm). As it is known, the specific surface area and porosity are important characteristics of functional materials, which largely determine the possibilities and directions of their practical application. Electrochemical impedance spectroscopy data show that the resulting sodium trititanate has a sufficiently high electrical conductivity. As expected, the synthesized complexly organized nanoarchitecture based on sodium trititanate with a porous structure can be practically in demand, for example, in the field of new generation electrochemical storage and energy conversion devices.Keywords: sodium trititanate, hierarchical materials, mesoporosity, nanotubes, hydrothermal synthesis
Procedia PDF Downloads 1064362 Robust Control of a Parallel 3-RRR Robotic Manipulator via μ-Synthesis Method
Authors: A. Abbasi Moshaii, M. Soltan Rezaee, M. Mohammadi Moghaddam
Abstract:
Control of some mechanisms is hard because of their complex dynamic equations. If part of the complexity is resulting from uncertainties, an efficient way for solving that is robust control. By this way, the control procedure could be simple and fast and finally, a simple controller can be designed. One kind of these mechanisms is 3-RRR which is a parallel mechanism and has three revolute joints. This paper aims to robust control a 3-RRR planner mechanism and it presents that this could be used for other mechanisms. So, a significant problem in mechanisms control could be solved. The relevant diagrams are drawn and they show the correctness of control process.Keywords: 3-RRR, dynamic equations, mechanisms control, structural uncertainty
Procedia PDF Downloads 5554361 Spatio-Temporal Analysis of Land Use Change and Green Cover Index
Authors: Poonam Sharma, Ankur Srivastav
Abstract:
Cities are complex and dynamic systems that constitute a significant challenge to urban planning. The increasing size of the built-up area owing to growing population pressure and economic growth have lead to massive Landuse/Landcover change resulted in the loss of natural habitat and thus reducing the green covers in urban areas. Urban environmental quality is influenced by several aspects, including its geographical configuration, the scale, and nature of human activities occurring and environmental impacts generated. Cities have transformed into complex and dynamic systems that constitute a significant challenge to urban planning. Cities and their sustainability are often discussed together as the cities stand confronted with numerous environmental concerns as the world becoming increasingly urbanized, and the cities are situated in the mesh of global networks in multiple senses. A rapid transformed urban setting plays a crucial role to change the green area of natural habitats. To examine the pattern of urban growth and to measure the Landuse/Landcover change in Gurgoan in Haryana, India through the integration of Geospatial technique is attempted in the research paper. Satellite images are used to measure the spatiotemporal changes that have occurred in the land use and land cover resulting into a new cityscape. It has been observed from the analysis that drastically evident changes in land use has occurred with the massive rise in built up areas and the decrease in green cover and therefore causing the sustainability of the city an important area of concern. The massive increase in built-up area has influenced the localised temperatures and heat concentration. To enhance the decision-making process in urban planning, a detailed and real world depiction of these urban spaces is the need of the hour. Monitoring indicators of key processes in land use and economic development are essential for evaluating policy measures.Keywords: cityscape, geospatial techniques, green cover index, urban environmental quality, urban planning
Procedia PDF Downloads 2764360 Development of Building Information Modeling in Property Industry: Beginning with Building Information Modeling Construction
Authors: B. Godefroy, D. Beladjine, K. Beddiar
Abstract:
In France, construction BIM actors commonly evoke the BIM gains for exploitation by integrating of the life cycle of a building. The standardization of level 7 of development would achieve this stage of the digital model. The householders include local public authorities, social landlords, public institutions (health and education), enterprises, facilities management companies. They have a dual role: owner and manager of their housing complex. In a context of financial constraint, the BIM of exploitation aims to control costs, make long-term investment choices, renew the portfolio and enable environmental standards to be met. It assumes a knowledge of the existing buildings, marked by its size and complexity. The information sought must be synthetic and structured, it concerns, in general, a real estate complex. We conducted a study with professionals about their concerns and ways to use it to see how householders could benefit from this development. To obtain results, we had in mind the recurring interrogation of the project management, on the needs of the operators, we tested the following stages: 1) Inculcate a minimal culture of BIM with multidisciplinary teams of the operator then by business, 2) Learn by BIM tools, the adaptation of their trade in operations, 3) Understand the place and creation of a graphic and technical database management system, determine the components of its library so their needs, 4) Identify the cross-functional interventions of its managers by business (operations, technical, information system, purchasing and legal aspects), 5) Set an internal protocol and define the BIM impact in their digital strategy. In addition, continuity of management by the integration of construction models in the operation phase raises the question of interoperability in the control of the production of IFC files in the operator’s proprietary format and the export and import processes, a solution rivaled by the traditional method of vectorization of paper plans. Companies that digitize housing complex and those in FM produce a file IFC, directly, according to their needs without recourse