Search results for: Virulence features.
3089 Attention and Memory in the Music Learning Process in Individuals with Visual Impairments
Authors: Lana Burmistrova
Abstract:
Introduction: The influence of visual impairments on several cognitive processes used in the music learning process is an increasingly important area in special education and cognitive musicology. Many children have several visual impairments due to the refractive errors and irreversible inhibitors. However, based on the compensatory neuroplasticity and functional reorganization, congenitally blind (CB) and early blind (EB) individuals use several areas of the occipital lobe to perceive and process auditory and tactile information. CB individuals have greater memory capacity, memory reliability, and less false memory mechanisms are used while executing several tasks, they have better working memory (WM) and short-term memory (STM). Blind individuals use several strategies while executing tactile and working memory n-back tasks: verbalization strategy (mental recall), tactile strategy (tactile recall) and combined strategies. Methods and design: The aim of the pilot study was to substantiate similar tendencies while executing attention, memory and combined auditory tasks in blind and sighted individuals constructed for this study, and to investigate attention, memory and combined mechanisms used in the music learning process. For this study eight (n=8) blind and eight (n=8) sighted individuals aged 13-20 were chosen. All respondents had more than five years music performance and music learning experience. In the attention task, all respondents had to identify pitch changes in tonal and randomized melodic pairs. The memory task was based on the mismatch negativity (MMN) proportion theory: 80 percent standard (not changed) and 20 percent deviant (changed) stimuli (sequences). Every sequence was named (na-na, ra-ra, za-za) and several items (pencil, spoon, tealight) were assigned for each sequence. Respondents had to recall the sequences, to associate them with the item and to detect possible changes. While executing the combined task, all respondents had to focus attention on the pitch changes and had to detect and describe these during the recall. Results and conclusion: The results support specific features in CB and EB, and similarities between late blind (LB) and sighted individuals. While executing attention and memory tasks, it was possible to observe the tendency in CB and EB by using more precise execution tactics and usage of more advanced periodic memory, while focusing on auditory and tactile stimuli. While executing memory and combined tasks, CB and EB individuals used passive working memory to recall standard sequences, active working memory to recall deviant sequences and combined strategies. Based on the observation results, assessment of blind respondents and recording specifics, following attention and memory correlations were identified: reflective attention and STM, reflective attention and periodic memory, auditory attention and WM, tactile attention and WM, auditory tactile attention and STM. The results and the summary of findings highlight the attention and memory features used in the music learning process in the context of blindness, and the tendency of the several attention and memory types correlated based on the task, strategy and individual features.Keywords: attention, blindness, memory, music learning, strategy
Procedia PDF Downloads 1863088 An Analysis of Learners’ Reports for Measuring Co-Creational Education
Authors: Takatoshi Ishii, Koji Kimita, Keiichi Muramatsu, Yoshiki Shimomura
Abstract:
To increase the quality of learning, teacher and learner need mutual effort for realization of educational value. For this purpose, we need to manage the co-creational education among teacher and learners. In this research, we try to find a feature of co-creational education. To be more precise, we analyzed learners’ reports by natural language processing, and extract some features that describe the state of the co-creational education.Keywords: co-creational education, e-portfolios, ICT integration, latent dirichlet allocation
Procedia PDF Downloads 6243087 The Role of Psychosis Proneness in the Association of Metacognition with Psychological Distress in Non-Clinical Population
Authors: Usha Barahmand, Ruhollah Heydari Sheikh Ahmad
Abstract:
Distress refers to an unpleasant metal state or emotional suffering marked by negative affect such as depression (e.g., lost interest; sadness; hopelessness), anxiety (e.g., restlessness; feeling tense). These negative affect have been mostly suggested to be concomitant of metal disorders such as positive psychosis symptoms and also of proneness to psychotic features in non-clinical population. Psychotic features proneness including hallucination, delusion and schizotypal traits, have been found to be associated with metacognitive beliefs. Metacognition has been conceptualized as ‘thinking about thoughts, monitoring and controlling of cognitive processes’. The aim of the current study was to investigate the role of psychosis proneness in the association of metacognitions and distress. We predicted psychosis proneness would mediate the association of metacognitive beliefs and the distress. A sample of 420 university students was randomly recruited to endorse questionnaires of the study that consisted of DASS-21questionnaire for assessing levels of distress, Cartwright–Hatton & Wells, Meta-cognitions Questionnaire (MCQ-30) for assessing metacognitive beliefs, Launay-Slade Hallucination Scale-revised (LSHS-R), Peters et al. Delusions Inventory, Schizotypal Personality Questionnaire-Brief. Conducting a bootstrapping approach in order to investigate our hypothesis, the result showed that there was no a direct association between metacognitive dimensions and psychological distress and psychosis proneness significantly mediated the association. Finding suggested that individuals with dysfunctional metacognitive beliefs experience high levels of distress if they are prone to psychosis symptoms. In other words, psychosis proneness is a path through which individuals with dysfunctional metacognitions experience high levels of psychological distress.Keywords: metacognition, non-clinical population, psychological distress, psychosis proneness
Procedia PDF Downloads 3413086 Acquisition of Murcian Lexicon and Morphology by L2 Spanish Immigrants: The Role of Social Networks
Authors: Andrea Hernandez Hurtado
Abstract:
