Search results for: deep convolutional neural networks
4419 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA
Procedia PDF Downloads 3044418 Parameters Affecting Load Capacity of Reinforced Concrete Ring Deep Beams
Authors: Atef Ahmad Bleibel
Abstract:
Most codes of practice, like ACI 318-14, require the use of strut-and-tie modeling to analyze and design reinforced concrete deep beams. Though, investigations that conducted on deep beams do not include ring deep beams of influential parameters. This work presents an analytical parametric study using strut-and-tie modeling stated by ACI 318-14 to predict load capacity of 20 reinforced concrete ring deep beam specimens with different parameters. The parameters that were under consideration in the current work are ring diameter (Dc), number of supports (NS), width of ring beam (bw), concrete compressive strength (f'c) and width of bearing plate (Bp). It is found that the load capacity decreases by about 14-36% when ring diameter increases by about 25-75%. It is also found that load capacity increases by about 62-189% when number of supports increases by about 33-100%, while the load capacity increases by about 25-75% when the beam ring width increases by about 25-75%. Finally, it is found that load capacity increases by about 24-76% when compressive strength increases by about 24-76%, while the load capacity increases by about 5-16% when Bp increases by about 25-75%.Keywords: load parameters, reinforced concrete, ring deep beam, strut and tie
Procedia PDF Downloads 1044417 Optimum Dimensions of Hydraulic Structures Foundation and Protections Using Coupled Genetic Algorithm with Artificial Neural Network Model
Authors: Dheyaa W. Abbood, Rafa H. AL-Suhaili, May S. Saleh
Abstract:
A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs length sand their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy.The optimization carried out subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studios oft ware, was used to analyze 1200 different cases. For each case the length of protection and volume of structure required to satisfy the safety factors mentioned previously were estimated. An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the cross-over probability, the mutation probability and level ,the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate that the most factor that affects the optimum solution is the number of population required. The minimum value that gives stable global optimum solution of this parameters is (30000) while other variables have little effect on the optimum solution.Keywords: inclined cutoff, optimization, genetic algorithm, artificial neural networks, geo-studio, uplift pressure, exit gradient, factor of safety
Procedia PDF Downloads 3244416 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model
Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo
Abstract:
In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.Keywords: climatic change, artificial neural networks, dorado fish, CPUE
Procedia PDF Downloads 2434415 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network
Authors: Abdolreza Memari
Abstract:
In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model
Procedia PDF Downloads 5014414 Intelligent System for Diagnosis Heart Attack Using Neural Network
Authors: Oluwaponmile David Alao
Abstract:
Misdiagnosis has been the major problem in health sector. Heart attack has been one of diseases that have high level of misdiagnosis recorded on the part of physicians. In this paper, an intelligent system has been developed for diagnosis of heart attack in the health sector. Dataset of heart attack obtained from UCI repository has been used. This dataset is made up of thirteen attributes which are very vital in diagnosis of heart disease. The system is developed on the multilayer perceptron trained with back propagation neural network then simulated with feed forward neural network and a recognition rate of 87% was obtained which is a good result for diagnosis of heart attack in medical field.Keywords: heart attack, artificial neural network, diagnosis, intelligent system
Procedia PDF Downloads 6554413 Use of Social Networks and Mobile Technologies in Education
Authors: Václav Maněna, Roman Dostál, Štěpán Hubálovský
Abstract:
Social networks play an important role in the lives of children and young people. Along with the high penetration of mobile technologies such as smartphones and tablets among the younger generation, there is an increasing use of social networks already in elementary school. The paper presents the results of research, which was realized at schools in the Hradec Králové region. In this research, the authors focused on issues related to communications on social networks for children, teenagers and young people in the Czech Republic. This research was conducted at selected elementary, secondary and high schools using anonymous questionnaires. The results are evaluated and compared with the results of the research, which has been realized in 2008. The authors focused on the possibilities of using social networks in education. The paper presents the possibility of using the most popular social networks in education, with emphasis on increasing motivation for learning. The paper presents comparative analysis of social networks, with regard to the possibility of using in education as well.Keywords: social networks, motivation, e-learning, mobile technology
