Search results for: synthetic dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2210

Search results for: synthetic dataset

2150 Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance

Authors: Najoua El Hajjaji El Idrissi, Necip Gokhan Kasapoglu

Abstract:

Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy.

Keywords: classification, synthetic aperture radar, SAR polarimetry, support vector machine, mahalanobis distance

Procedia PDF Downloads 133
2149 Data Mining Approach: Classification Model Evaluation

Authors: Lubabatu Sada Sodangi

Abstract:

The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.

Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset

Procedia PDF Downloads 378
2148 Video Object Segmentation for Automatic Image Annotation of Ethernet Connectors with Environment Mapping and 3D Projection

Authors: Marrone Silverio Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner, Djamel Fawzi Hadj Sadok

Abstract:

The creation of a dataset is time-consuming and often discourages researchers from pursuing their goals. To overcome this problem, we present and discuss two solutions adopted for the automation of this process. Both optimize valuable user time and resources and support video object segmentation with object tracking and 3D projection. In our scenario, we acquire images from a moving robotic arm and, for each approach, generate distinct annotated datasets. We evaluated the precision of the annotations by comparing these with a manually annotated dataset, as well as the efficiency in the context of detection and classification problems. For detection support, we used YOLO and obtained for the projection dataset an F1-Score, accuracy, and mAP values of 0.846, 0.924, and 0.875, respectively. Concerning the tracking dataset, we achieved an F1-Score of 0.861, an accuracy of 0.932, whereas mAP reached 0.894. In order to evaluate the quality of the annotated images used for classification problems, we employed deep learning architectures. We adopted metrics accuracy and F1-Score, for VGG, DenseNet, MobileNet, Inception, and ResNet. The VGG architecture outperformed the others for both projection and tracking datasets. It reached an accuracy and F1-score of 0.997 and 0.993, respectively. Similarly, for the tracking dataset, it achieved an accuracy of 0.991 and an F1-Score of 0.981.

Keywords: RJ45, automatic annotation, object tracking, 3D projection

Procedia PDF Downloads 167
2147 Engagement Analysis Using DAiSEE Dataset

Authors: Naman Solanki, Souraj Mondal

Abstract:

With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.

Keywords: computer vision, engagement prediction, deep learning, multi-level classification

Procedia PDF Downloads 114
2146 In Vitro Morphogenic Response of the Alginate Encapsulated Nodal Segment and Antioxidative Enzymes Analysis during Acclimatization of Cassia Angustifolia Vahl

Authors: Iram Siddique

Abstract:

Synthetic seed technology is an alternative to traditional micropropagation for production and delivery of cloned plantlets. Synthetic seeds were produced by encapsulating nodal segments of C. angustifolia in calcium alginate gel. 3% (w/v) sodium alginate and 100 mM CaCl2. 2H2O were found most suitable for encapsulation of nodal segments. Synthetic seeds cultured on half strength Murashige and Skoog (MS) medium supplemented with thidiazuron (5.0 µM) + indole -3- acetic acid (1.0 µM) produced maximum number of shoots (10.9 ± 0.78) after 8 weeks of culture exhibiting (78%) in vitro conversion response. Encapsulated nodal segments demonstrated successful regeneration after different period (1-6 weeks) of cold storage at 4 °C. The synthetic seeds stored at 4 °C for a period of 4 weeks resulted in maximum conversion frequency (93%) after 8 weeks when placed back to regeneration medium. The isolated shoots when cultured on half strength MS medium supplemented with 1.0 µM indole -3- butyric acid (IBA), produced healthy roots and plantlets with well developed shoot and roots were successfully hardened off in plastic pots containing sterile soilrite inside the growth chamber and gradually transferred to greenhouse where they grew well with 85% survival rate. Changes in the content of photosynthetic pigments, net photosynthetic rate (PN), superoxide dismutase (SOD) and catalase (CAT) activity in C. angustifolia indicated the adaptation of micropropagated plants to ex vitro conditions.