Research on social networks (SNs) -- the interactions individuals share with others has shed important light in helping to explain differential use of variable linguistic forms, both in L1s and L2s. Nevertheless, the acquisition of nonstandard L2 Spanish in the Region of Murcia, Spain, and how learners interact with other speakers while sojourning there have received little attention. Murcian Spanish (MuSp) was widely influenced by Panocho, a divergent evolution of Hispanic Latin, and differs from the more standard Peninsular Spanish (StSp) in phonology, morphology, and lexicon. For instance, speakers from this area will most likely palatalize diminutive endings, producing animalico [̩a.ni.ma.ˈli.ko] instead of animalito [̩a.ni.ma.ˈli.to] ‘little animal’. Because L1 speakers of the area produce and prefer salient regional lexicon and morphology (particularly the palatalized diminutive -ico) in their speech, the current research focuses on how international residents in the Region of Murcia use Spanish: (1) whether or not they acquire (perceptively and/or productively) any of the salient regional features of MuSp, and (2) how their SNs explain such acquisition. This study triangulates across three tasks -recognition, production, and preference- addressing both lexicon and morphology, with each task specifically created for the investigation of MuSp features. Among other variables, the effects of L1, residence, and identity are considered. As an ongoing dissertation research, data are currently being gathered through an online questionnaire. So far, 7 participants from multiple nationalities have completed the survey, although a minimum of 25 are expected to be included in the coming months. Preliminary results revealed that MuSp lexicon and morphology were successfully recognized by participants (p<.001). In terms of regional lexicon production (10.0%) and preference (47.5%), although participants showed higher percentages of StSp, results showed that international residents become aware of stigmatized lexicon and may incorporate it into their language use. Similarly, palatalized diminutives (production 14.2%, preference 19.0%) were present in their responses. The Social Network Analysis provided information about participants’ relationships with their interactants, as well as among them. Results indicated that, generally, when residents were more immersed in the culture (i.e., had more Murcian alters) they produced and preferred more regional features. This project contributes to the knowledge of language variation acquisition in L2 speakers, focusing on a stigmatized Spanish dialect and exploring how stigmatized varieties may affect L2 development. Results will show how L2 Spanish speakers’ language is affected by their stay in Murcia. This, in turn, will shed light on the role of SNs in language acquisition, the acquisition of understudied and marginalized varieties, and the role of immersion on language acquisition. As the first systematic account on the acquisition of L2 Spanish lexicon and morphology in the Region of Murcia, it lays important groundwork for further research on the connection between SNs and the acquisition of regional variants, applicable to Murcia and beyond.Keywords: international residents, L2 Spanish, lexicon, morphology, nonstandard language acquisition, social networks
Procedia PDF Downloads 783085 A Hybrid Multi-Criteria Hotel Recommender System Using Explicit and Implicit Feedbacks
Authors: Ashkan Ebadi, Adam Krzyzak
Abstract:
Recommender systems, also known as recommender engines, have become an important research area and are now being applied in various fields. In addition, the techniques behind the recommender systems have been improved over the time. In general, such systems help users to find their required products or services (e.g. books, music) through analyzing and aggregating other users’ activities and behavior, mainly in form of reviews, and making the best recommendations. The recommendations can facilitate user’s decision making process. Despite the wide literature on the topic, using multiple data sources of different types as the input has not been widely studied. Recommender systems can benefit from the high availability of digital data to collect the input data of different types which implicitly or explicitly help the system to improve its accuracy. Moreover, most of the existing research in this area is based on single rating measures in which a single rating is used to link users to items. This paper proposes a highly accurate hotel recommender system, implemented in various layers. Using multi-aspect rating system and benefitting from large-scale data of different types, the recommender system suggests hotels that are personalized and tailored for the given user. The system employs natural language processing and topic modelling techniques to assess the sentiment of the users’ reviews and extract implicit features. The entire recommender engine contains multiple sub-systems, namely users clustering, matrix factorization module, and hybrid recommender system. Each sub-system contributes to the final composite set of recommendations through covering a specific aspect of the problem. The accuracy of the proposed recommender system has been tested intensively where the results confirm the high performance of the system.Keywords: tourism, hotel recommender system, hybrid, implicit features
Procedia PDF Downloads 2743084 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances
Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim
Abstract:
This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering
Procedia PDF Downloads 1883083 A Survey of Novel Opportunistic Routing Protocols in Mobile Ad Hoc Networks
Authors: R. Poonkuzhali, M. Y. Sanavullah, M. R. Gurupriya
Abstract:
Opportunistic routing is used, where the network has the features like dynamic topology changes and intermittent network connectivity. In Delay Tolerant network or Disruption tolerant network opportunistic forwarding technique is widely used. The key idea of opportunistic routing is selecting forwarding nodes to forward data and coordination among these nodes to avoid duplicate transmissions. This paper gives the analysis of pros and cons of various opportunistic routing techniques used in MANET.Keywords: ETX, opportunistic routing, PSR, throughput
Procedia PDF Downloads 4953082 Democratic Action as Insurgency: On Claude Lefort's Concept of the Political Regime
Authors: Lorenzo Buti
Abstract:
This paper investigates the nature of democratic action through a critical reading of Claude Lefort’s notion of the democratic ‘regime’. Lefort provides one of the most innovative accounts of the essential features of a democratic regime. According to him, democracy is a political regime that acknowledges the indeterminacy of a society and stages it as a contestation between competing political actors. As such, democracy provides the symbolic markers of society’s openness towards the future. However, despite their democratic features, the recent decades in late capitalist societies attest to a sense of the future becoming fixed and predetermined. This suggests that Lefort’s conception of democracy harbours a misunderstanding of the character and experience of democratic action. This paper examines this underlying tension in Lefort’s work. It claims that Lefort underestimates how a democratic regime, next to its symbolic function, also takes a materially constituted form with its particular dynamics of power relations. Lefort’s systematic dismissal of this material dimension for democratic action can lead to the contemporary paradoxical situation where democracy’s symbolic markers are upheld (free elections, public debate, dynamic between government and opposition in parliament,…) but the room for political decision-making is constrained due to a myriad of material constraints (e.g., market pressures, institutional inertias). The paper draws out the implications for the notion of democratic action. Contra Lefort, it argues that democratic action necessarily targets the material conditions that impede the capacity for decision-making on the basis of equality and liberty. This analysis shapes our understanding of democratic action in two ways. First, democratic action takes an asymmetrical, insurgent form, as a contestation of material power relations from below. Second, it reveals an ambivalent position vis-à-vis the political regime: democratic action is symbolically made possible by the democratic dispositive, but it contests the constituted form that the democratic regime takes.Keywords: Claude Lefort, democratic action, material constitution, political regime
Procedia PDF Downloads 1423081 Features of Communication of Modern Children: Difficulties and Solutions
Authors: G. H. Vakhitova, E. P. Leontyev
Abstract:
\Modern children experience a huge impact on their psycho-emotional state due to globalization, comprehensive informatization and digitalization. This situation aggravates the problem of children's communication. In a constantly changing world, it is quite difficult for today’s child to maintain emotional well-being, especially in the process of communicating with various participants in communication. Despite the many works of scientists considering various aspects of communication and emotional well-being, the problem remains open, discussed from various angles by philosophers, teachers, psychologists, and sociologists. The article examines the causes of emerging communication difficulties in the context of “child–adult,” and “child-parent” since it is in this logic that the experience of common emotional experiences is formed, which is the basis not only for living together but also for the full development of personality. In this case, it is important to pay special attention to the need to ensure the emotional well-being of the child, first of all, by parents who, due to their busy lives, notice less and less the changes occurring with their children. At the same time, children need constructive dialogue, but often adults do not have the patience to choose the right emotions without breaking into shouting and insults if the child displays behavior that differs from the desired one. The reason for communication difficulties, as shown by the results of the survey and long-term observations of the authors, maybe adults ignoring the characteristics of children. These features manifest themselves in children in different ways: for example, inadequate self-esteem is associated with either excessive timidity or aggressiveness. Such children, as a rule, fearing ridicule not only from their peers but even from adults, live with distrust of the world; they lack initiative, often being rude or, on the contrary, mocking others. In addition, modern children are different, not the same as their peers were twenty to twenty-five years ago. Today, the concept of “digital children” and “clip-based” children has become firmly established in the description of children. This circumstance cannot be ignored when building their communication. The authors note that only if the capabilities and originality of modern children are taken into account is it possible to ensure their emotional well-being in the process of communication.Keywords: emotional well-being, communication, emotional comfort, emotions, communication difficulties, constructive communication, dialogue
Procedia PDF Downloads 53080 Visualization Tool for EEG Signal Segmentation
Authors: Sweeti, Anoop Kant Godiyal, Neha Singh, Sneh Anand, B. K. Panigrahi, Jayasree Santhosh
Abstract:
This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length.Keywords: de-noising, multi-channel data, PCA, power spectra, segmentation
Procedia PDF Downloads 4013079 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm
Authors: Annalakshmi G., Sakthivel Murugan S.
Abstract:
This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization
Procedia PDF Downloads 1643078 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble
Authors: Jaehong Yu, Seoung Bum Kim
Abstract:
Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking
Procedia PDF Downloads 3393077 Characterization of Chest Pain in Patients Consulting to the Emergency Department of a Health Institution High Level of Complexity during 2014-2015, Medellin, Colombia
Authors: Jorge Iván Bañol-Betancur, Lina María Martínez-Sánchez, María de los Ángeles Rodríguez-Gázquez, Estefanía Bahamonde-Olaya, Ana María Gutiérrez-Tamayo, Laura Isabel Jaramillo-Jaramillo, Camilo Ruiz-Mejía, Natalia Morales-Quintero
Abstract:
Acute chest pain is a distressing sensation between the diaphragm and the base of the neck and it represents a diagnostic challenge for any physician in the emergency department. Objective: To establish the main clinical and epidemiological characteristics of patients who present with chest pain to the emergency department in a private clinic from the city of Medellin, during 2014-2015. Methods: Cross-sectional retrospective observational study. Population and sample were patients who consulted for chest pain in the emergency department who met the eligibility criteria. The information was analyzed in SPSS program vr.21; qualitative variables were described through relative frequencies, and the quantitative through mean and standard deviation or medians according to their distribution in the study population. Results: A total of 231 patients were evaluated, the mean age was 49.5 ± 19.9 years, 56.7% were females. The most frequent pathological antecedents were hypertension 35.5%, diabetes 10,8%, dyslipidemia 10.4% and coronary disease 5.2%. Regarding pain features, in 40.3% of the patients the pain began abruptly, in 38.2% it had a precordial location, for 20% of the cases physical activity acted as a trigger, and 60.6% was oppressive. Costochondritis was the most common cause of chest pain among patients with an established etiologic diagnosis, representing the 18.2%. Conclusions: Although the clinical features of pain reported coincide with the clinical presentation of an acute coronary syndrome, the most common cause of chest pain in study population was costochondritis instead, indicating that it is a differential diagnostic in the approach of patients with pain acute chest.Keywords: acute coronary syndrome, chest pain, epidemiology, osteochondritis
