Search results for: environments
1192 The Role of Inventory Classification in Supply Chain Responsiveness in a Build-to-Order and Build-To-Forecast Manufacturing Environment: A Comparative Analysis
Authors: Qamar Iqbal
Abstract:
Companies strive to improve their forecasting methods to predict the fluctuations in customer demand. These fluctuation and variation in demand affect the manufacturing operations and can limit a company’s ability to fulfill customer demand on time. Companies keep the inventory buffer and maintain the stocking levels to reduce the impact of demand variation. A mid-size company deals with thousands of stock keeping units (skus). It is neither easy and nor efficient to control and manage each sku. Inventory classification provides a tool to the management to increase their ability to support customer demand. The paper presents a framework that shows how inventory classification can play a role to increase supply chain responsiveness. A case study will be presented to further elaborate the method both for build-to-order and build-to-forecast manufacturing environments. Results will be compared that will show which manufacturing setting has advantage over another under different circumstances. The outcome of this study is very useful to the management because this will give them an insight on how inventory classification can be used to increase their ability to respond to changing customer needs.Keywords: inventory classification, supply chain responsiveness, forecast, manufacturing environment
Procedia PDF Downloads 5951191 Species Distribution Model for Zanthoxylum Rhetsa Genus in Thailand
Authors: Yosiya Chanta, Jantrararuk Tovaranont
Abstract:
Species distribution model (SDMs) is one of the powerful tools used to create a suitability map used to predict and address ecology and conservation approaches. MaxEnt is a tool used among SDMs that is highly popular because it only uses presence data. Zanthoxylum rhetsa has more than 200 species distributed in the tropics. Most commonly found in cooler forest environments, there are 8-9 species found in Thailand. In northern Thailand, 3 varieties are commonly grown: Zanthoxylum myriacanthum, Zanthoxylum rhetsa and Zanthoxylum armatum. In the northern regions, these varieties are mainly used as a spice and as a cooking ingredient. MaxEnt has been used in this study to predict potential habitats for these Zanthoxylums in current and future times (2041and 2060). Suitable habitats are predicted using data from the EC-Earth3-Veg general circulation model with 19 climatic variables. The results indicate that the suitability of future habitats of Zanthoxylum rhetsa may expand into the lower northern part of Thailand. The habitat suitability map obtained from the MaxEnt tool shows that the Precipitation of Wettest Quarter (Bio16) is the most important climatic variable influencing the current and future spread of Zanthoxylum rhetsa.Keywords: MaxEnt, Zanthoxylum rhets, species distribution modelling, climate change
Procedia PDF Downloads 981190 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation
Authors: Tokihiko Akita, Seiichi Mita
Abstract:
A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation
Procedia PDF Downloads 931189 Enhancing the Effectiveness of Air Defense Systems through Simulation Analysis
Authors: F. Felipe
Abstract:
Air Defense Systems contain high-value assets that are expected to fulfill their mission for several years - in many cases, even decades - while operating in a fast-changing, technology-driven environment. Thus, it is paramount that decision-makers can assess how effective an Air Defense System is in the face of new developing threats, as well as to identify the bottlenecks that could jeopardize the security of the airspace of a country. Given the broad extent of activities and the great variety of assets necessary to achieve the strategic objectives, a systems approach was taken in order to delineate the core requirements and the physical architecture of an Air Defense System. Then, value-focused thinking helped in the definition of the measures of effectiveness. Furthermore, analytical methods were applied to create a formal structure that preliminarily assesses such measures. To validate the proposed methodology, a powerful simulation was also used to determine the measures of effectiveness, now in more complex environments that incorporate both uncertainty and multiple interactions of the entities. The results regarding the validity of this methodology suggest that the approach can support decisions aimed at enhancing the capabilities of Air Defense Systems. In conclusion, this paper sheds some light on how consolidated approaches of Systems Engineering and Operations Research can be used as valid techniques for solving problems regarding a complex and yet vital matter.Keywords: air defense, effectiveness, system, simulation, decision-support
Procedia PDF Downloads 1571188 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data
Authors: Ramzi Rihane, Yassine Benayed
Abstract:
Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection
Procedia PDF Downloads 141187 Reducing Lean by Implementing Distance Learning in the Training Programs of Oil and Gas Industries
Authors: Sayed-Mahdi Hashemi-Dehkordi, Ian Baker
Abstract:
This paper investigates the benefits of implementing distance learning in training courses for the oil and gas industries to reduce lean. Due to the remote locations of many oil and gas operations, scheduling and organizing in-person training classes for employees in these sectors is challenging. Furthermore, considering that employees often work in periodic shifts such as day, night, and resting periods, arranging in-class training courses requires significant time and transportation. To explore the effectiveness of distance learning compared to in-class learning, a set of questionnaires was administered to employees of a far on-shore refinery unit in Iran, where both in-class and distance classes were conducted. The survey results revealed that over 72% of the participants agreed that distance learning saved them a significant amount of time by rating it 4 to 5 points out of 5 on a Likert scale. Additionally, nearly 67% of the participants acknowledged that distance learning considerably reduced transportation requirements, while approximately 64% agreed that it helped in resolving scheduling issues. Introducing and encouraging the use of distance learning in the training environments of oil and gas industries can lead to notable time and transportation savings for employees, ultimately reducing lean in a positive manner.Keywords: distance learning, in-class learning, lean, oil and gas, scheduling, time, training programs, transportation
Procedia PDF Downloads 691186 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms
Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri
Abstract:
Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.Keywords: connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks
Procedia PDF Downloads 2431185 A Thematic Analysis of Aging in Blue Zone Regions: Lessons from Okinawa and the Nicoya Peninsula
Authors: Theresa MacNeil-Kelly
Abstract:
Blue Zones are particular regions of the world with a high prevalence of centenarians who share common characteristics, lifestyles and environments. There are currently only five recognized Blue Zones, two of which include Okinawa, Japan and the Nicoya Peninsula in Costa Rica. Individuals living in these areas tend to have positive outlooks on life, utilize daily movement, rely on strong social support groups, and eat little to no processed foods. The current research sought to further understand how centenarians living in Okinawa and in the Nicoya Peninsula utilize Blue Zone lifestyle elements in their daily living habits. To accomplish this, the author traveled to both Okinawa and the Nicoya Peninsula, Costa Rica, and interviewed several centenarians, paying particular attention to lifestyle choices and their effects on the aging process. Thematic analysis was used to analyze interview responses, and several themes emerged, such as the importance of family, friends, faith/spirituality, mindfulness, nutrition and daily movement as key foundations to aging in healthy and productive ways. Suggestions for ways to implement these habits globally was also discussed.Keywords: aging, blue zones, centenarians, nicoya peninsula, okinawa
Procedia PDF Downloads 2571184 Authigenic Mineralogy in Nubian Sandstone Reservoirs
Authors: Mohamed M. A. Rahoma
Abstract:
This paper presents the results of my sedimentological and petrographical study of the Nubian Formation in the north Gialo area in the Sirte basin in Libya that was used for identifying and recognizing the facies type and their changes through the studied interval. It also helped me to interpret the depositional processes and the depositional environments and describe the textural characteristics, detrital mineralogy, Authigenic mineralogy and porosity characteristics of the rocks within the cored interval. Thus, we can identify the principal controls on porosity and permeability within the reservoir sections for the studied interval. To achieve this study, I described the cores studied well and marked all features represented in color, grain size, lithology, and sedimentary structures and used them to identify the facies. Then, I chose a number of samples according to a noticeable change in the facies through the interval for microscopic investigation. The results of the microscopic investigation showed that the authigenic clays and the authigenic types of cement have an important influence on the reservoir quality by converting intergranular macropores to microporosity and reducing permeability. It is recommended to give these authigenic minerals more investigation in future studies since they have an essential influence on the potential of sandstones reservoirs.Keywords: diagenesis processes, authigenic minerals, Nubian Sandstone, reservoir quality
Procedia PDF Downloads 1351183 Uneven Habitat Characterisation by Using Geo-Gebra Software in the Lacewings (Insecta: Neuroptera), Knowing When to Calculate the Habitat: Creating More Informative Ecological Experiments
Authors: Hakan Bozdoğan
Abstract:
A wide variety of traditional methodologies has been enhanced for characterising smooth habitats in order to find out different environmental objectives. The habitats were characterised based on size and shape by using Geo-Gebra Software. In this study, an innovative approach to researching habitat characterisation in the lacewing species, GeoGebra software is utilised. This approach is demonstrated using the example of ‘surface area’ as an analytical concept, wherein the goal was to increase clearness for researchers, and to improve the quality of researching in survey area. In conclusion, habitat characterisation using the mathematical programme provides a unique potential to collect more comprehensible and analytical information about in shapeless areas beyond the range of direct observations methods. This research contributes a new perspective for assessing the structure of habitat, providing a novel mathematical tool for the research and management of such habitats and environments. Further surveys should be undertaken at additional sites within the Amanos Mountains for a comprehensive assessment of lacewings habitat characterisation in an analytical plane. This paper is supported by Ahi Evran University Scientific Research Projects Coordination Unit, Projects No:TBY.E2.17.001 and TBY.A4.16.001.Keywords: uneven habitat shape, habitat assessment, lacewings, Geo-Gebra Software
Procedia PDF Downloads 2851182 Possibility Theory Based Multi-Attribute Decision-Making: Application in Facility Location-Selection Problem under Uncertain and Extreme Environment
Authors: Bezhan Ghvaberidze
Abstract:
A fuzzy multi-objective facility location-selection problem (FLSP) under uncertain and extreme environments based on possibility theory is developed. The model’s uncertain parameters in the q-rung orthopair fuzzy values are presented and transformed in the Dempster-Shaper’s belief structure environment. An objective function – distribution centers’ selection ranking index as an extension of Dempster’s extremal expectations under discrimination q-rung orthopair fuzzy information is constructed. Experts evaluate each humanitarian aid from distribution centers (HADC) against each of the uncertain factors. HADCs location problem is reduced to the bicriteria problem of partitioning the set of customers by the set of centers: (1) – Minimization of transportation costs; (2) – Maximization of centers’ selection ranking indexes. Partitioning type constraints are also constructed. For an illustration of the obtained results, a numerical example is created from the facility location-selection problem.Keywords: FLSP, multi-objective combinatorial optimization problem, evidence theory, HADC, q-rung orthopair fuzzy set, possibility theory
Procedia PDF Downloads 1211181 An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network
Authors: Muhammad R. Ahmed, Mohammed Aseeri
Abstract:
Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level.Keywords: internal attack, wireless sensor network, network security, entropy
Procedia PDF Downloads 4561180 Nurses' Assessments of Their Work Environments
Authors: Manar Aslan, Selver Gokdemir, Chatitze Chousein
Abstract:
This research was conducted to evaluate the factors affecting the working environment of nurses working in three state hospitals. A favorable working environment contributes to increased job satisfaction of nurses and improved working conditions that affects the quality of the work done in a positive way. The population of the study was composed the three largest state hospitals in the region of Thrace in Turkey and 931 nurses working in there. In this research was not used any sampling method. The sampling was composed of nurses who accepted to take part in this research from three hospitals. It was used nursing work index-the practice work environment scale (Turkish version) for data collection (Cronbach alpha: 0.94).When the total scale scores of the nurses in the research were examined, it was determined that they evaluated the working environment below the average. It was also determined that the adequacy of human and other resources, dimensions of the physician-nurse communication scores were low. As in every profession group, the working environment in nursing has an importance to provide quality health and nursing care. A favorable working environment will increase nurses' performance and satisfaction with their work. Identifying the factors affecting the working environment and carrying out the remedial work for them will increase the quality of the health service.Keywords: work environment, work index, nursing, hospitals
Procedia PDF Downloads 2461179 The Impact of Corporate Social Responsibility and Knowledge Management Factors on University's Students' Learning Process
Authors: Naritphol Boonyakiat
Abstract:
This research attempts to investigate the effects of corporate social responsibility and knowledge management factors on students’ learning process of the Silpakorn University. The goal of this study is to fill the literature gap by gaining an understanding of corporate social responsibility and the knowledge management factors that fundamentally relate to students’ learning process within the university context. Thus, this study will focus on the outcomes that derive from a set of quantitative data that were obtained using Silpakorn university’s database of 200 students. The results represent the perceptions of students regarding the impact of corporate social responsibility and knowledge management factors on their learning process within the university. The findings indicate that corporate social responsibility and knowledge management have significant effects on students’ learning process. This study may assist us in gaining a better understanding of the integrated aspects of university and learning environments to discover how to allocate optimally university’s resources and management approaches to gain benefits from corporate social responsibility and knowledge management practices toward students’ learning process within the university bodies. Therefore, there is a sufficient reason to believe that the findings can contribute to research in the area of CSR, KM and students’ learning process as an essential aspect of university’s stakeholder.Keywords: corporate social responsibility, knowledge management, learning process, university’s students