Keywords: biochemical studies, nodal segments, rooting, synthetic seeds, thidiazuron

Procedia PDF Downloads 360
2145 The Damage and Durability of a Sport Synthetic Resin Floor: A Case Study

Authors: C. Paglia, C. Mosca

Abstract:

Synthetic resin floorsare often used in sport infrastructure. These organic materials are often in contact with a bituminous substrate, which in turn is placed on the ground. In this work, the damage of a basket resin field surface was characterized by means of visual inspection, optical microscopy, resin thickness measurements, adhesion strength, water vapor transmission capacity, capillary water adsorption, granulometry of the bituminous conglomerate, the surface properties, and the water ground infiltration speed. The infiltration speed indicates water pemeability. This was due to its composition: clean sand mixed with gravel. Relatively good adhesion was present between the synthetic resin and the bituminous layer. The adhesion resistance of the bituminous layer was relatively low. According to the required bitumoniousasphalt-concrete mixes AC 11 S, the placed material was more porous. Insufficient constipation was present. The spaces values were above the standard limits, while the apparent densities were lower compared to the conventional AC 11 mixtures. The microstructure outlines the high permeability and porosity of the bituminous layer. The synthetic resin wasvapourproof and did not exhibit capillary adsorption. It exhibited a lower thickness as required, and no multiple placing steps were observed. Multiple cavities were detected along with the interface between the bituminous layer and the resin coating with no intermediate layers. The layer for the pore filling in the bituminous surface was not properly applied. The swelling bubbles on the synthetic pavement were caused by the humidity in the bituminous layer. Water or humidity were present prior to the application of the resin, and the effect was worsened by the upward movement of the water from the ground.

Keywords: resin, floor, damage, durability

Procedia PDF Downloads 162
2144 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets

Authors: Najmeh Abedzadeh, Matthew Jacobs

Abstract:

An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.

Keywords: IDS, imbalanced datasets, sampling algorithms, big data

Procedia PDF Downloads 327
2143 Kirchhoff’s Depth Migration over Heterogeneous Velocity Models with Ray Tracing Modeling Approach

Authors: Alok Kumar Routa, Priya Ranjan Mohanty

Abstract:

Complex seismic signatures are generated due to the complexity of the subsurface which is difficult to interpret. In the present study, an attempt has been made to model the complex subsurface using the Ray tracing modeling technique. Add to this, for the imaging of these geological features, Kirchhoff’s prestack depth migration is applied over the synthetic common shot gather dataset. It is found that the Kirchhoff’s migration technique in addition with the Ray tracing modeling concept has the flexibility towards the imaging of various complex geology which gives satisfactory results with proper delineation of the reflectors at their respective true depth position. The entire work has been carried out under the MATLAB environment.

Keywords: Kirchhoff's migration, Prestack depth migration, Ray tracing modelling, velocity model

Procedia PDF Downloads 365
2142 Cyclic Voltammetric Investigations on Nickel Electrodeposition from Industrial Sulfate Electrolyte in Presence of Ca(II), Mg(II), Na(I) Ions

Authors: Udit Mohanty, Mari Lundstrom

Abstract:

Electrochemical investigation by cyclic voltammetry was conducted to explore the polarization behavior of reactions occurring in nickel electrowinning in presence of cationic impurities such as Ca2+ (0-100 mg/L), Na+ (1-10 g/L) and Mg2+ (10-100 mg/L). A comparative study was devised between industrial and synthetic electrolytes to observe the shift in the nucleation overpotentials of nickel deposition, dissolution and hydrogen evolution reactions at the cathode and anode respectively. Significant polarization of cathodic reactions were observed with concentrations of Na ≥ 8g /L and Ca ≤ 40 mg /L in the synthetic electrolytes. Nevertheless, a progressive increase in the concentration of Ca, Mg and Na in the industrial electrolyte demonstrated a depolarization behavior in the cathodic reactions related to nickel deposition and/or hydrogen evolution. Synergistic effect of Ca with Mg and Na in both the industrial and synthetic electrolytes induced a notable depolarization effect, also reflected in the peak currents.