Procedia PDF Downloads 3433076 Synthesis and Characterization of Silver/Graphene Oxide Co-Decorated TiO2 Nanotubular Arrays for Biomedical Applications
Authors: Alireza Rafieerad, Bushroa Abd Razak, Bahman Nasiri Tabrizi, Jamunarani Vadivelu
Abstract:
Recently, reports on the fabrication of nanotubular arrays have generated considerable scientific interest, owing to the broad range of applications of the oxide nanotubes in solar cells, orthopedic and dental implants, photocatalytic devices as well as lithium-ion batteries. A more attractive approach for the fabrication of oxide nanotubes with controllable morphology is the electrochemical anodization of substrate in a fluoride-containing electrolyte. Consequently, titanium dioxide nanotubes (TiO2 NTs) have been highly considered as an applicable material particularly in the district of artificial implants. In addition, regarding long-term efficacy and reasons of failing and infection after surgery of currently used dental implants required to enhance the cytocompatibility properties of Ti-based bone-like tissue. As well, graphene oxide (GO) with relevant biocompatibility features in tissue sites, osseointegration and drug delivery functionalization was fully understood. Besides, the boasting antibacterial ability of silver (Ag) remarkably provided for implantable devices without infection symptoms. Here, surface modification of Ti–6Al–7Nb implants (Ti67IMP) by the development of Ag/GO co-decorated TiO2 NTs was examined. Initially, the anodic TiO2 nanotubes obtained at a constant potential of 60 V were annealed at 600 degree centigrade for 2 h to improve the adhesion of the coating. Afterward, the Ag/GO co-decorated TiO2 NTs were developed by spin coating on Ti67IM. The microstructural features, phase composition and wettability behavior of the nanostructured coating were characterized comparably. In a nutshell, the results of the present study may contribute to the development of the nanostructured Ti67IMP with improved surface properties.Keywords: anodic tio2 nanotube, biomedical applications, graphene oxide, silver, spin coating
Procedia PDF Downloads 3253075 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models
Authors: Ainouna Bouziane
Abstract:
The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.Keywords: electron tomography, supported catalysts, nanometrology, error assessment
Procedia PDF Downloads 883074 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1583073 Elements of Successful Commercial Streets: A Socio-Spatial Analysis of Commercial Streets in Cairo
Authors: Toka Aly
Abstract:
Historically, marketplaces were the most important nodes and focal points of cities, where different activities took place. Commercial streets offer more than just spaces for shopping; they also offer choices for social activities and cultural exchange. They are considered the backbone of the city’s vibrancy and vitality. Despite that, the public life in Cairo’s commercial streets has deteriorated, where the shopping activities became reliant mainly on 'planned formal places', mainly in privatized or indoor spaces like shopping malls. The main aim of this paper is to explore the key elements and tools of assessing the successfulness of commercial streets in Cairo. The methodology followed in this paper is based on a case study methodology (multiple cases) that is based on assessing and analyzing the physical and social elements in historical and contemporary commercial streets in El Muiz Street and Baghdad Street in Cairo. The data collection is based on personal observations, photographs, maps and street sections. Findings indicate that the key factors of analyzing commercial streets are factors affecting the sensory experience, factors affecting the social behavior, and general aspects that attract people. Findings also indicate that urban features have clear influence on shopping pedestrian activities in both streets. Moreover, in order for a commercial street to be successful, shopping patterns must provide people with a quality public space that can provide easy navigation and accessibility, good visual continuity, and well-designed urban features and social gathering. Outcomes of this study will be a significant endeavor in providing a good background for urban designers on analyzing and assessing successfulness of commercial streets. The study will also help in understanding the different physical and social pattern of vending activities taking place in Cairo.Keywords: activities, commercial street, marketplace, successful, vending
Procedia PDF Downloads 3053072 Influence of a Company’s Dynamic Capabilities on Its Innovation Capabilities
Authors: Lovorka Galetic, Zeljko Vukelic
Abstract:
The advanced concepts of strategic and innovation management in the sphere of company dynamic and innovation capabilities, and achieving their mutual alignment and a synergy effect, are important elements in business today. This paper analyses the theory and empirically investigates the influence of a company’s dynamic capabilities on its innovation capabilities. A new multidimensional model of dynamic capabilities is presented, consisting of five factors appropriate to real time requirements, while innovation capabilities are considered pursuant to the official OECD and Eurostat standards. After examination of dynamic and innovation capabilities indicated their theoretical links, the empirical study testing the model and examining the influence of a company’s dynamic capabilities on its innovation capabilities showed significant results. In the study, a research model was posed to relate company dynamic and innovation capabilities. One side of the model features the variables that are the determinants of dynamic capabilities defined through their factors, while the other side features the determinants of innovation capabilities pursuant to the official standards. With regard to the research model, five hypotheses were set. The study was performed in late 2014 on a representative sample of