Procedia PDF Downloads 3191178 The Perception of ‘School’ as a Positive Support Factor
Authors: Yeliz Yazıcı, Alev Erenler
Abstract:
School is an institution designed to provide learning, teaching places and environments under guidance of selected teachers. School is not just a place or institution but it is a place where complex and living structures are alive and always changing. It is also an undeniable fact that schools have shaped the ideas, future, society as well as the students and their lives. While this is the situation, schools having academic excellence is considered as successful ones. Academic excellence is a composition of excellence in teachers, management and physical environment, also. This is the general perception of the authorities and parents when the excellence is the point but the school is a developing and supporting organism. In this concept, the main aim of this study is to compare student and teacher perceptions of school as a ‘positive support factor’. The study is designed as a quantitative and qualitative design and a questionnaire is applied to both teachers and students via online and face to face meetings. It is aimed to define the perceptions of the participants related to the school as a positive support factor. It means the role of school in establishing self-efficacy, shaping and acquiring the behavior etc. Gathered data is analyzed via SPSS program and the detailed discussion is carried in the frame of the related literature.Keywords: positive support factor, education, school, student teacher perception
Procedia PDF Downloads 1761177 Integration of Best Practices and Requirements for Preliminary E-Learning Courses
Authors: Sophie Huck, Knut Linke
Abstract:
This study will examine how IT practitioners can be motivated for IT studies and which kind of support they need during their occupational studies. Within this research project, the challenge of supporting students being engaged in business for several years arose. Here, it is especially important to successfully guide them through their studies. The problem of this group is that they finished their school education years ago. In order to gather first experiences, preliminary e-learning courses were introduced and tested with a group of users studying General Management. They had to work with these courses and have been questioned later on about their approach to the different methods. Moreover, a second group of potential students was interviewed with the help of online questionnaires to give information about their expectations regarding extra occupational studies. We also want to present best practices and cases in e-education in the subarea of mathematics and distance learning. Within these cases and practices, we use state of the art systems and technologies in e-education to find a way to increase teaching quality and the success of students. Our research indicated that the first group of enrolled students appreciated the new preliminary e-learning courses. The second group of potential students was convinced of this way of learning as a significant component of extra occupational studies. It can be concluded that this part of the project clarified the acceptance of the e-learning strategy by both groups and led to satisfactory results with the enrolled students.Keywords: e-learning evaluation, self-learning, virtual classroom, virtual learning environments
Procedia PDF Downloads 3221176 Smelling Our Way through Names: Understanding the Potential of Floral Volatiles as Taxonomic Traits in the Fragrant Ginger Genus Hedychium
Authors: Anupama Sekhar, Preeti Saryan, Vinita Gowda
Abstract:
Plants, due to their sedentary lifestyle, have evolved mechanisms to synthesize a huge diversity of complex, specialized chemical metabolites, a majority of them being volatile organic compounds (VOCs). These VOCs are heavily involved in their biotic and abiotic interactions. Since chemical composition could be under the same selection processes as other morphological characters, we test if VOCs can be used to taxonomically distinguish species in the well-studied, fragrant ginger genus -Hedychium (Zingiberaceae). We propose that variations in the volatile profiles are suggestive of adaptation to divergent environments, and their presence could be explained by either phylogenetic conservatism or ecological factors. In this study, we investigate the volatile chemistry within Hedychium, which is endemic to Asian palaeotropics. We used an unsupervised clustering approach which clearly distinguished most taxa, and we used ancestral state reconstruction to estimate phylogenetic signals and chemical trait evolution in the genus. We propose that taxonomically, the chemical composition could aid in species identification, especially in species complexes where taxa are not morphologically distinguishable, and extensive, targeted chemical libraries will help in this effort.Keywords: chemotaxonomy, dynamic headspace sampling, floral fragrance, floral volatile evolution, gingers, Hedychium