to the model of construction, they produce models business for the exploitation. They standardize components, equipment that are useful for coding. We observed the consequences resulting from the use of the BIM in the property industry and, made the following observations: a) The value of data prevail over the graphics, 3D is little used b) The owner must, through his organization, promote the feedback of technical management information during the design phase c) The operator's reflection on outsourcing concerns the acquisition of its information system and these services, observing the risks and costs related to their internal or external developments. This study allows us to highlight: i) The need for an internal organization of operators prior to a response to the construction management ii) The evolution towards automated methods for creating models dedicated to the exploitation, a specialization would be required iii) A review of the communication of the project management, management continuity not articulating around his building model, it must take into account the environment of the operator and reflect on its scope of action.Keywords: information system, interoperability, models for exploitation, property industry
Procedia PDF Downloads 1444359 Intersectionality and Sensemaking: Advancing the Conversation on Leadership as the Management of Meaning
Authors: Clifford Lewis
Abstract:
This paper aims to advance the conversation of an alternative view of leadership, namely ‘leadership as the management of meaning’. Here, leadership is considered as a social process of the management of meaning within an employment context, as opposed to a psychological trait, set of behaviours or relational consequence as seen in mainstream leadership research. Specifically, this study explores the relationship between intersectional identities and the management of meaning. Design: Semi-structured, one-on-one interviews were conducted with women and men of colour working in the South African private sector organisations in various leadership positions. Employing an intersectional approach using gender and race, participants were selected by using purposive and snowball sampling concurrently. Thematic and Axial coding was used to identify dominant themes. Findings: Findings suggest that, both gender and race shape how leaders manage meaning. Findings also confirm that intersectionality is an appropriate approach when studying the leadership experiences of those groups who are underrepresented in organisational leadership structures. The findings points to the need for further research into the differential effects of intersecting identities on organisational leadership experiences and that ‘leadership as the management of meaning’ is an appropriate approach for addressing this knowledge gap. Theoretical Contribution: There is a large body of literature on the complex challenges faced by women and people of colour in leadership but there is relatively little empirical work on how identity influences the management of meaning. This study contributes to the leadership literature by providing insight into how intersectional identities influence the management of meaning at work and how this impacts the leadership experiences of largely marginalised groups. Practical Implications: Understanding the leadership experiences of underrepresented groups is important because of both legal mandates and for building diverse talent for organisations and societies. Such an understanding assists practitioners in being sensitive to simplistic notions of challenges individuals might face in accessing and practicing leadership in organisations. Advancing the conversation on leadership as the management of meaning allows for a better understanding of complex challenges faced by women and people of colour and an opportunity for organisations to systematically remove unfair structural obstacles and develop their diverse leadership capacity.Keywords: intersectionality, diversity, leadership, sensemaking
Procedia PDF Downloads 2724358 A Resilience-Based Approach for Assessing Social Vulnerability in New Zealand's Coastal Areas
Authors: Javad Jozaei, Rob G. Bell, Paula Blackett, Scott A. Stephens
Abstract:
In the last few decades, Social Vulnerability Assessment (SVA) has been a favoured means in evaluating the susceptibility of social systems to drivers of change, including climate change and natural disasters. However, the application of SVA to inform responsive and practical strategies to deal with uncertain climate change impacts has always been challenging, and typically agencies resort back to conventional risk/vulnerability assessment. These challenges include complex nature of social vulnerability concepts which influence its applicability, complications in identifying and measuring social vulnerability determinants, the transitory social dynamics in a changing environment, and unpredictability of the scenarios of change that impacts the regime of vulnerability (including contention of when these impacts might emerge). Research suggests that the conventional quantitative approaches in SVA could not appropriately address these problems; hence, the outcomes could potentially be misleading and not fit for addressing the ongoing uncertain rise in risk. The second phase of New Zealand’s Resilience to Nature’s Challenges (RNC2) is developing a forward-looking vulnerability assessment framework and methodology that informs the decision-making and policy development in dealing with the changing coastal systems and accounts for complex dynamics of New Zealand’s coastal systems (including socio-economic, environmental and cultural). Also, RNC2 requires the new methodology to consider plausible drivers of incremental and unknowable changes, create mechanisms to enhance social and community resilience; and fits the New Zealand’s multi-layer governance system. This paper aims to analyse the conventional approaches and methodologies in SVA and offer recommendations for more responsive approaches that inform adaptive decision-making and policy development in practice. The research adopts a qualitative