Keywords: cationic impurities, cyclic voltammetry, electrowinning, nickel, polarization

Procedia PDF Downloads 242
2141 Monocular Depth Estimation Benchmarking with Thermal Dataset

Authors: Ali Akyar, Osman Serdar Gedik

Abstract:

Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.

Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers

Procedia PDF Downloads 32
2140 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms

Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani

Abstract:

Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.

Keywords: face recognition, body-worn cameras, deep learning, person identification

Procedia PDF Downloads 163
2139 Experimental Chevreul’s Salt Production Methods on Copper Recovery

Authors: Turan Çalban, Oral Laçin, Abdüsselam Kurtbaş

Abstract:

The experimental production methods Chevreul’s salt being a intermediate stage product for copper recovery were investigated by dealing with the articles written on this topic. Chevreul’s salt, Cu2SO3.CuSO3.2H2O, being a mixed valence copper sulphite compound has been obtained by using different methods and reagents. Chevreul’s salt has a intense brick-red color. It is a highly stable and expensive salt. The production of Chevreul’s salt plays a key role in hiydrometallurgy. In recent years, researchs on this compound have been intensified. Silva et al. reported that this salt is thermally stable up to 200oC. Çolak et al. precipitated the Chevreul’s salt by using ammonia and sulphur dioxide. Çalban et al. obtained at the optimum conditions by passing SO2 from leach solutions with NH3-(NH4)2SO4. Yeşiryurt and Çalban investigated the optimum precipitation conditions of Chevreul’s salt from synthetic CuSO4 solutions including Na2SO3. Çalban et al. achieved the precipitation of Chevreul’s salt at the optimum conditions by passing SO2 from synthetic CuSO4 solutions. Çalban et al. examined the precipitation conditions of Chevreul’s salt using (NH4)2SO3 from synthetic aqueous CuSO4 solutions. In light of these studies, it can be said that Chevreul’s salt can be produced practically from both a leach solutions including copper and synthetic CuSO4 solutions.

Keywords: Chevreul’s salt, ammonia, copper sulpfite, sodium sülfite, optimum conditions

Procedia PDF Downloads 268
2138 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 196
2137 Microbial Bioproduction with Design of Metabolism and Enzyme Engineering

Authors: Tomokazu Shirai, Akihiko Kondo

Abstract:

Technologies of metabolic engineering or synthetic biology are essential for effective microbial bioproduction. It is especially important to develop an in silico tool for designing a metabolic pathway producing an unnatural and valuable chemical such as fossil materials of fuel or plastics. We here demonstrated two in silico tools for designing novel metabolic pathways: BioProV and HyMeP. Furthermore, we succeeded in creating an artificial metabolic pathway by enzyme engineering.

Keywords: bioinformatics, metabolic engineering, synthetic biology, genome scale model

Procedia PDF Downloads 339
2136 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring

Authors: Zheng Wang, Zhenhong Li, Jon Mills

Abstract:

Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.

Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring

Procedia PDF Downloads 161
2135 Reduced Tillage and Bio-stimulant Application Can Improve Soil Microbial Enzyme Activity in a Dryland Cropping System

Authors: Flackson Tshuma, James Bennett, Pieter Andreas Swanepoel, Johan Labuschagne, Stephan van der Westhuizen, Francis Rayns

Abstract:

Amongst other things, tillage and synthetic agrochemicals can be effective methods of seedbed preparation and pest control. Nonetheless, frequent and intensive tillage and excessive application of synthetic agrochemicals, such as herbicides and insecticides, can reduce soil microbial enzyme activity. A decline in soil microbial enzyme activity can negatively affect nutrient cycling and crop productivity. In this study, the effects of four tillage treatments; continuous mouldboard plough; shallow tine-tillage to a depth of about 75 mm; no-tillage; and tillage rotation (involving shallow tine-tillage once every four years in rotation with three years of no-tillage), and two rates of synthetic agrochemicals (standard: with regular application of synthetic agrochemicals; and reduced: fewer synthetic agrochemicals in combination with bio-chemicals/ or bio-stimulants) on soil microbial enzyme activity were investigated between 2018 and 2020 in a typical Mediterranean climate zone in South Africa. Four different bio-stimulants applied contained: Trichoderma asperellum, fulvic acid, silicic acid, and Nereocystis luetkeana extracts, respectively. The study was laid out as a complete randomised block design with four replicated blocks. Each block had 14 plots, and each plot measured 50 m x 6 m. The study aimed to assess the combined impact of tillage practices and reduced rates of synthetic agrochemical application on soil microbial enzyme activity in a dryland cropping system. It was hypothesised that the application of bio-stimulants in combination with minimum soil disturbance will lead to a greater increase in microbial enzyme activity than the effect of applying either in isolation. Six soil cores were randomly and aseptically collected from each plot for microbial enzyme activity analysis from the 0-150 mm layer of a field trial under a dryland crop rotation system in the Swartland region. The activities of four microbial enzymes, β-glucosidase, acid phosphatase, alkaline phosphatase and urease, were assessed. The enzymes are essential for the cycling of glucose, phosphorus, and nitrogen, respectively. Microbial enzyme activity generally increased with a reduction of both tillage intensity and synthetic agrochemical application. The use of the mouldboard plough led to the least (P<0.05) microbial enzyme activity relative to the reduced tillage treatments, whereas the system with bio-stimulants (reduced synthetic agrochemicals) led to the highest (P<0.05) microbial enzyme activity relative to the standard systems. The application of bio-stimulants in combination with reduced tillage, particularly no-tillage, could be beneficial for enzyme activity in a dryland farming system.

Keywords: bio-stimulants, soil microbial enzymes, synthetic agrochemicals, tillage

Procedia PDF Downloads 82
2134 Pectin Degrading Enzyme: Entrapment of Pectinase Using Different Synthetic and Non-Synthetic Polymers for Continuous Degradation of Pectin Polymer

Authors: Haneef Ur Rehman, Afsheen Aman, Abdul Hameed Baloch, Shah Ali Ul Qader

Abstract:

Pectinase is a heterogeneous group of enzymes that catalyze the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, pectinase from B. licheniformis KIBGE-IB21 was immobilized within different polymers (calcium alginate beads, polyacrylamide gel and agar-agar matrix) to enhance its catalytic properties. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield. While less immobilization yield was observed in case of calcium alginate beads that only retained 46 % activity. The reaction time for maximum pectinolytic activity was increased from 5.0 to 10 minutes after immobilization. The temperature of pectinase for maximum enzyme activity was increased from 45 °C to 50 °C and 55 °C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH of pectinase didn’t alter when it was immobilized within polyacrylamide gel and calcium alginate beads, but in case of agar-agar it was changed from pH 10 to pH 9.0. Thermal stability of pectinase was improved after immobilization and immobilized pectinase showed higher toleration against different temperatures as compared to free enzyme. It can be concluded that the entrapment is a simple, single step and promising procedure to immobilized pectinase within different synthetic and non-synthetic polymers and enhanced its catalytic properties.

Keywords: pectinase, characterization immobilization, polyacrylamide, agar-agar, calcium alginate beads

Procedia PDF Downloads 606
2133 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.

Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles

Procedia PDF Downloads 144
2132 Poly-ε-Caprolactone Nanofibers with Synthetic Growth Factor Enriched Liposomes as Controlled Drug Delivery System

Authors: Vera Sovkova, Andrea Mickova, Matej Buzgo, Karolina Vocetkova, Eva Filova, Evzen Amler

Abstract:

PCL (poly-ε-caprolactone) nanofibrous scaffolds with adhered liposomes were prepared and tested as a possible drug delivery system for various synthetic growth factors. TGFβ, bFGF, and IGF-I have been shown to increase hMSC (human mesenchymal stem cells) proliferation and to induce hMSC differentiation. Functionalized PCL nanofibers were prepared with synthetic growth factors encapsulated in liposomes adhered to them in three different concentrations. Other samples contained PCL nanofibers with adhered, free synthetic growth factors. The synthetic growth factors free medium served as a control. The interaction of liposomes with the PCL nanofibers was visualized by SEM, and the release kinetics were determined by ELISA testing. The potential of liposomes, immobilized on the biodegradable scaffolds, as a delivery system for synthetic growth factors, and as a suitable system for MSCs adhesion, proliferation and differentiation in vitro was evaluated by MTS assay, dsDNA amount determination, confocal microscopy, flow cytometry and real-time PCR. The results showed that the growth factors adhered to the PCL nanofibers stimulated cell proliferation mainly up to day 11 and that subsequently their effect was lower. By contrast, the release of the lowest concentration of growth factors from liposomes resulted in gradual proliferation of MSCs throughout the experiment. Moreover, liposomes, as well as free growth factors, stimulated type II collagen production, which was confirmed by immunohistochemical staining using monoclonal antibody against type II collagen. The results of this study indicate that growth factors enriched liposomes adhered to surface of PCL nanofibers could be useful as a drug delivery instrument for application in short timescales, be combined with nanofiber scaffolds to promote local and persistent delivery while mimicking the local microenvironment. This work was supported by project LO1508 from the Ministry of Education, Youth and Sports of the Czech Republic

Keywords: drug delivery, growth factors, hMSC, liposomes, nanofibres

Procedia PDF Downloads 289
2131 The Structure and Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation

Authors: Marouen Dghim, Mohsen Ferchichi

Abstract:

The effect of synthetic jet actuation on the roll-up and the development of a wing tip vortex downstream a square-tipped rectangular wing was investigated experimentally using hotwire anemometry. The wing is equipped with a hallow cavity designed to generate a high aspect ratio synthetic jets blowing at an angles with respect to the spanwise direction. The structure of the wing tip vortex under the effect of fluidic actuation was examined at a chord Reynolds number Re_c=8×10^4. An extensive qualitative study on the effect of actuation on the spanwise pressure distribution at c⁄4 was achieved using pressure scanner measurements in order to determine the optimal actuation parameters namely, the blowing momentum coefficient, Cμ, and the non-dimensionalized actuation frequency, F^+. A qualitative study on the effect of actuation parameters on the spanwise pressure distribution showed that optimal actuation frequencies of the synthetic jet were found within the range amplified by both long and short wave instabilities where spanwise pressure coefficients exhibited a considerable decrease by up to 60%. The vortex appeared larger and more diffuse than that of the natural vortex case. Operating the synthetic jet seemed to introduce unsteadiness and turbulence into the vortex core. Based on the ‘a priori’ optimal selected parameters, results of the hotwire wake survey indicated that the actuation achieved a reduction and broadening of the axial velocity deficit. A decrease in the peak tangential velocity associated with an increase in the vortex core radius was reported as a result of the accelerated radial transport of angular momentum. Peak vorticity level near the core was also found to be largely diffused as a direct result of the increased turbulent mixing within the vortex. The wing tip vortex a exhibited a reduced strength and a diffused core as a direct result of increased turbulent mixing due to the presence of turbulent small scale vortices within its core. It is believed that the increased turbulence within the vortex due to the synthetic jet control was the main mechanism associated with the decreased strength and increased size of the wing tip vortex as it evolves downstream. A comparison with a ‘non-optimal’ case was included to demonstrate the effectiveness of selecting the appropriate control parameters. The Synthetic Jet will be operated at various actuation configurations and an extensive parametric study is projected to determine the optimal actuation parameters.