Procedia PDF Downloads 951175 A Probabilistic Theory of the Buy-Low and Sell-High for Algorithmic Trading
Authors: Peter Shi
Abstract:
Algorithmic trading is a rapidly expanding domain within quantitative finance, constituting a substantial portion of trading volumes in the US financial market. The demand for rigorous and robust mathematical theories underpinning these trading algorithms is ever-growing. In this study, the author establishes a new stock market model that integrates the Efficient Market Hypothesis and the statistical arbitrage. The model, for the first time, finds probabilistic relations between the rational price and the market price in terms of the conditional expectation. The theory consequently leads to a mathematical justification of the old market adage: buy-low and sell-high. The thresholds for “low” and “high” are precisely derived using a max-min operation on Bayes’s error. This explicit connection harmonizes the Efficient Market Hypothesis and Statistical Arbitrage, demonstrating their compatibility in explaining market dynamics. The amalgamation represents a pioneering contribution to quantitative finance. The study culminates in comprehensive numerical tests using historical market data, affirming that the “buy-low” and “sell-high” algorithm derived from this theory significantly outperforms the general market over the long term in four out of six distinct market environments.Keywords: efficient market hypothesis, behavioral finance, Bayes' decision, algorithmic trading, risk control, stock market
Procedia PDF Downloads 721174 Visual and Chemical Servoing of a Hexapod Robot in a Confined Environment Using Jacobian Estimator
Authors: Guillaume Morin-Duponchelle, Ahmed Nait Chabane, Benoit Zerr, Pierre Schoesetters
Abstract:
Industrial inspection can be achieved through robotic systems, allowing visual and chemical servoing. A popular scheme for visual servo-controlled robotic is the image-based servoing sys-tems. In this paper, an approach of visual and chemical servoing of a hexapod robot using a visual and chemical Jacobian matrix are proposed. The basic idea behind the visual Jacobian matrix is modeling the differential relationship between the camera system and the robotic control system to detect and track accurately points of interest in confined environments. This approach allows the robot to easily detect and navigates to the QR code or seeks a gas source localization using surge cast algorithm. To track the QR code target, a visual servoing based on Jacobian matrix is used. For chemical servoing, three gas sensors are embedded on the hexapod. A Jacobian matrix applied to the gas concentration measurements allows estimating the direction of the main gas source. The effectiveness of the proposed scheme is first demonstrated on simulation. Finally, a hexapod prototype is designed and built and the experimental validation of the approach is presented and discussed.Keywords: chemical servoing, hexapod robot, Jacobian matrix, visual servoing, navigation
Procedia PDF Downloads 1271173 The Aspect of Urban Inequality after Urban Redevelopment Projects
Authors: Sungik Kang, Ja-Hoon Koo
Abstract:
Globally, urban environments have become unequal, and cities have been segmented by income class. It is predicted that urban inequality has arisen by urban redevelopment and reconstruction projects that improve the urban environment and innovate cities. This study aims to analyze the occurrence and characteristics of urban inequality by using the housing price and sale price and demonstrating the correlation with the urban redevelopment project. This study measures 14 years of urban inequality index for 25 autonomous districts in Seoul and analyzes the correlation between urban inequality with urban redevelopment projects. As a conclusion of this study, first, the urban inequality index of Seoul has been continuously rising since 2015. Trends from 2006 to 2019 have been in U-curved shape in between 2015. In 2019, Seoul's urban inequality index was 0.420, a level similar to that of the 2007 financial crisis. Second, the correlation between urban redevelopment and urban inequality was not statistically significant. Therefore, we judged that urban redevelopment's scale or project structure has nothing with urban inequality. Third, while district designation of urban reconstruction temporarily alleviates urban inequality, the completion of the project increases urban inequality. When designating a district, urban inequality is likely to decrease due to decreased outdated housing transactions. However, the correlation with urban inequality increases as expensive houses has been placed after project completion.Keywords: urban inequality, urban redevelopment projects, urban reconstruction projects, housing price inequality, panel analysis
Procedia PDF Downloads 2071172 M-Machine Assembly Scheduling Problem to Minimize Total Tardiness with Non-Zero Setup Times
Authors: Harun Aydilek, Asiye Aydilek, Ali Allahverdi
Abstract:
Our objective is to minimize the total tardiness in an m-machine two-stage assembly flowshop scheduling problem. The objective is an important performance measure because of the fact that the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. In the literature, the problem is considered with zero setup times which may not be realistic and appropriate for some scheduling environments. Considering separate setup times from processing times increases machine utilization by decreasing the idle time and reduces total tardiness. We propose two new algorithms and adapt four existing algorithms in the literature which are different versions of simulated annealing and genetic algorithms. Moreover, a dominance relation is developed based on the mathematical formulation of the problem. The developed dominance relation is incorporated in our proposed algorithms. Computational experiments are conducted to investigate the performance of the newly proposed algorithms. We find that one of the proposed algorithms performs significantly better than the others, i.e., the error of the best algorithm is less than those of the other algorithms by minimum 50%. The newly proposed algorithm is also efficient for the case of zero setup times and performs better than the best existing algorithm in the literature.Keywords: algorithm, assembly flowshop, scheduling, simulation, total tardiness
Procedia PDF Downloads 3311171 Isolation of the Leptospira spp. from the Rice Farming Lands in the North of Iran by EMJH Media
Authors: S. Rostampour Yasouri, M. Ghane
Abstract:
Leptospirosis is one the most important common diseases between human and live stock occurred by different species of Leptospira. This disease has been construed as the native in the northern provinces of Iran and risk of the infection with pathogenic is high. One hundred fifteen samples of water (67), soil (36) and feces of rodents (12) were collected from the rice fields of the suburbs of Tonekabon Township situated in northern part of Iran in 2012. The samples, after passage from membranous filters, were cultured in the liquid and solid EMJH medium and incubated at 30°C for 1 month. Leptospira spp. were isolated using culture technique, and the plates were studied from viewpoint of colony formation, microscopic observations and then identified by phenotyping tests. Finally, the identification of Leptospira genus was verified by PCR technique and 16S rRNA gene sequencing. Of 115 samples totally, 55 samples (47.82%) became positive by use of the culture technique which the positive cases included 47 water samples (70.14%) and 8 soil samples (22.22%), while the isolation was not accomplished from the sample of the rodents feces. Overall, according to these data, Leptospira spp. exists with high frequency in North Iran. Hence, based on foregoing evidence environments in the north of Iran are vehicles of Leptospira spp.Keywords: EMJH Medium, Leptospira, Northern of Iran, rice fields
Procedia PDF Downloads 1791170 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform
Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho
Abstract:
In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay, and signal noise were added to a simulation model of an active-controlled vibration isolation system to regulate the movement of the exercise platform. Previous simulation work was conducted primarily via MATLAB/Simulink. Two additional simulation tools used in this study were Trick and MBDyn, NASA co-developed software simulation environments. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active-controlled vibration isolation system outperforms a passive-controlled system even with the addition of feedback delay and signal noise to the active-controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from a squat exercise was calculated from the motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active-controlled system than the passive-controlled system.Keywords: control, counterweight, isolation, vibration
Procedia PDF Downloads 1131169 Tailoring Workspaces for Generation Z: Harmonizing Teamwork, Privacy, and Connectivity
Authors: Maayan Nakash
Abstract:
The modern workplace is undergoing a revolution, with Generation Z (Gen-Z) at the forefront of this transformative shift. However, empirical investigations specifically targeting the workplace preferences of this generation remain limited. Through direct examination of their tendencies via a survey approach, this study offers vital insights for aligning organizational policies and practices. The results presented in this paper are part of a comprehensive study that explored Gen Z's viewpoints on various employment market aspects, likely to decisively influence the design of future work environments. Data were collected via an online survey distributed among a cohort of 461 individuals from Gen-Z, born between the mid-1990s and 2010, consisting of 241 males (52.28%) and 220 females (47.72%). Responses were gauged using Likert scale statements that probed preferences for teamwork versus individual work, virtual versus personal interactions, and open versus private workspaces. Descriptive statistics and analytical analyses were conducted to pinpoint key patterns. We discovered that a high proportion of respondents (81.99%, n=378) exhibited a preference for teamwork over individual work. Correspondingly, the data indicate strong support for the recognition of team-based tasks as a tool contributing to personal and professional development. In terms of communication, the majority of respondents (61.38%) either disagreed (n=154) or slightly agreed (n=129) with the exclusive reliance on virtual interactions with their organizational peers. This finding underscores that despite technological progress, digital natives place significant