research design to examine different aspects of the conventional SVA processes, and the methods to achieve the research objectives include a systematic review of the literature and case study methods. We found that the conventional quantitative, reductionist and deterministic mindset in the SVA processes -with a focus the impacts of rapid stressors (i.e. tsunamis, floods)- show some deficiencies to account for complex dynamics of social-ecological systems (SES), and the uncertain, long-term impacts of incremental drivers. The paper will focus on addressing the links between resilience and vulnerability; and suggests how resilience theory and its underpinning notions such as the adaptive cycle, panarchy, and system transformability could address these issues, therefore, influence the perception of vulnerability regime and its assessment processes. In this regard, it will be argued that how a shift of paradigm from ‘specific resilience’, which focuses on adaptive capacity associated with the notion of ‘bouncing back’, to ‘general resilience’, which accounts for system transformability, regime shift, ‘bouncing forward’, can deliver more effective strategies in an era characterised by ongoing change and deep uncertainty.Keywords: complexity, social vulnerability, resilience, transformation, uncertain risks
Procedia PDF Downloads 1004357 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving
Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian
Abstract:
In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning
Procedia PDF Downloads 1444356 Supramolecular Approach towards Novel Applications: Battery, Band Gap and Gas Separation
Authors: Sudhakara Naidu Neppalli, Tejas S. Bhosale
Abstract:
It is well known that the block copolymer (BCP) can form a complex molecule, through non-covalent bonds such as hydrogen bond, ionic bond and co-ordination bond, with low molecular weight compound as well as with macromolecules, which provide vast applications, includes the alteration of morphology and properties of polymers. Hence we covered the research that, the importance of non-covalent bonds in increasing the non-favourable segmental interactions of the blocks was well examined by attaching and detaching the bonds between the BCP and additive. We also monitored the phase transition of block copolymer and effective interaction parameter (χeff) for Li-doped polymers using small angle x-ray scattering and transmission electron microscopy. The effective interaction parameter (χeff) between two block components was evaluated using Leibler theory based on the incompressible random phase approximation (RPA) for ionized BCP in a disordered state. Furthermore, conductivity experiments demonstrate that the ionic conductivity in the samples quenched from the different structures is morphology-independent, while it increases with increasing ion salt concentration. Morphological transitions, interaction parameter, and thermal stability also examined in quarternized block copolymer. D-spacing was used to estimate effective interaction parameter (χeff) of block components in weak and strong segregation regimes of ordered phase. Metal-containing polymer has been the topic of great attention in recent years due to their wide range of potential application. Similarly, metal- ligand complex is used as a supramolecular linker between the polymers giving rise to a ‘Metallo-Supramolecule assembly. More precisely, functionalized polymer end capped with 2, 2’:6’, 2”- terpyridine ligand can be selectively complexed with wide range of transition metal ions and then subsequently attached to other terpyridine terminated polymer block. In compare to other supramolecular assembly, BCP involved metallo-supramolecule assembly offers vast applications such as optical activity, electrical conductivity, luminescence and photo refractivity.Keywords: band gap, block copolymer, conductivity, interaction parameter, phase transition
Procedia PDF Downloads 1694355 Synchronization of Semiconductor Laser Networks
Authors: R. M. López-Gutiérrez, L. Cardoza-Avendaño, H. Cervantes-de Ávila, J. A. Michel-Macarty, C. Cruz-Hernández, A. Arellano-Delgado, R. Carmona-Rodríguez
Abstract:
In this paper, synchronization of multiple chaotic semiconductor lasers is achieved by appealing to complex system theory. In particular, we consider dynamical networks composed by semiconductor laser, as interconnected nodes, where the interaction in the networks are defined by coupling the first state of each node. An interesting case is synchronized with master-slave configuration in star topology. Nodes of these networks are modeled for the laser and simulated by Matlab. These results are applicable to private communication.Keywords: chaotic laser, network, star topology, synchronization
Procedia PDF Downloads 5634354 Building Envelope Engineering and Typologies for Complex Architectures: Composition and Functional Methodologies
Authors: Massimiliano Nastri
Abstract:
The study examines the façade systems according to the constitutive and typological characters, as well as the functional and applicative requirements such as the expressive, constructive, and interactive criteria towards the environmental, perceptive, and energy conditions. The envelope systems are understood as instruments of mediation, interchange, and dynamic interaction between environmental conditions. The façades are observed for the sustainable concept of eco-efficient envelopes, selective and multi-purpose filters, adaptable and adjustable according to the environmental performance.Keywords: typologies of façades, environmental and energy sustainability, interaction and perceptive mediation, technical skins
Procedia PDF Downloads 1494353 Impacts on Marine Ecosystems Using a Multilayer Network Approach
Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade
Abstract:
Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management
Procedia PDF Downloads 1124352 Stakeholder Perceptions of Wildlife Tourism in Communal Conservancies within the Mudumu North Complex, Zambezi Region, Namibia
Authors: Shimhanda M. N., Mogomotsi P. K., Thakadu O. T., Rutina L. P.