Procedia PDF Downloads 3134412 The Nature and the Structure of Scientific and Innovative Collaboration Networks
Authors: Afshin Moazami, Andrea Schiffauerova
Abstract:
The objective of this work is to investigate the development and the role of collaboration networks in the creation of knowledge and innovations in the US and Canada, with a special focus on Quebec. In order to create scientific networks, the data on journal articles were extracted from SCOPUS, and the networks were built based on the co-authorship of the journal papers. For innovation networks, the USPTO database was used, and the networks were built on the patent co-inventorship. Various indicators characterizing the evolution of the network structure and the positions of the researchers and inventors in the networks were calculated. The comparison between the United States, Canada, and Quebec was then carried out. The preliminary results show that the nature of scientific collaboration networks differs from the one seen in innovation networks. Scientists work in bigger teams and are mostly interconnected within one giant network component, whereas the innovation network is much more clustered and fragmented, the inventors work more repetitively with the same partners, often in smaller isolated groups. In both Canada and the US, an increasing tendency towards collaboration was observed, and it was found that networks are getting bigger and more centralized with time. Moreover, a declining share of knowledge transfers per scientist was detected, suggesting an increasing specialization of science. The US collaboration networks tend to be more centralized than the Canadian ones. Quebec shares a lot of features with the Canadian network, but some differences were observed, for example, Quebec inventors rely more on the knowledge transmission through intermediaries.Keywords: Canada, collaboration, innovation network, scientific network, Quebec, United States
Procedia PDF Downloads 2014411 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network
Authors: Biruhi Tesfaye, Avinash M. Potdar
Abstract:
The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC
Procedia PDF Downloads 1904410 The Impact of Different Social Networks on the Development of Digital Entrepreneurship
Authors: Mohammad Mehdizadeh, Sara Miri
Abstract:
In today's world, competition is one of the essential components of different markets. Therefore, in addition to economic factors, social factors can also affect the development and prosperity of businesses. In this regard, social networks are of particular importance and play a critical role in the flourishing and development of Internet businesses. The purpose of this article is to investigate the effect of different social networks in promoting digital entrepreneurship. The research method is the descriptive survey. The results show that social networks have a positive and significant impact on digital entrepreneurship development. Among the social networks studied, Instagram and Facebook have the most positive effect on digital entrepreneurship.Keywords: entrepreneurship, Facebook, Instagram, social media
Procedia PDF Downloads 3494409 Comparing Image Processing and AI Techniques for Disease Detection in Plants
Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller
Abstract:
Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation
Procedia PDF Downloads 3794408 An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures
Authors: Reza Rezaeipour Honarmandzad
Abstract:
In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated.Keywords: ANN, fatigue damage, aircraft structures, piezoelectric transducers, lamb-wave measurements
Procedia PDF Downloads 4174407 Max-Entropy Feed-Forward Clustering Neural Network
Authors: Xiaohan Bookman, Xiaoyan Zhu
Abstract:
The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution under some limited conditions. As this paper defines two processes in Feed-Forward Neural Network, our limited condition is the abstracted features of samples which are worked out in the abstraction process. And the final outputs are the probability distribution for different clusters in the clustering process. As Entropy-Based Principle is considered into the feed-forward neural network, a clustering method is born. We have conducted some experiments on six open UCI data sets, comparing with a few baselines and applied purity as the measurement. The results illustrate that our method outperforms all the other baselines that are most popular clustering methods.Keywords: feed-forward neural network, clustering, max-entropy principle, probabilistic models
Procedia PDF Downloads 4354406 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks
Procedia PDF Downloads 2824405 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding
Authors: Emad A. Mohammed
Abstract:
Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.Keywords: MMP, gas flooding, artificial intelligence, correlation
Procedia PDF Downloads 1444404 Usage of Channel Coding Techniques for Peak-to-Average Power Ratio Reduction in Visible Light Communications Systems
Authors: P. L. D. N. M. de Silva, S. G. Edirisinghe, R. Weerasuriya
Abstract:
High peak-to-average power ratio (PAPR) is a concern of orthogonal frequency division multiplexing (OFDM) based visible light communication (VLC) systems. Discrete Fourier Transform spread (DFT-s) OFDM is an alternative single carrier modulation scheme which would address this concern. Employing channel coding techniques is another mechanism to reduce the PAPR. Previous research has been conducted to study the impact of these techniques separately. However, to the best of the knowledge of the authors, no study has been done so far to identify the improvement which can be harnessed by hybridizing these two techniques for VLC systems. Therefore, this is a novel study area under this research. In addition, channel coding techniques such as Polar codes and Turbo codes have been tested in the VLC domain. However, other efficient techniques such as Hamming coding and Convolutional coding have not been studied too. Therefore, the authors present the impact of the hybrid of DFT-s OFDM and Channel coding (Hamming coding and Convolutional coding) on PAPR in VLC systems using Matlab simulations.Keywords: convolutional coding, discrete Fourier transform spread orthogonal frequency division multiplexing, hamming coding, peak-to-average power ratio, visible light communications
Procedia PDF Downloads 1544403 Neural Networks Models for Measuring Hotel Users Satisfaction
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring
Procedia PDF Downloads 1364402 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 2184401 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder
Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh
Abstract:
In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization
Procedia PDF Downloads 1144400 The Impact of Malicious Attacks on the Performance of Routing Protocols in Mobile Ad-Hoc Networks
Authors: Habib Gorine, Rabia Saleh
Abstract:
Mobile Ad-Hoc Networks are the special type of wireless networks which share common security requirements with other networks such as confidentiality, integrity, authentication, and availability, which need to be addressed in order to secure data transfer through the network. Their routing protocols are vulnerable to various malicious attacks which could have a devastating consequence on data security. In this paper, three types of attacks such as selfish, gray hole, and black hole attacks have been applied to the two most important routing protocols in MANET named dynamic source routing and ad-hoc on demand distance vector in order to analyse and compare the impact of these attacks on the Network performance in terms of throughput, average delay, packet loss, and consumption of energy using NS2 simulator.Keywords: MANET, wireless networks, routing protocols, malicious attacks, wireless networks simulation
Procedia PDF Downloads 3204399 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams
Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous
Abstract:
Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams
Procedia PDF Downloads 884398 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping
Authors: Delowar Hossain, Genci Capi
Abstract:
This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.Keywords: deep learning, genetic algorithm, object recognition, robot grasping
Procedia PDF Downloads 3534397 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning
Procedia PDF Downloads 1564396 Neural Changes Associated with Successful Antidepressant Treatment in Adolescents with Major Depressive Disorder
Authors: Dung V. H. Pham, Kathryn Cullen
Abstract:
Introduction: 40% of adolescents with major depression (MDD) are unresponsive to 1st line antidepressant treatment. The neural mechanism underlying treatment-responsive and treatment-resistant depression in adolescent are unclear. Amygdala is important for emotion processing and has been implicated in mood disorders. Past research has shown abnormal amygdala connectivity in adolescents with MDD. This research study changes in amygdala resting-state functional connectivity to find neural correlates of successful antidepressant treatment. Methods: Thirteen adolescents aged 12-19 underwent rfMRI before and after 8-week antidepressant treatment and completed BDI-II at each scan. A whole-brain approach, using anatomically defined amygdala ROIs (1) identified brain regions that are highly synchronous with the amygdala, (2) correlated neural changes with changes in overall depression and specific symptom clusters within depression. Results: Some neural correlates were common across domains: (1) decreased amygdala RSFC with the default mode network (posterior cingulate, precuneus) is associated with improvement in overall depression and many symptom clusters, (2) increased amygdala RSFC with fusiform gyrus is associated with symptom improvement across many symptom clusters. We also found unique neural changes associated with symptom improvement in each symptom cluster. Conclusion: This is the first preliminary study that looks at neural correlates of antidepressant treatment response to overall depression as well as different clusters of symptoms of depression. The finding suggests both overlapping and distinct neural mechanisms underlying improvement in each symptom clusters within depression. Some brain regions found are also implicated in MDD among adults in previous literature.Keywords: depression, adolescents, fMRI, antidepressants
