Search results for: deep work
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15348

Search results for: deep work

14478 Management of Innovations in the Context of Overcoming Destructive Work Motivation and Anomie

Authors: Naira Hakobyan, Shant Bagratyan

Abstract:

This paper explores the phenomenon of management of innovations from the standpoint of work motivation. The main purpose of the theoretical research is to reveal the role of management of innovations to overcome the destructive work motivation and anomie. Systematization of the theoretical approaches and the literary sources indicates connections between destructive forms of work motivation and anomie. These connections allow an understanding of the role of innovations dedicated to decrease the motivational destructiveness of the employees. It is important to note that, in general, the presence of destructive motivation among employees can lead to work anomie. At the same time, issues related to the influence of destructive motivation on innovative processes in the management of an organization are not sufficiently studied. Exploring the factors leading to destructive work motivation and anomie manages toolkit and innovative ways of solution of the motivational destructiveness. The relevance of this scientific issue is that motivational destructiveness and work anomie are widespread phenomena in modern society. It means that previous forms of management become unusable and the way to introduce the innovations seems unclear for the employees. Investigation of the phenomenon of management of innovations is carried out in the following logical sequence: firstly, the issues of destructive work motivation and leadership are considered, and then the key points of work anomie are presented. Finally, there are explored the modern trends in the management of innovations aimed at overcoming motivational destructiveness and work anomie. The issue of management of innovations is explored by two levels: external-social and internal-organizational levels. Considering the phenomenon of management of innovations, the motivational role of the innovations is emphasized. The object of the research is the phenomenon of management of innovations in the context of overcoming motivational and anomic destructiveness. The paper presents the results of the theoretical analysis of the main factors of destructive motivation and work anomie among employees: an excessive dependence of employees on the manager, ignorance of one’s own work functions or unreasonable change by the manager, prevalence of formalism in assessing work comparing with the content and quality of work, lack of adaptive interaction among employees and low self-esteem of work activity. The paper theoretically proves that unclearly formulated innovative strategies for the development of the organization, lack of feedback from the manager to employees regarding the discussion of innovative technologies, non-compliance of working conditions with declared norms and standards, and formalism in management of innovations lead to destructiveness in a management system. The results of the research can be useful for managers, sociologists, economists, and psychologists.

Keywords: management of innovations, destructive motivation, work anomie, leadership, workaholism

Procedia PDF Downloads 20
14477 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
14476 Trajectory Optimization for Autonomous Deep Space Missions

Authors: Anne Schattel, Mitja Echim, Christof Büskens

Abstract:

Trajectory planning for deep space missions has become a recent topic of great interest. Flying to space objects like asteroids provides two main challenges. One is to find rare earth elements, the other to gain scientific knowledge of the origin of the world. Due to the enormous spatial distances such explorer missions have to be performed unmanned and autonomously. The mathematical field of optimization and optimal control can be used to realize autonomous missions while protecting recourses and making them safer. The resulting algorithms may be applied to other, earth-bound applications like e.g. deep sea navigation and autonomous driving as well. The project KaNaRiA ('Kognitionsbasierte, autonome Navigation am Beispiel des Ressourcenabbaus im All') investigates the possibilities of cognitive autonomous navigation on the example of an asteroid mining mission, including the cruise phase and approach as well as the asteroid rendezvous, landing and surface exploration. To verify and test all methods an interactive, real-time capable simulation using virtual reality is developed under KaNaRiA. This paper focuses on the specific challenge of the guidance during the cruise phase of the spacecraft, i.e. trajectory optimization and optimal control, including first solutions and results. In principle there exist two ways to solve optimal control problems (OCPs), the so called indirect and direct methods. The indirect methods are being studied since several decades and their usage needs advanced skills regarding optimal control theory. The main idea of direct approaches, also known as transcription techniques, is to transform the infinite-dimensional OCP into a finite-dimensional non-linear optimization problem (NLP) via discretization of states and controls. These direct methods are applied in this paper. The resulting high dimensional NLP with constraints can be solved efficiently by special NLP methods, e.g. sequential quadratic programming (SQP) or interior point methods (IP). The movement of the spacecraft due to gravitational influences of the sun and other planets, as well as the thrust commands, is described through ordinary differential equations (ODEs). The competitive mission aims like short flight times and low energy consumption are considered by using a multi-criteria objective function. The resulting non-linear high-dimensional optimization problems are solved by using the software package WORHP ('We Optimize Really Huge Problems'), a software routine combining SQP at an outer level and IP to solve underlying quadratic subproblems. An application-adapted model of impulsive thrusting, as well as a model of an electrically powered spacecraft propulsion system, is introduced. Different priorities and possibilities of a space mission regarding energy cost and flight time duration are investigated by choosing different weighting factors for the multi-criteria objective function. Varying mission trajectories are analyzed and compared, both aiming at different destination asteroids and using different propulsion systems. For the transcription, the robust method of full discretization is used. The results strengthen the need for trajectory optimization as a foundation for autonomous decision making during deep space missions. Simultaneously they show the enormous increase in possibilities for flight maneuvers by being able to consider different and opposite mission objectives.