value on physical interaction and non-mediated communication. Moreover, we understand that they also value a quiet and private work environment, clearly preferring it over open and shared workspaces. Considering that Gen-Z does not necessarily experience high levels of stress within social frameworks in the workplace, this can be attributed to a desire for a space that allows for focused engagement with work tasks. A One-Sample Chi-Square Test was performed on the observed distribution of respondents' reactions to each examined statement. The results showed statistically significant deviations from a uniform distribution (p<.001), indicating that the response patterns did not occur by chance and that there were meaningful tendencies in the participants' responses. The findings expand the theoretical knowledge base on human resources in the dynamics of a multi-generational workforce, illuminating the values, approaches, and expectations of Gen-Z. Practically, the results may lead organizations to equip themselves with tools to create policies tailored to Gen-Z in the context of workspaces and social needs, which could potentially foster a fertile environment and aid in attracting and retaining young talent. Future studies might include investigating potential mitigating factors, such as cultural influences or individual personality traits, which could further clarify the nuances in Gen-Z's work style preferences. Longitudinal studies tracking changes in these preferences as the generation matures may also yield valuable insights. Ultimately, as the landscape of the workforce continues to evolve, ongoing investigations into the unique characteristics and aspirations of emerging generations remain essential for nurturing harmonious, productive, and future-ready organizational environments.Keywords: workplace, future of work, generation Z, digital natives, human resources management
Procedia PDF Downloads 531168 Maintenance Management Practice for Building
Authors: Harold Jideofor Nnachetam
Abstract:
Maintenance management in Nigeria Polytechnic faced many issues due to poor service delivery, inadequate finance, and poor maintenance plan and maintenance backlogs. The purpose of this study is to improve the conventional method practices which tend to be ineffective in Nigeria Polytechnic. The case study was conducted with eight Polytechnics in Nigeria. The selected Polytechnic is based on conventional method practices and its major problems, attempt to implement computerized technology and the willingness of staff to share their experiences. All feedbacks from respondents through semi-structured interview were recorded using video camera and transcribed verbatim. The overall findings of this research indicated; poor service delivery, inadequate financial, poor maintenance planning and maintenance backlogs. There is also need to overcome less man power competencies of maintenance management practices which existed with all eight Polytechnics. In addition, the study also found that the Polytechnics still use conventional maintenance management processes in managing building facility condition. As a result, the maintenance management staff was not able to improve the maintenance management performance at the Polytechnics. The findings are intended to be used for maintenance management practices at Nigeria Polytechnics in order to provide high-quality of building facility with safe and healthy environments.Keywords: maintenance management, conventional method, maintenance management system, Nigeria polytechnic
Procedia PDF Downloads 3231167 A Study of Adaptive Fault Detection Method for GNSS Applications
Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee
Abstract:
A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.Keywords: adaptive estimation, fault detection, GNSS, residual
Procedia PDF Downloads 5761166 Study of Multimodal Resources in Interactions Involving Children with Autistic Spectrum Disorders
Authors: Fernanda Miranda da Cruz
Abstract:
This paper aims to systematize, descriptively and analytically, the relations between language, body and material world explored in a specific empirical context: everyday co-presence interactions between children diagnosed with Autistic Spectrum Disease ASD and various interlocutors. We will work based on 20 hours of an audiovisual corpus in Brazilian Portuguese language. This analysis focuses on 1) the analysis of daily interactions that have the presence/participation of subjects with a diagnosis of ASD based on an embodied interaction perspective; 2) the study of the status and role of gestures, body and material world in the construction and constitution of human interaction and its relation with linguistic-cognitive processes and Autistic Spectrum Disorders; 3) to highlight questions related to the field of videoanalysis, such as: procedures for recording interactions in complex environments (involving many participants, use of objects and body movement); the construction of audiovisual corpora for linguistic-interaction research; the invitation to a visual analytical mentality of human social interactions involving not only the verbal aspects that constitute it, but also the physical space, the body and the material world.Keywords: autism spectrum disease, multimodality, social interaction, non-verbal interactions