Abstract:
Wildlife tourism (WT) in communal conservancies has the potential to contribute significantly to sustainable rural development. However, understanding local perceptions, promoting participation, and addressing stakeholder concerns are all required for sustainability. This study looks at stakeholder perceptions of WT in conservancies near protected areas in Namibia's Zambezi region, specifically the Mudumu North Complex. A mixed-methods approach was employed to collect data from 356 households using stratified sampling. Qualitative data was gathered through six focus group discussions and 22 key informant interviews. Quantitative analysis, using descriptive statistics and Spearman correlation, investigated socio-demographic influences on WT perceptions, while qualitative data were subjected to thematic analysis to identify key themes. Results revealed high awareness and generally positive perceptions of WT, particularly in Mashi Conservancy, which benefits from diverse tourism activities and joint ventures with lodges. Kwandu and Kyaramacan, which rely heavily on consumptive tourism, had lower awareness and perceived benefits. Human-wildlife conflict emerged as a persistent issue, especially in Kwandu and Mashi, where crop damage and wildlife interference undermined community support for WT. Younger, more educated, and employed individuals held more positive attitudes towards WT. The study highlights the importance of recognising community heterogeneity and tailoring WT strategies to meet diverse needs, including HWC mitigation. Policy implications include increasing community engagement, ensuring equitable benefit distribution, and implementing inclusive tourism strategies that promote long-term sustainability. These findings are critical for developing long-term WT models that address local challenges, encourage community participation, and contribute to socioeconomic development and conservation goals.Keywords: sustainable tourism, stakeholder perceptions, community involvement, socio-economic development
Procedia PDF Downloads 144351 On the Zeros of the Degree Polynomial of a Graph
Authors: S. R. Nayaka, Putta Swamy
Abstract:
Graph polynomial is one of the algebraic representations of the Graph. The degree polynomial is one of the simple algebraic representations of graphs. The degree polynomial of a graph G of order n is the polynomial Deg(G, x) with the coefficients deg(G,i) where deg(G,i) denotes the number of vertices of degree i in G. In this article, we investigate the behavior of the roots of some families of Graphs in the complex field. We investigate for the graphs having only integral roots. Further, we characterize the graphs having single roots or having real roots and behavior of the polynomial at the particular value is also obtained.Keywords: degree polynomial, regular graph, minimum and maximum degree, graph operations
Procedia PDF Downloads 2464350 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems
Authors: Zahid Ullah, Atlas Khan
Abstract:
This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms
Procedia PDF Downloads 1114349 An Alternative Way to Mapping Cone
Authors: Yousuf Alkhezi
Abstract:
Since most of the literature on algebra does not make much deal with the special case of mapping cone. This paper is an alternative way to examine the special tensor product and mapping cone. Also, we show that the isomorphism that implies the mapping cone commutes with the tensor product for the ordinary tensor product no longer holds for the pinched tensor product. However, we show there is a morphism. We will introduce an alternative way of mapping cone. We are looking for more properties which is our future project. Also, we want to apply these new properties in some application. Many results and examples with classical algorithms will be provided.Keywords: complex, tensor product, pinched tensore product, mapping cone
Procedia PDF Downloads 128