Keywords: deep space navigation, guidance, multi-objective, non-linear optimization, optimal control, trajectory planning.

Procedia PDF Downloads 412
14475 Creating a Profound Sense of Comfort to Stimulate Workers Innovation and Productivity: Exploring Research and Case Study Applications

Authors: Rana Bazaid, Debajyoti Pati

Abstract:

Purpose: The aim of this research is to explore and discuss innovative workspaces, and how the design of the space has the potential to facilitate the work process and employees’ satisfaction which can lead to innovative results. Background: The relationship between the workforce and the work environment has a strong potential to enhance human capabilities associated with innovation outcomes. The need for innovation in workplaces can benefit employees’ satisfaction, health, and performance. To understand this complicated relationship, this research explores and comprehends innovative work environments. Methods: A review of 26 peer-reviewed articles, seven books, and 23 companies’ websites was conducted, along with analysis for five case studies on successful types of research and development fields to detect appropriate examples for the study. Results: The analysis of the five case studies showed the similarity-characteristics of innovation work environments among those five fields and observed what is unique about each field that makes them stand out in their industries. Conclusion: Understanding the psychological, cultural, physiological, and social needs of workers, physical workplaces, and issues found in the work environment may help enhance multifaceted innovation and productivity.

Keywords: innovation, productivity , work environment, workers satisfaction

Procedia PDF Downloads 90
14474 Development of Intelligent Construction Management System Using Web-Camera Image and 3D Object Image

Authors: Hyeon-Seung Kim, Bit-Na Cho, Tae-Woon Jeong, Soo-Young Yoon, Leen-Seok Kang

Abstract:

Recently, a construction project has been large in the size and complicated in the site work. The web-cameras are used to manage the construction site of such a large construction project. They can be used for monitoring the construction schedule as compared to the actual work image of the planned work schedule. Specially, because the 4D CAD system that the construction appearance is continually simulated in a 3D CAD object by work schedule is widely applied to the construction project, the comparison system between the real image of actual work appearance by web-camera and the simulated image of planned work appearance by 3D CAD object can be an intelligent construction schedule management system (ICON). The delayed activities comparing with the planned schedule can be simulated by red color in the ICON as a virtual reality object. This study developed the ICON and it was verified in a real bridge construction project in Korea. To verify the developed system, a web-camera was installed and operated in a case project for a month. Because the angle and zooming of the web-camera can be operated by Internet, a project manager can easily monitor and assume the corrective action.

Keywords: 4D CAD, web-camera, ICON (intelligent construction schedule management system), 3D object image

Procedia PDF Downloads 507
14473 Influence of Thermal History on the Undrained Shear Strength of the Bentonite-Sand Mixture

Authors: K. Ravi, Sabu Subhash

Abstract:

Densely compacted bentonite or bentonite–sand mixture has been identified as a suitable buffer in the deep geological repository (DGR) for the safe disposal of high-level nuclear waste (HLW) due to its favourable physicochemical and hydro-mechanical properties. The addition of sand to the bentonite enhances the thermal conductivity and compaction properties and reduces the drying shrinkage of the buffer material. The buffer material may undergo cyclic wetting and drying upon ingress of groundwater from the surrounding rock mass and from evaporation due to high temperature (50–210 °C) derived from the waste canister. The cycles of changes in temperature may result in thermal history, and the hydro-mechanical properties of the buffer material may be affected. This paper examines the influence of thermal history on the undrained shear strength of bentonite and bentonite-sand mixture. Bentonite from Rajasthan state and sand from the Assam state of India are used in this study. The undrained shear strength values are obtained by conducting unconfined compressive strength (UCS) tests on cylindrical specimens (dry densities 1.30 and 1.5 Mg/m3) of bentonite and bentonite-sand mixture consisting of 30 % bentonite+ 70 % sand. The specimens are preheated at temperatures varying from 50-150 °C for one, two and four hours in hot air oven. The results indicate that the undrained shear strength is increased by the thermal history of the buffer material. The specimens of bentonite-sand mixture exhibited more increase in strength compared to the pure bentonite specimens. This indicates that the sand content of the mixture plays a vital role in taking the thermal stresses of the bentonite buffer in DGR conditions.