large and very large Croatian enterprises with a minimum of 250 employees. The research instrument was a questionnaire administered to company top management. For both variables, the position of the company was tested in comparison to industry competitors, on a fivepoint scale. In order to test the hypotheses, correlation tests were performed to determine whether there is a correlation between each individual factor of company dynamic capabilities with the existence of its innovation capabilities, in line with the research model. The results indicate a strong correlation between a company’s possession of dynamic capabilities in terms of their factors, due to the new multi-dimensional model presented in this paper, with its possession of innovation capabilities. Based on the results, all five hypotheses were accepted. Ultimately, it was concluded that there is a strong association between the dynamic and innovation capabilities of a company.Keywords: dynamic capabilities, innovation capabilities, competitive advantage, business results
Procedia PDF Downloads 3063071 Features of Testing of the Neuronetwork Converter Biometrics-Code with Correlation Communications between Bits of the Output Code
Authors: B. S. Akhmetov, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin, K. Mukapil, S. D. Tolybayev
Abstract:
The article examines the testing of the neural network converter of biometrics code. Determined the main reasons that prevented the use adopted in the works of foreign researchers classical a Binomial Law when describing distribution of measures of Hamming "Alien" codes-responses.Keywords: biometrics, testing, neural network, converter of biometrics-code, Hamming's measure
Procedia PDF Downloads 11403070 Reduplication in Dhiyan: An Indo-Aryan Language of Assam
Authors: S. Sulochana Singha
Abstract:
Dhiyan or Dehan is the name of the community and language spoken by the Koch-Rajbangshi people of Barak Valley of Assam. Ethnically, they are Mongoloids, and their language belongs to the Indo-Aryan language family. However, Dhiyan is absent in any classification of Indo-Aryan languages. So the classification of Dhiyan language under the Indo-Aryan language family is completely based on the shared typological features of the other Indo-Aryan languages. Typologically, Dhiyan is an agglutinating language, and it shares many features of Indo-Aryan languages like presence of aspirated voiced stops, non-tonal, verb-person agreement, adjectives as different word class, prominent tense and subject object verb word order. Reduplication is a productive word-formation process in Dhiyan. Besides it also expresses plurality, intensification, and distributive. Generally, reduplication in Dhiyan can be at the morphological or lexical level. Morphological reduplication in Dhiyan involves expressives which includes onomatopoeias, sound symbolism, idiophones, and imitatives. Lexical reduplication in the language can be formed by echo formations and word reduplication. Echo formation in Dhiyan is formed by partial repetition from the base word which can be either consonant alternation or vowel alternation. The consonant alternation is basically found in onset position while the alternation of vowel is basically found in open syllable particularly in final syllable. Word reduplication involves reduplication of nouns, interrogatives, adjectives, and numerals which further can be class changing or class maintaining reduplication. The process of reduplication can be partial or complete whether it is lexical or morphological. The present paper is an attempt to describe some aspects of the formation, function, and usage of reduplications in Dhiyan which is mainly spoken in ten villages in the Eastern part of Barak River in the Cachar District of Assam.Keywords: Barak-Valley, Dhiyan, Indo-Aryan, reduplication
Procedia PDF Downloads 2173069 Students’ Opinions Related to Virtual Classrooms within the Online Distance Education Graduate Program
Authors: Secil Kaya Gulen
Abstract:
Face to face and virtual classrooms that came up with different conditions and environments, but similar purposes have different characteristics. Although virtual classrooms have some similar facilities with face-to-face classes such as program, students, and administrators, they have no walls and corridors. Therefore, students can attend the courses from a distance and can control their own learning spaces. Virtual classrooms defined as simultaneous online environments where students in different places come together at the same time with the guidance of a teacher. Distance education and virtual classes require different intellectual and managerial skills and models. Therefore, for effective use of virtual classrooms, the virtual property should be taken into consideration. One of the most important factors that affect the spread and effective use of the virtual classrooms is the perceptions and opinions of students -as one the main participants-. Student opinions and recommendations are important in terms of providing information about the fulfillment of expectation. This will help to improve the applications and contribute to the more efficient implementations. In this context, ideas and perceptions of the students related to the virtual classrooms, in general, were determined in this study. Advantages and disadvantages of virtual classrooms expected contributions to the educational system and expected characteristics of virtual classrooms have examined in this study. Students of an online distance education graduate program in which all the courses offered by virtual classrooms have asked for their opinions. Online Distance Education Graduate Program has totally 19 students. The questionnaire that consists of open-ended and multiple choice questions sent to these 19 students and finally 12 of them answered the questionnaire. Analysis of the data presented as frequencies and percentages for each item. SPSS for multiple-choice questions and Nvivo for open-ended questions were used for analyses. According to the results obtained by the analysis, participants stated that they did not get any training on virtual classes before the courses; but they emphasize that newly enrolled students should be educated about the virtual classrooms. In addition, all participants mentioned that virtual classroom contribute their personal development and they want to improve their skills by gaining more experience. The participants, who mainly emphasize the advantages of virtual classrooms, express that the dissemination of virtual classrooms will contribute to the Turkish Education System. Within the advantages of virtual classrooms, ‘recordable and repeatable lessons’ and ‘eliminating the access and transportation costs’ are most common advantages according to the participants. On the other hand, they mentioned ‘technological features and keyboard usage skills affect the attendance’ is the most common disadvantage. Participants' most obvious problem during virtual lectures is ‘lack of technical support’. Finally ‘easy to use’, ‘support possibilities’, ‘communication level’ and ‘flexibility’ come to the forefront in the scope of expected features of virtual classrooms. Last of all, students' opinions about the virtual classrooms seems to be generally positive. Designing and managing virtual classrooms according to the prioritized features will increase the students’ satisfaction and will contribute to improve applications that are more effective.Keywords: distance education, virtual classrooms, higher education, e-learning