Procedia PDF Downloads 2524395 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.Keywords: machine learning, healthcare, classification, explainability
Procedia PDF Downloads 554394 Reconfigurable Intelligent Surfaces (RIS)-Assisted Integrated Leo Satellite and UAV for Non-terrestrial Networks Using a Deep Reinforcement Learning Approach
Authors: Tesfaw Belayneh Abebe
Abstract:
Integrating low-altitude earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN) with the assistance of reconfigurable intelligent surfaces (RIS), we investigate the problem of how to enhance throughput through integrated LEO satellites and UAVs with the assistance of RIS. We propose a method to jointly optimize the associations with the LEO satellite, the 3D trajectory of the UAV, and the phase shifts of the RIS to maximize communication throughput for RIS-assisted integrated LEO satellite and UAV-enabled wireless communications, which is challenging due to the time-varying changes in the position of the LEO satellite, the high mobility of UAVs, an enormous number of possible control actions, and also the large number of RIS elements. Utilizing a multi-agent double deep Q-network (MADDQN), our approach dynamically adjusts LEO satellite association, UAV positioning, and RIS phase shifts. Simulation results demonstrate that our method significantly outperforms baseline strategies in maximizing throughput. Lastly, thanks to the integrated network and the RIS, the proposed scheme achieves up to 65.66x higher peak throughput and 25.09x higher worst-case throughput.Keywords: integrating low-altitude earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN), reconfigurable intelligent surfaces (RIS), multi-agent double deep Q-network (MADDQN)
Procedia PDF Downloads 484393 EMI Radiation Prediction and Final Measurement Process Optimization by Neural Network
Authors: Hussam Elias, Ninovic Perez, Holger Hirsch
Abstract:
The completion of the EMC regulations worldwide is growing steadily as the usage of electronics in our daily lives is increasing more than ever. In this paper, we introduce a novel method to perform the final phase of Electromagnetic compatibility (EMC) measurement and to reduce the required test time according to the norm EN 55032 by using a developed tool and the conventional neural network(CNN). The neural network was trained using real EMC measurements, which were performed in the Semi Anechoic Chamber (SAC) by CETECOM GmbH in Essen, Germany. To implement our proposed method, we wrote software to perform the radiated electromagnetic interference (EMI) measurements and use the CNN to predict and determine the position of the turntable that meets the maximum radiation value.Keywords: conventional neural network, electromagnetic compatibility measurement, mean absolute error, position error
Procedia PDF Downloads 2004392 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks
Authors: Andrew N. Saylor, James R. Peters
Abstract:
Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging
Procedia PDF Downloads 1294391 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network
Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu
Abstract:
Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning
Procedia PDF Downloads 1304390 Digi-Buddy: A Smart Cane with Artificial Intelligence and Real-Time Assistance
Authors: Amaladhithyan Krishnamoorthy, Ruvaitha Banu
Abstract:
Vision is considered as the most important sense in humans, without which leading a normal can be often difficult. There are many existing smart canes for visually impaired with obstacle detection using ultrasonic transducer to help them navigate. Though the basic smart cane increases the safety of the users, it does not help in filling the void of visual loss. This paper introduces the concept of Digi-Buddy which is an evolved smart cane for visually impaired. The cane consists for several modules, apart from the basic obstacle detection features; the Digi-Buddy assists the user by capturing video/images and streams them to the server using a wide-angled camera, which then detects the objects using Deep Convolutional Neural Network. In addition to determining what the particular image/object is, the distance of the object is assessed by the ultrasonic transducer. The sound generation application, modelled with the help of Natural Language Processing is used to convert the processed images/object into audio. The object detected is signified by its name which is transmitted to the user with the help of Bluetooth hear phones. The object detection is extended to facial recognition which maps the faces of the person the user meets in the database of face images and alerts the user about the person. One of other crucial function consists of an automatic-intimation-alarm which is triggered when the user is in an emergency. If the user recovers within a set time, a button is provisioned in the cane to stop the alarm. Else an automatic intimation is sent to friends and family about the whereabouts of the user using GPS. In addition to safety and security by the existing smart canes, the proposed concept devices to be implemented as a prototype helping visually-impaired visualize their surroundings through audio more in an amicable way.Keywords: artificial intelligence, facial recognition, natural language processing, internet of things
Procedia PDF Downloads 354