Keywords: bentonite, deep geological repository, thermal history, undrained shear strength

Procedia PDF Downloads 345
14472 Perception of Corporate Social Responsibility and Enhancing Compassion at Work through Sense of Meaningfulness

Authors: Nikeshala Weerasekara, Roshan Ajward

Abstract:

Contemporary business environment, given the circumstance of stringent scrutiny toward corporate behavior, organizations are under pressure to develop and implement solid overarching Corporate Social Responsibility (CSR) strategies. In that milieu, in order to differentiate themselves from competitors and maintain stakeholder confidence banks spend millions of dollars on CSR programmes. However, knowledge on how non-western bank employees perceive such activities is inconclusive. At the same time recently only researchers have shifted their focus on positive effects of compassion at work or the organizational conditions under which it arises. Nevertheless, mediation mechanisms between CSR and compassion at work have not been adequately examined leaving a vacuum to be explored. Despite finding a purpose in work that is greater than extrinsic outcomes of the work is important to employees, meaningful work has not been examined adequately. Thus, in addition to examining the direct relationship between CSR and compassion at work, this study examined the mediating capability of meaningful work between these variables. Specifically, the researcher explored how CSR enables employees to sense work as meaningful which in turn would enhance their level of compassion at work. Hypotheses were developed to examine the direct relationship between CSR and compassion at work and the mediating effect of meaningful work on the relationship between CSR and compassion at work. Both Social Identity Theory (SIT) and Social Exchange Theory (SET) were used to theoretically support the relationships. The sample comprised of 450 respondents covering different levels of the bank. A convenience sampling strategy was used to secure responses from 13 local licensed commercial banks in Sri Lanka. Data was collected using a structured questionnaire which was developed based on a comprehensive review of literature and refined using both expert opinions and a pilot survey. Structural equation modeling using Smart Partial Least Square (PLS) was utilized for data analysis. Findings indicate a positive and significant (p < .05) relationship between CSR and compassion at work. Also, it was found that meaningful work partially mediates the relationship between CSR and compassion at work. As per the findings it is concluded that bank employees’ perception of CSR engagement not only directly influence compassion at work but also impact such through meaningful work as well. This implies that employees consider working for a socially responsible bank since it creates greater meaningfulness of work to retain with the organization, which in turn trigger higher level of compassion at work. By utilizing both SIT and SET in explaining relationships between CSR and compassion at work it amounts to theoretical significance of the study. Enhance existing literature on CSR and compassion at work. Also, adds insights on mediating capability of psychologically related variables such as meaningful work. This study is expected to have significant policy implications in terms of increasing compassion at work where managers must understand the importance of including CSR activities into their strategy in order to thrive. Finally, it provides evidence of suitability of using Smart PLS to test models with mediating relationships involving non normal data.

Keywords: compassion at work, corporate social responsibility, employee commitment, meaningful work, positive affect

Procedia PDF Downloads 126
14471 Public Space Appropriation of a Public Peripheric Library in El Agustino, Lima Metropolitana: A Qualitative Study

Authors: Camila Freire Barrios, Gonzalo Rivera Talavera

Abstract:

The importance of public spaces has been shown for many years, and in different disciplines, with one example being their ability for developing a sustainable social environment, especially in mega cities like Lima. The aim of this study was to explore the process of space appropriation that occurs in the Peripheral Library of the district El Agustino in Lima, Peru. Space appropriation is a process by which people develop a link with a place within a specific sociocultural context. This process has been related to positive outcomes, such as: participation and in the development of compassionate behaviors with these places. To achieve the purpose of the research, a qualitative design was selected because this will allowed exploring in deep the process in an specific context. The study interviewed six adults, all of whom were deliberately chosen to have the longest residence time in the district and also utilized the library the most. In a complementary manner, two children and one adolescent were interviewed. Likewise, two observations were made on a weekday and weekend, and public documentation information was collected. As a result, five categories linked to this process were identified. It was found that the process of space appropriation begins with the needs of the people who arrive at the library, which provides benefits to these people by fulfilling them. Next in the process, through the construction of meanings, the library is then valued as a pleasant, productive, safe and regulated place; as a result, people become identified with the library. The identification generated is subsequently reflected in the level of participation that the person has in the library, which may go in a continuum from no participating at all to a more direct involvement in the library activities, as well as voluntary and altruistic work. Finally, this process leads to the library becoming part of the neighborhood. This study allows having a better understanding of how sociospatial processes work in a Latinamerican context and in cities like Lima, where the third of the country’s population lives. Also, Lima has grown in the past 50 years in a excessively way and with lack of planification. Therefore, these results brings new research questions and highlights the importance of learning how to design public spaces in order to promote these processes to develop.