Procedia PDF Downloads 2693068 Pathogenic Escherichia Coli Strains and Their Antibiotic Susceptibility Profiles in Cases of Child Diarrhea at Addis Ababa University, College of Health Sciences, Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia
Authors: Benyam Zenebe, Tesfaye Sisay, Gurja Belay, Workabeba Abebe
Abstract:
Background: The prevalence and antibiogram of pathogenic E. coli strains, which cause diarrhea vary from region to region, and even within countries in the same geographical area. In Ethiopia, diagnostic approaches to E. coli induced diarrhea in children less than five years of age are not standardized. The aim of this study was to determine the involvement of pathogenic E. coli strains in child diarrhea and determine the antibiograms of the isolates in children less than 5 years of age with diarrhea at Addis Ababa University College of Health Sciences TikurAnbessa Specialized Hospital, Addis Ababa, Ethiopia. Methods: A purposive study that included 98 diarrheic children less than five years of age was conducted at Addis Ababa University College of Health Sciences, TikurAnbessa Specialized Hospital, Addis Ababa, Ethiopia to detect pathogenic E. coli biotypes. Stool culture was used to identify presumptive E. coliisolates. Presumptive isolates were confirmed by biochemical tests, and antimicrobial susceptibility tests were performed on confirmed E. coli isolates by the disk diffusion method. DNA was extracted from confirmed isolates by a heating method and subjected to Polymerase Chain Reaction or the presence of virulence genes. Amplified PCR products were analyzed by agarose gel electrophoresis. Data were collected on child demographics and clinical conditions using administered questionnaires. The prevalence of E. coli strains from the total diarrheic children, and the prevalence of pathogenic strains from total E. coli isolates along with their susceptibility profiles; the distribution of pathogenic E.coli biotypes among different age groups and between the sexes were determined by using descriptive statistics. Result: Out of 98 stool specimens collected from diarrheic children less than 5 years of age, 75 presumptive E. coli isolates were identified by culture; further confirmation by biochemical tests showed that only 56 of the isolates were E. coli; 29 of the isolates were found in male children and 27 of them in female children. Out of the 58 isolates of E. coli, 25 pathotypes belonging to different classes of pathogenic strains: STEC, EPEC, EHEC, EAEC were detected by using the PCR technique. Pathogenic E. coli exhibited high rates of antibiotic resistance to many of the antibiotics tested. Moreover, they exhibited multiple drug resistance. Conclusion: This study found that the isolation rate of E. coli and the involvement of antibiotic-resistant pathogenic E. coli in diarrheic children is prominent, and hence focus should be given on the diagnosis and antimicrobial sensitivity testing of pathogenic E. coli at Addis Ababa University College of Health Sciences TikurAnbessa Specialized Hospital. Among antibiotics tested, Cefotitan could be a drug of choice to treat E. coli.Keywords: antibiotic susceptibility profile, children, diarrhea, E. coli, pathogenic
Procedia PDF Downloads 2353067 Research and Implementation of Cross-domain Data Sharing System in Net-centric Environment
Authors: Xiaoqing Wang, Jianjian Zong, Li Li, Yanxing Zheng, Jinrong Tong, Mao Zhan
Abstract:
With the rapid development of network and communication technology, a great deal of data has been generated in different domains of a network. These data show a trend of increasing scale and more complex structure. Therefore, an effective and flexible cross-domain data-sharing system is needed. The Cross-domain Data Sharing System(CDSS) in a net-centric environment is composed of three sub-systems. The data distribution sub-system provides data exchange service through publish-subscribe technology that supports asynchronism and multi-to-multi communication, which adapts to the needs of the dynamic and large-scale distributed computing environment. The access control sub-system adopts Attribute-Based Access Control(ABAC) technology to uniformly model various data attributes such as subject, object, permission and environment, which effectively monitors the activities of users accessing resources and ensures that legitimate users get effective access control rights within a legal time. The cross-domain access security negotiation subsystem automatically determines the access rights between different security domains in the process of interactive disclosure of digital certificates and access control policies through trust policy management and negotiation algorithms, which provides an effective means for cross-domain trust relationship establishment and access control in a distributed environment. The CDSS’s asynchronous,multi-to-multi and loosely-coupled communication features can adapt well to data exchange and sharing in dynamic, distributed and large-scale network environments. Next, we will give CDSS new features to support the mobile computing environment.Keywords: data sharing, cross-domain, data exchange, publish-subscribe
Procedia PDF Downloads 1243066 Implications of Learning Resource Centre in a Web Environment
Authors: Darshana Lal, Sonu Rana
Abstract:
Learning Resource Centers (LRC) are acquiring different kinds of documents like books, journals, thesis, dissertations, standard, databases etc. in print and e-form. This article deals with the different types of sources available in LRC. It also discusses the concept of the web, as a tool, as a multimedia system and the different interfaces available on the web. The reasons for establishing LRC are highlighted along with the assignments of LRC. Different features of LRC‘S like self-learning and group learning are described. It also implements a group of activities like reading, learning, educational etc. The use of LRC by students and faculties are given and concluded with the benefits.Keywords: internet, search engine, resource centre, opac, self-learning, group learning