Procedia PDF Downloads 1151165 Implementation of Building Information Modelling to Monitor, Assess, and Control the Indoor Environmental Quality of Higher Education Buildings
Authors: Mukhtar Maigari
Abstract:
The landscape of Higher Education (HE) institutions, especially following the CVID-19 pandemic, necessitates advanced approaches to manage Indoor Environmental Quality (IEQ) which is crucial for the comfort, health, and productivity of students and staff. This study investigates the application of Building Information Modelling (BIM) as a multifaceted tool for monitoring, assessing, and controlling IEQ in HE buildings aiming to bridge the gap between traditional management practices and the innovative capabilities of BIM. Central to the study is a comprehensive literature review, which lays the foundation by examining current knowledge and technological advancements in both IEQ and BIM. This review sets the stage for a deeper investigation into the practical application of BIM in IEQ management. The methodology consists of Post-Occupancy Evaluation (POE) which encompasses physical monitoring, questionnaire surveys, and interviews under the umbrella of case studies. The physical data collection focuses on vital IEQ parameters such as temperature, humidity, CO2 levels etc, conducted by using different equipment including dataloggers to ensure accurate data. Complementing this, questionnaire surveys gather perceptions and satisfaction levels from students, providing valuable insights into the subjective aspects of IEQ. The interview component, targeting facilities management teams, offers an in-depth perspective on IEQ management challenges and strategies. The research delves deeper into the development of a conceptual BIM-based framework, informed by the insight findings from case studies and empirical data. This framework is designed to demonstrate the critical functions necessary for effective IEQ monitoring, assessment, control and automation with real time data handling capabilities. This BIM-based framework leads to the developing and testing a BIM-based prototype tool. This prototype leverages on software such as Autodesk Revit with its visual programming tool i.e., Dynamo and an Arduino-based sensor network thereby allowing for real-time flow of IEQ data for monitoring, control and even automation. By harnessing the capabilities of BIM technology, the study presents a forward-thinking approach that aligns with current sustainability and wellness goals, particularly vital in the post-COVID-19 era. The integration of BIM in IEQ management promises not only to enhance the health, comfort, and energy efficiency of educational environments but also to transform them into more conducive spaces for teaching and learning. Furthermore, this research could influence the future of HE buildings by prompting universities and government bodies to revaluate and improve teaching and learning environments. It demonstrates how the synergy between IEQ and BIM can empower stakeholders to monitor IEQ conditions more effectively and make informed decisions in real-time. Moreover, the developed framework has broader applications as well; it can serve as a tool for other sustainability assessments, like energy analysis in HE buildings, leveraging measured data synchronized with the BIM model. In conclusion, this study bridges the gap between theoretical research and real-world application by practicalizing how advanced technologies like BIM can be effectively integrated to enhance environmental quality in educational institutions. It portrays the potential of integrating advanced technologies like BIM in the pursuit of improved environmental conditions in educational institutions.Keywords: BIM, POE, IEQ, HE-buildings
Procedia PDF Downloads 501164 Time Series Analysis of Air Pollution in Suceava County ( Nord- East of Romania)
Authors: Lazurca Liliana Gina
Abstract:
Different time series analysis of yearly air pollution at Suceava County, Nord-East of Romania, has been performed in this study. The trends in the atmospheric concentrations of the main gaseous and particulate pollutants in urban, industrial and rural environments across Suceava County were estimated for the period of 2008-2014. The non-parametric Mann-Kendall test was used to determine the trends in the annual average concentrations of air pollutants (NO2, NO, NOx, SO2, CO, PM10, O3, C6H6). The slope was estimated using the non-parametric Sen’s method. Trend significance was assumed at the 5% significance level (p < 0.05) in the current study. During the 7 year period, trends in atmospheric concentrations may not have been monotonic, in some instances concentrations of species increased and subsequently decreased. The trend in Suceava County is to keep a low concentration of pollutants in ambient air respecting the limit values.All the results that we obtained show that Romania has taken a lot of regulatory measures to decrease the concentrations of air pollutants in the last decade, in Suceava County the air quality monitoring highlight for the most part of the analyzed pollutants decreasing trends. For the analyzed period we observed considerable improvements in background air in Suceava County.Keywords: pollutant, trend, air quality monitoring, Mann-Kendall
Procedia PDF Downloads 3681163 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems
Authors: Ting Gao, Mingyue He
Abstract:
Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning
Procedia PDF Downloads 153