Keywords: bond with the place, place identity, public spaces, space appropriation

Procedia PDF Downloads 243
14470 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons

Authors: Ozgu Hafizoglu

Abstract:

Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.

Keywords: analogy, analogical reasoning, cognitive model, brain and glials

Procedia PDF Downloads 185
14469 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory

Authors: Xu Jiaqiao

Abstract:

Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.

Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments

Procedia PDF Downloads 94
14468 Impact of Work Experience and Gender on Decisional Conflict

Authors: Mohsin Aslam Khan

Abstract:

Decision making tendency varies in people with different socio demographics. This study was conducted to identify the impact of work experience on decisional conflict and whether there is a gender differences in decisional conflict. Convenience sampling was more appropriate for this exploratory research. AM O’ Connor decisional conflict scale, (1995) with cronbach alpha 0.900 was administered on sample size of 109 participants (62males, 47females). The responses were scored according to the AM O’ Connor decisional conflict scale manual, (1995). The results of the study indicate that work experience has no significant impact on decisional conflict, whereas gender differences in decisional conflict illustrates significant mean score differences among male and female participants.

Keywords: decision making, decisional conflict, gender decision making, work experience

Procedia PDF Downloads 613
14467 User-Friendly Task Creation Using a CAD Integrated Robotic System on a Real Workcell

Authors: Alireza Changizi, Arash Rezaei, Jamal Muhammad, Jyrki Latokartano, Minna Lanz

Abstract:

Offline programming (OLP) is a new method in robot programming which is used widely in the industry nowadays which is a simulation base method that can produce the robot codes for motion according to virtual world in the simulation software. In this project Delmia v5 is used as simulation software. First the work cell component was modelled by Catia v5 and all of them was imported to a process file in Delmia and placed roughly to form the virtual work cell. Then robot was added to the work cell from the Delmia library. Work cell was calibrated corresponding to real world work cell to have accurate code. Tool calibration is the first step of calibration scheme and then work cell equipment can be calibrated using 6 point calibration method. Finally generated code needs to be reformed to match related controller code instruction. At the last stage IO were set to accomplish robots cooperation and make their motion synchronized. The pros and cons also will be discussed to clarify the presented results show the feasibility of the method and its effect on production line efficiency. Finally the positive and negative points of the implementation will be discussed.

Keywords: robotic, automated, production, offline programming, CAD

Procedia PDF Downloads 387
14466 The Evaluation and Performance of SSRU Employee’s that Influence the Attitude towards Work, Job Satisfaction and Organization Commitment

Authors: Bella Llego

Abstract:

The purpose of this study was to explain and empirically test the influence of attitude towards work, job satisfaction and organizational commitment of SSRU employee’s evaluation and performance. Data used in this study was primary data which were collected through Organizational Commitment Questionnaire with 1-5 Likert Scale. The respondent of this study was 200 managerial and non-managerial staff of SSRU. The statistics to analyze the data provide the descriptive by the mean, standard deviation and test hypothesis by the use of multiple regression. The result of this study is showed that attitude towards work have positive but not significant effect to job satisfaction and employees evaluation and performance. Different with attitude towards work, the organizations commitment has positive and significant influence on job satisfaction and employee performance at SSRU. It means every improvement in organization’s commitment has a positive effect toward job satisfaction and employee evaluation and performance at SSRU.

Keywords: attitude towards work, employee’s evaluation and performance, jobs satisfaction, organization commitment

Procedia PDF Downloads 454
14465 Ezra Pound and James Joyce: Two Different Approaches to the Relation between Literature and Visual Arts

Authors: Espen Gronlie

Abstract:

This paper will suggest that Ezra Pound and James Joyce are paradigmatic for two different approaches to literature and visual arts. Both authors are infamous for being difficult, but this does not mean that their works are similar. Pound famously promoted Joyce’s Ulysses and was instrumental in getting the work published in literary reviews. However, Pound did not appreciate Joyce’s artistic development in his so-called Work in Progress, which was published in 1939 under the title Finnegans Wake. Pound and Joyce will be read as representing two different approaches to literature and other forms of art. Pound can be seen as essentially influenced by cubism and modernist techniques such as collage and montage. While many critics have used these notions to describe The Cantos, this paper will suggest reading Pound’s opus magnum in relation to Finnegans Wake. The latter work shows how Joyce remained tied to an idea of the literary work as sound, as something which may – or perhaps even should – be read aloud. In contrast, Pound’s The Cantos show clear signs of being influenced by experiments in the visual arts. The paper will argue that Pound intended to develop his work in order to bring literature 'up to date' with the development in visual arts, while Joyce stuck to a more classical understanding of the literary work as composed for oral presentation.