Procedia PDF Downloads 3793065 Survey of Web Service Composition
Authors: Wala Ben Messaoud, Khaled Ghedira, Youssef Ben Halima, Henda Ben Ghezala
Abstract:
A web service (WS) is called compound or composite when its execution involves interactions with other WS to use their features. The composition of WS specifies which services need to be invoked, in what order and how to handle exception conditions. This paper gives an overview of research efforts of WS composition. The approaches proposed in the literature are diverse, interesting and have opened important research areas. Based on many studies, we extracted the most important role of WS composition use in order to facilitate its introduction in WS concept.Keywords: SOA, web services, composition approach, composite WS
Procedia PDF Downloads 3093064 Traumatic Brain Injury Induced Lipid Profiling of Lipids in Mice Serum Using UHPLC-Q-TOF-MS
Authors: Seema Dhariwal, Kiran Maan, Ruchi Baghel, Apoorva Sharma, Poonam Rana
Abstract:
Introduction: Traumatic brain injury (TBI) is defined as the temporary or permanent alteration in brain function and pathology caused by an external mechanical force. It represents the leading cause of mortality and morbidity among children and youth individuals. Various models of TBI in rodents have been developed in the laboratory to mimic the scenario of injury. Blast overpressure injury is common among civilians and military personnel, followed by accidents or explosive devices. In addition to this, the lateral Controlled cortical impact (CCI) model mimics the blunt, penetrating injury. Method: In the present study, we have developed two different mild TBI models using blast and CCI injury. In the blast model, helium gas was used to create an overpressure of 130 kPa (±5) via a shock tube, and CCI injury was induced with an impact depth of 1.5mm to create diffusive and focal injury, respectively. C57BL/6J male mice (10-12 weeks) were divided into three groups: (1) control, (2) Blast treated, (3) CCI treated, and were exposed to different injury models. Serum was collected on Day1 and day7, followed by biphasic extraction using MTBE/Methanol/Water. Prepared samples were separated on Charged Surface Hybrid (CSH) C18 column and acquired on UHPLC-Q-TOF-MS using ESI probe with inhouse optimized parameters and method. MS peak list was generated using Markerview TM. Data were normalized, Pareto-scaled, and log-transformed, followed by multivariate and univariate analysis in metaboanalyst. Result and discussion: Untargeted profiling of lipids generated extensive data features, which were annotated through LIPID MAPS® based on their m/z and were further confirmed based on their fragment pattern by LipidBlast. There is the final annotation of 269 features in the positive and 182 features in the negative mode of ionization. PCA and PLS-DA score plots showed clear segregation of injury groups to controls. Among various lipids in mild blast and CCI, five lipids (Glycerophospholipids {PC 30:2, PE O-33:3, PG 28:3;O3 and PS 36:1 } and fatty acyl { FA 21:3;O2}) were significantly altered in both injury groups at Day 1 and Day 7, and also had VIP score >1. Pathway analysis by Biopan has also shown hampered synthesis of Glycerolipids and Glycerophospholipiods, which coincides with earlier reports. It could be a direct result of alteration in the Acetylcholine signaling pathway in response to TBI. Understanding the role of a specific class of lipid metabolism, regulation and transport could be beneficial to TBI research since it could provide new targets and determine the best therapeutic intervention. This study demonstrates the potential lipid biomarkers which can be used for injury severity diagnosis and identification irrespective of injury type (diffusive or focal).Keywords: LipidBlast, lipidomic biomarker, LIPID MAPS®, TBI
Procedia PDF Downloads 1143063 Multimodal Rhetoric in the Wildlife Documentary, “My Octopus Teacher”
Authors: Visvaganthie Moodley
Abstract:
While rhetoric goes back as far as Aristotle who focalised its meaning as the “art of persuasion”, most scholars have focused on elocutio and dispositio canons, neglecting the rhetorical impact of multimodal texts, such as documentaries. Film documentaries are being increasingly rhetoric, often used by wildlife conservationists for influencing people to become more mindful about humanity’s connection with nature. This paper examines the award-winning film documentary, “My Octopus Teacher”, which depicts naturalist, Craig Foster’s unique discovery and relationship with a female octopus in the southern tip of Africa, the Cape of Storms in South Africa. It is anchored in Leech and Short’s (2007) framework of linguistic and stylistic categories – comprising lexical items, grammatical features, figures of speech and other rhetoric features, and cohesiveness – with particular foci on diction, anthropomorphic language, metaphors and symbolism. It also draws on Kress and van Leeuwen’s (2006) multimodal analysis to show how verbal cues (the narrator’s commentary), visual images in motion, visual images as metaphors and symbolism, and aural sensory images such as music and sound synergise for rhetoric effect. In addition, the analysis of “My Octopus Teacher” is guided by Nichol’s (2010) narrative theory; features of a documentary which foregrounds the credibility of the narrative as a text that represents real events with real people; and its modes of construction, viz., the poetic mode, the expository mode, observational mode and participatory mode, and their integration – forging documentaries as multimodal texts. This paper presents a multimodal rhetoric discussion on the sequence of salient episodes captured in the slow moving one-and-a-half-hour documentary. These are: (i) The prologue: on the brink of something extraordinary; (ii) The day it all started; (iii) The narrator’s turmoil: getting back into the ocean; (iv) The incredible encounter with the octopus; (v) Establishing a relationship; (vi) Outwitting the predatory pyjama shark; (vii) The cycle of life; and (viii) The conclusion: lessons from an octopus. The paper argues that wildlife documentaries, characterized by plausibility and which provide researchers the lens to examine the ideologies about animals and humans, offer an assimilation of the various senses – vocal, visual and audial – for engaging viewers in stylized compelling way; they have the ability to persuade people to think and act in particular ways. As multimodal texts, with its use of lexical items; diction; anthropomorphic language; linguistic, visual and aural metaphors and symbolism; and depictions of anthropocentrism, wildlife documentaries are powerful resources for promoting wildlife conservation and conscientizing people of the need for establishing a harmonious relationship with nature and humans alike.Keywords: documentaries, multimodality, rhetoric, style, wildlife, conservation
Procedia PDF Downloads 953062 AI-Enhanced Self-Regulated Learning: Proposing a Comprehensive Model with 'Studium' to Meet a Student-Centric Perspective
Authors: Smita Singh
Abstract:
Objective: The Faculty of Chemistry Education at Humboldt University has developed ‘Studium’, a web application designed to enhance long-term self-regulated learning (SRL) and academic achievement. Leveraging advanced generative AI, ‘Studium’ offers a dynamic and adaptive educational experience tailored to individual learning preferences and languages. The application includes evolving tools for personalized notetaking from preferred sources, customizable presentation capabilities, and AI-assisted guidance from academic documents or textbooks. It also features workflow automation and seamless integration with collaborative platforms like Miro, powered by AI. This study aims to propose a model that combines generative AI with traditional features and customization options, empowering students to create personalized learning environments that effectively address the challenges of SRL. Method: To achieve this, the study included graduate and undergraduate students from diverse subject streams, with 15 participants each from Germany and India, ensuring a diverse educational background. An exploratory design was employed using a speed dating method with enactment, where different scenario sessions were created to allow participants to experience various features of ‘Studium’. The session lasted for 50 minutes, providing an in-depth exploration of the platform's capabilities. Participants interacted with Studium’s features via Zoom conferencing and were then engaged in semi-structured interviews lasting 10-15 minutes to gain deeper insights into the effectiveness of ‘Studium’. Additionally, online questionnaire surveys were conducted before and after the session to gather feedback and evaluate satisfaction with self-regulated learning (SRL) after using ‘Studium’. The response rate of this survey was 100%. Results: The findings of this study indicate that students widely acknowledged the positive impact of ‘Studium’ on their learning experience, particularly its adaptability and intuitive design. They expressed a desire for more tools like ‘Studium’ to support self-regulated learning in the future. The application significantly fostered students' independence in organizing information and planning study workflows, which in turn enhanced their confidence in mastering complex concepts. Additionally, ‘Studium’ promoted strategic decision-making and helped students overcome various learning challenges, reinforcing their self-regulation, organization, and motivation skills. Conclusion: This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like “Studium” can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners. This proposed model emphasizes the need for effective integration of personalized AI tools into active learning and SRL environments. By addressing key research questions, our framework aims to demonstrate how AI-assisted platforms like ‘Studium’ can facilitate deeper understanding, maintain student motivation, and support the achievement of academic goals. Thus, our ideal model for AI-assisted educational platforms provides a strategic approach to enhance student's learning experiences and promote their development as self-regulated learners.Keywords: self-regulated learning (SRL), generative AI, AI-assisted educational platforms
Procedia PDF Downloads 313061 Surface Deformation Studies in South of Johor Using the Integration of InSAR and Resistivity Methods
Authors: Sirajo Abubakar, Ismail Ahmad Abir, Muhammad Sabiu Bala, Muhammad Mustapha Adejo, Aravind Shanmugaveloo
Abstract:
Over the years, land subsidence has been a serious threat mostly to urban areas. Land subsidence is the sudden sinking or gradual downward settling of the ground’s surface with little or no horizontal motion. In most areas, land subsidence is a slow process that covers a large area; therefore, it is sometimes left unnoticed. South of Johor is the area of interest for this project because it is going through rapid urbanization. The objective of this research is to evaluate and identify potential deformations in the south of Johor using integrated remote sensing and 2D resistivity methods. Synthetic aperture radar interferometry (InSAR) which is a remote sensing technique has the potential to map coherent displacements at centimeter to millimeter resolutions. Persistent scatterer interferometry (PSI) stacking technique was applied to Sentinel-1 data to detect the earth deformation in the study area. A dipole-dipole configuration resistivity profiling was conducted in three areas to determine the subsurface features in that area. This subsurface features interpreted were then correlated with the remote sensing technique to predict the possible causes of subsidence and uplifts in the south of Johor. Based on the results obtained, West Johor Bahru (0.63mm/year) and Ulu Tiram (1.61mm/year) are going through uplift due to possible geological uplift. On the other end, East Johor Bahru (-0.26mm/year) and Senai (-1.16mm/year) undergo subsidence due to possible fracture and granitic boulders loading. Land subsidence must be taken seriously as it can cause serious damages to infrastructures and human life. Monitoring land subsidence and taking preventive actions must be done to prevent any disasters.Keywords: interferometric synthetic aperture radar, persistent scatter, minimum spanning tree, resistivity, subsidence
Procedia PDF Downloads 1473060 Mixed Sub-Fractional Brownian Motion
Authors: Mounir Zili
Abstract:
We will introduce a new extension of the Brownian motion, that could serve to get a good model of many natural phenomena. It is a linear combination of a finite number of sub-fractional Brownian motions; that is why we will call it the mixed sub-fractional Brownian motion. We will present some basic properties of this process. Among others, we will check that our process is non-Markovian and that it has non-stationary increments. We will also give the conditions under which it is a semimartingale. Finally, the main features of its sample paths will be specified.Keywords: mixed Gaussian processes, Sub-fractional Brownian motion, sample paths
Procedia PDF Downloads 488