Keywords: collage, conceptualism, montage, literature and visual arts

Procedia PDF Downloads 197
14464 Prevalence and Factors Associated to Work Accidents in the Construction Sector in Benin: Cases of CFIR – Consulting

Authors: Antoine Vikkey Hinson, Menonli Adjobimey, Gemayel Ahmed Biokou, Rose Mikponhoue

Abstract:

Introduction: Construction industry is a critical concern with regard to Health and Safety Service worldwide. World health Organization revealed that work-related disease and trauma were held responsible for the death of one million nine hundred thousand people in 2016. The aim of this study it was to determine the prevalence and factors associated with the occurrence of work accidents in a construction industry in Benin. Method: It was a descriptive cross-sectional and analytical study. Data analysis was performed with R software 4.1.1. In multivariate analysis, we performed a binary logistic regression. OR adjusted (ORa) association measures and their 95% confidence interval [CI95%] were presented for the explanatory variables used in the final model. The significance threshold for all tests selected was 5% (p < 0.05) Result: In this study, 472 workers were included, and, of these, 452 (95.7%) were men corresponding to a sex ratio of 22.6. The average age of the workers was 33 years ± 8.8 years. Workers were mostly laborers (84.7%), and had declared having inadequate personal protective equipment (50.6%, n=239). The prevalence of work accidents is 50.8%. Collision with a rolling stock (25.8%), cut (16.2%), and stumbling (16.2%) were the main types of work accidents on the construction site. Four factors were associated with contributing to work accidents. Fatigue or exhaustion (ORa : 1.53[1.03 ; 2.28]); The use of dangerous tools (ORa : 1.81 [1.22 ; 2.71]); The various laborers’ jobs (ORa : 4.78 [2.62 ; 9.21]); and seniority in the company ≥ 4 years (ORa : 2.00 [1.35 ; 2.96]). Conclusion: This study allowed us to identify the associated factors. It is imperative to implement a rigorous policy of occupational health and security mostly the continuing training for workers safe, the supply of appropriate work tools and protective

Keywords: prevalence, work accident, associated factors, construction, benin

Procedia PDF Downloads 57
14463 Balancing Resources and Demands in Activation Work with Young Adults: Exploring Potentials of the Job Demands-Resources Theory

Authors: Gurli Olsen, Ida Bruheim Jensen

Abstract:

Internationally, many young adults not in education, employment, or training (NEET) remain in temporary solutions such as labour market measures or other forms of welfare arrangements. These trends have been associated with ineffective labour market measures, an underfunded theoretical foundation for activation work, limited competence among social workers and labour market employees in using ordinary workplaces as job inclusion measures, and an overemphasis on young adults’ personal limitations such as health challenges and lack of motivation. Two competing models have been prominent in activation work: Place‐Then‐Train and Train‐Then‐Place. A traditional strategy for labour market measures has been to first motivate NEETs to sheltered work and training and then to the regular labour market (train then place). Measures such as Supported Employment (SE) and Individual Placement and Support (IPS) advocate for rapid entry into paid work at the regular labour market with close supervision and training from social workers, employees, and others (place then train). None of these models demonstrate unquestionable results. In this web of working life measures, young adults (NEETs) experience a lack of confidence in their own capabilities and coping strategies vis-á-vis labour market- and educational demands. Drawing on young adults’ own experiences, we argue that the Job Demands-Resources (JD-R) Theory can contribute to the theoretical and practical dimensions of activation work. This presentation will focus on what the JD-R theory entails and how it can be fruitful in activation work with NEETs (what and how). The overarching rationale of the JD-R theory is that an enduring balance between demands (e.g., deadlines, working hours) and resources (e.g., social support, enjoyable work tasks) is important for job performance for people in any job and potentially in other meaningful activities. Extensive research has demonstrated that a balance between demands and resources increases motivation and decreases stress. Nevertheless, we have not identified literature on the JD-R theory in activation work with young adults.

Keywords: activation work, job demands-resources theory, social work, theory development

Procedia PDF Downloads 79
14462 The Effect of Excess Sulphur on Najdi Sheep

Authors: Fatima Al-Humaid

Abstract:

This research work was done to investigate the cause of paralysis in Najdi lambs born in certain farms where the drinking water and diet contained high concentrations of sulphur. The drinking water in these farms was obtained from deep bore wells drilled in the farm. The lambs developed paralysis of the hind limbs at the age of 4-6 weeks and their condition deteriorated continuously until they finally died. The appetite and suckling ability remained good throughout the course of the disease but when the lambs were completely unable to move and reach for the udder, feed and water they died. Postmortem examination of the brain of paralyzed lambs showed that it was liquefied. When the brain was examined histologically, a liquefactive necrosis was seen in the form of cavities in the nervous tissue. Similar histologic picture was seen in the spinal cord of the affected lambs. Analysis for the mineral content of the fodder showed that the concentration of sulphur was 21.6 3.4 g/kg DM which is considered very high for the nutrition of sheep. Analysis for the concentration of copper and selenium in the feed showed that the concentrations of both were normal. This excluded diseases such as swayback which is caused by copper deficiency and white muscle disease, which caused by selenium deficiency. Both of these two last diseases are characterized by paralysis of lambs.

Keywords: brain histology, sulphur poisoning, Najdi sheep, veterinary medicine

Procedia PDF Downloads 605
14461 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 64
14460 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions

Authors: Jian Li

Abstract:

The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.

Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase

Procedia PDF Downloads 86
14459 Establishing Sequence Stratigraphic Framework and Hydrocarbon Potential of the Late Cretaceous Strata: A Case Study from Central Indus Basin, Pakistan

Authors: Bilal Wadood, Suleman Khan, Sajjad Ahmed

Abstract:

The Late Cretaceous strata (Mughal Kot Formation) exposed in Central Indus Basin, Pakistan is evaluated for establishing sequence stratigraphic framework and potential of hydrocarbon accumulation. The petrographic studies and SEM analysis were carried out to infer the hydrocarbon potential of the rock unit. The petrographic details disclosed 4 microfacies including Pelagic Mudstone, OrbitoidalWackestone, Quartz Arenite, and Quartz Wacke. The lowermost part of the rock unit consists of OrbitoidalWackestone which shows deposition in the middle shelf environment. The Quartz Arenite and Quartz Wacke suggest deposition on the deep slope settings while the Pelagic Mudstone microfacies point toward deposition in the distal deep marine settings. Based on the facies stacking patterns and cyclicity in the chronostratigraphic context, the strata is divided into two 3rd order cycles. One complete sequence i.e Transgressive system tract (TST), Highstand system tract (HST) and Lowstand system tract (LST) are again replaced by another Transgressive system tract and Highstant system tract with no markers of sequence boundary. The LST sands are sandwiched between TST and HST shales but no potential porosity/permeability values have been determined. Microfacies and SEM studies revealed very fewer chances for hydrocarbon accumulation and overall reservoir potential is characterized as low.

Keywords: cycle, deposition, microfacies, reservoir

Procedia PDF Downloads 150
14458 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 67
14457 Fatigue in Association with Road Crashes Among Healthcare Workers in Malaysia

Authors: Sharifah Liew, Azlihanis Abdul Hadi, Nurul Shahida Mohd Saffe, Azhar Hamzah, Maslina Musa

Abstract:

Fatigue is a common health problem among healthcare workers, ranging from ambulance drivers to specialist doctors. In Malaysia, majority of healthcare workers prefer to commute to work by their own vehicle compared to public transport. Thus, exposed to risk on the road while commuting to work. The aim of the study is to find out the effects of fatigue on road crashes among healthcare workers while they commute to work. The research conducted using the semi-quantitative approach based on self- reported questionnaires. In total, five hundred and fifty-one healthcare workers from selected five hospitals were involved in this study. Results showed significant differences between crash involvement, travelling distance and time to and from work among healthcare workers. Most of the participants (37%) reported that causes of road crashes were due to fatigue, sleepiness and microsleep while driving to and back from work. In addition, there were significant differences between fatigue and road crashes and near misses. This research suggests that the hospitals’ management may need to review their staffs’ job scopes and workloads to overcome the fatigue problems and, consider their feedback when designing work schedules and investigate staff commuting distance from home to workplace and vice-versa.

Keywords: fatigue, healthcare, road crashes, near misses, Malaysia

Procedia PDF Downloads 72
14456 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 99
14455 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN

Procedia PDF Downloads 131
14454 Reflecting and Teaching on the Dialectical Nature of Social Work

Authors: Eli Buchbinder

Abstract:

Dialectics theory perceives two or more forces or themes as mutually opposed and negating on the one hand and as interdependent for their definition, existence, and resolution on the other. Such opposites might never be fully reconciled but might, simultaneously, continue to produce a higher level of integration and synthesis as well as tension, contradictions, and paradoxes. The identity of social work is constructed by poles; an understanding that emerges through key concepts that shape the profession. The key concept of person-in-environment creates dialectical tensions between the psychological versus the social pole. Important examples that reflect this focus on the psychological versus the social nature of human beings. This meta-perspective influences and constructs the implementation of values, ways of intervention, and professional relationships, e.g., creating a conflict between personal/social empowerment and social control and correction as the aims of the profession. Social work is dynamic and changing, with a unique way of perceiving and conceptualizing human behavior. Social workers must be able to face and accept the contradicting elements inherent in practicing social work. The basic philosophy for social work education is a dialectic conceptualization. In light of the above, social work students require dialectics as a critical mode of perception, reflection, and intervention. In the presentation, the focus will be on reflection on teaching students to conceptualize dialectics as a frame when training to be social workers. It is believed that the focus should emphasis two points: 1) the need to assist students to identify poles and to analyze the interrelationships created between them while coping emotionally with the tension and difficulties involved in containing these poles; 2) teaching students to integrate poles as a basis for assessment, planning, and intervention.

Keywords: professional ontology, a generic social work education, skills and values of social work, reflecting on social work teaching methods

Procedia PDF Downloads 85
14453 Impact of Job Crafting on Work Engagement and Well-Being among Indian Working Professionals

Authors: Arjita Jhingran

Abstract:

The pandemic was a turning point for flexible employment. In today’s market, employees prefer companies that provide the autonomy to change their work environment and are flexible. Post pandemic employees have become accustomed to modifying, re-designing, and re-aligning their work environment, task, and the way they interact with co-workers based on their preferences after working from home for a long time. In this scenario, the concept of job crafting has come to the forefront, and research on the subject has expanded, particularly during COVID-19. Managers who provide opportunities to craft the job are driving enhanced engagement and well-being. The current study will aim to examine the impact of job crafting on work engagement and psychological well-being among 385 working professionals, ranging in the age group of 21- 39 years. (M age=30 years). The study will also draw comparisons between freelancers and full-time employees, as freelancers have been considered to have more autonomy over their job. A comparison-based among MNC or startups will be studied; as for the majority of startups, autonomy is a primary motivator. Moreover, a difference based on the level of experience will also be observed, which will add to the body of knowledge. The data will be collected through Job Crafting Questionnaire, Utrecht Work Engagement Scale, and Psychological Well-Being Scale. To infer the findings, correlation analysis will be used to study the relationship among variables, and a Three way ANOVA will be used to draw comparisons.

Keywords: job crafting, work engagement, well-being, freelancers, start-ups

Procedia PDF Downloads 105
14452 Virtualization and Visualization Based Driver Configuration in Operating System

Authors: Pavan Shah

Abstract:

In an Embedded system, Virtualization and visualization technology can provide us an effective response and measurable work in a software development environment. In addition to work of virtualization and virtualization can be easily deserved to provide the best resource sharing between real-time hardware applications and a healthy environment. However, the virtualization is noticeable work to minimize the I/O work and utilize virtualization & virtualization technology for either a software development environment (SDE) or a runtime environment of real-time embedded systems (RTMES) or real-time operating system (RTOS) eras. In this Paper, we particularly focus on virtualization and visualization overheads data of network which generates the I/O and implementation of standardized I/O (i.e., Virto), which can work as front-end network driver in a real-time operating system (RTOS) hardware module. Even there have been several work studies are available based on the virtualization operating system environment, but for the Virto on a general-purpose OS, my implementation is on the open-source Virto for a real-time operating system (RTOS). In this paper, the measurement results show that implementation which can improve the bandwidth and latency of memory management of the real-time operating system environment (RTMES) for getting more accuracy of the trained model.

Keywords: virtualization, visualization, network driver, operating system

Procedia PDF Downloads 133
14451 A Study of Learning to Enhance Ability Career Skills Consistent With Disruptive Innovation in Creative Strategies for Advertising Course

Authors: Kornchanok Chidchaisuwan

Abstract:

This project is a study of learning activities through experience to enhance career skills and technical abilities on the creative strategies for advertising course of undergraduate students. This instructional model consisted of study learning approaches: 1) Simulation-based learning: used to create virtual learning activities plans for work like working at advertising companies. 2) Project-based learning: Actual work based on the processed creating and focus on producing creative works to present on new media channels. The results of learning management found that there were effects on the students in various areas, including 1) The learners have experienced in the step by step of advertising work process. 2) The learner has the skills to work from the actual work (Learning by Doing), allowing the ability to create, present, and produce the campaign accomplished achievements and published on online media at a better level.

Keywords: technical, advertising, presentation, career skills, experience, simulation based learning

Procedia PDF Downloads 91
14450 Ethnography of Lamentation: Azadari as It Exists in the Tri-State Shi'i Community and Its Future in the American Milieu

Authors: Safi Haider

Abstract:

This work seeks to understand the fundamental mourning ceremonies termed azadari in the tristate Shi’i community. Azadari, a name derived from the Arabic aza (mourning) and the Persian dari (commemoration) as it exists in the Tri-State Shi'i community has a unique relation to the hearts and minds of its adherents. It shows the development of the community from the various perspective offered by the participants of this work. This work seeks to analyze Azadari in the light of the Tri-State Shi'i community, which is a deeply diverse community, consisting of immigrants from various other countries, including Pakistan, India, Iran, and the Arab communities. At its heart, this work is an ethnography, it seeks to know the experience of those who are a part of the Muharram commemorations and it seek to see what the underlying psychological and the social foundations of Azadari are. Five people from each of the four communities were interviewed, and the aim was to have at least two men, two women, two youth, two elders, and one person from either of these categories. What was found was that the Shi’i community is scarcely a monolith in its mourning practices, and there is a great difference not only when comparing one cultural community to another, but also within the communities as well. This work seeks to analyze azadari from the various perspective of the Shi’i community in the tri-state area. This work seeks to analyze interviews from twenty people in total: two men, two women, two youth, and two adults from each of the communities of the Shi’i of the tristate area, for a total of twenty people. Two Priests were also interviewed for the sake of the paper as well.

Keywords: Ashura, Imam Husayn, Islam, Muharram, Shi'i

Procedia PDF Downloads 135
14449 Returning to Work: A Qualitative Exploratory Study of Head and Neck Cancer Survivor Disability and Experience

Authors: Abi Miller, Eleanor Wilson, Claire Diver

Abstract:

Background: UK Head and Neck Cancer incidence and prevalence were rising related to better treatment outcomes and changed demographics. More people of working-age now survive Head and Neck Cancer. For individuals, work provides income, purpose, and social connection. For society, work increases economic productivity and reduces welfare spending. In the UK, a cancer diagnosis is classed as a disability and more disabled people leave the workplace than non-disabled people. Limited evidence exists on return-to-work after Head and Neck Cancer, with no UK qualitative studies. Head and Neck Cancer survivors appear to return to work less when compared to other cancer survivors. This study aimed to explore the effects of Head and Neck Cancer disability on survivors’ return-to-work experience. Methodologies: This was an exploratory qualitative study using a critical realist approach to carry out semi-structured one-off interviews with Head and Neck Cancer survivors who had returned to work. Interviews were informed by an interview guide and carried out remotely by Microsoft Teams or telephone. Interviews were transcribed verbatim, pseudonyms allocated, and transcripts anonymized. Data were interpreted using Reflexive Thematic Analysis. Findings: Thirteen Head and Neck Cancer survivors aged between 41 -63 years participated in interviews. Three major themes were derived from the data: changed identity and meaning of work after Head and Neck Cancer, challenging and supportive work experiences and impact of healthcare professionals on return-to-work. Participants described visible physical appearance changes, speech and eating challenges, mental health difficulties and psycho-social shifts following Head and Neck Cancer. These factors affected workplace re-integration, ability to carry out work duties, and work relationships. Most participants experienced challenging work experiences, including stigmatizing workplace interactions and poor communication from managers or colleagues, which further affected participant confidence and mental health. Many participants experienced job change or loss, related both to Head and Neck Cancer and living through a pandemic. A minority of participants experienced strategies like phased return, which supported workplace re-integration. All participants, bar one, wanted conversations with healthcare professionals about return-to-work but perceived these conversations as absent. Conclusion: All participants found returning to work after Head and Neck Cancer to be a challenging experience. This appears to be impacted by participant physical, psychological, and functional disability following Head and Neck Cancer, work interaction and work context.

Keywords: disability, experience, head and neck cancer, qualitative, return-to-work

Procedia PDF Downloads 117