Keywords: flow control, hotwire anemometry, synthetic jet, wing tip vortex

Procedia PDF Downloads 436
2130 Effect of Botanical and Synthetic Insecticide on Different Insect Pests and Yield of Pea (Pisum sativum)

Authors: Muhammad Saeed, Nazeer Ahmed, Mukhtar Alam, Fazli Subhan, Muhammad Adnan, Fazli Wahid, Hidayat Ullah, Rafiullah

Abstract:

The present experiment evaluated different synthetic insecticides against Jassid (Amrasca devastations) on pea crop at Agriculture Research Institute Tarnab, Peshawar Khyber Pakhtunkhwa. The field was prepared to cultivate okra crop in Randomized Complete Block (RCB) Design having six treatments with four replications. Plant to plant and row to row distance was kept at 15 cm and 30 cm, respectively. Pre and post spray data were recorded randomly from the top, middle and bottom leaves of five selected plants. Five synthetic insecticides, namely Confidor (Proponil), a neonicotinoid insecticide, Chlorpyrifos (chlorinated organophosphate (OP) insecticide), Lazer (dinitroaniline) (Pendimethaline), Imidacloprid (neonicotinoids insecticide) and Thiodan (Endosulfan, organochlorine insecticide), were used against infestation of aphids, pea pod borer, stem fly, leaf minor and pea weevil. Each synthetic insecticide showed significantly more effectiveness than control (untreated plots) but was non-significant among each other. The lowest population density was recorded in the plot treated with synthetic insecticide i.e. Confidor (0.6175 liter.ha-1) (4.24 aphids plant⁻¹) which is followed by Imidacloprid (0.6175 liter.ha⁻¹) (4.64 pea pod borer plant⁻¹), Thiodan (1.729 liter.ha⁻¹) (4.78 leaf minor plant⁻¹), Lazer (2.47 liter.ha-1) (4.91 pea weevil plant⁻¹), Chlorpyrifos (1.86 liter.ha⁻¹) (5.11 stem fly plant⁻¹), respectively while the highest population was recorded from the control plot. It is concluded from the data that the residual effect decreases with time after the application of spray, which may be less dangerous to the environment and human beings and can effectively manage this dread.

Keywords: okra crop, jassids, Confidor, imidacloprid, chlorpyrifos, laser, Thiodan

Procedia PDF Downloads 83
2129 The Climate Impact Due to Clouds and Selected Greenhouse Gases by Short Wave Upwelling Radiative Flux within Spectral Range of Space-Orbiting Argus1000 Micro-Spectrometer

Authors: Rehan Siddiqui, Brendan Quine

Abstract:

The Radiance Enhancement (RE) and integrated absorption technique is applied to develop a synthetic model to determine the enhancement in radiance due to cloud scene and Shortwave upwelling Radiances (SHupR) by O2, H2O, CO2 and CH4. This new model is used to estimate the magnitude variation for RE and SHupR over spectral range of 900 nm to 1700 nm by varying surface altitude, mixing ratios and surface reflectivity. In this work, we employ satellite real observation of space orbiting Argus 1000 especially for O2, H2O, CO2 and CH4 together with synthetic model by using line by line GENSPECT radiative transfer model. All the radiative transfer simulations have been performed by varying over a different range of percentages of water vapor contents and carbon dioxide with the fixed concentration oxygen and methane. We calculate and compare both the synthetic and real measured observed data set of different week per pass of Argus flight. Results are found to be comparable for both approaches, after allowing for the differences with the real and synthetic technique. The methodology based on RE and SHupR of the space spectral data can be promising for the instant and reliable classification of the cloud scenes.

Keywords: radiance enhancement, radiative transfer, shortwave upwelling radiative flux, cloud reflectivity, greenhouse gases

Procedia PDF Downloads 336
2128 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: false negative rate, intrusion detection system, machine learning methods, performance

Procedia PDF Downloads 118
2127 Drone Classification Using Classification Methods Using Conventional Model With Embedded Audio-Visual Features

Authors: Hrishi Rakshit, Pooneh Bagheri Zadeh

Abstract:

This paper investigates the performance of drone classification methods using conventional DCNN with different hyperparameters, when additional drone audio data is embedded in the dataset for training and further classification. In this paper, first a custom dataset is created using different images of drones from University of South California (USC) datasets and Leeds Beckett university datasets with embedded drone audio signal. The three well-known DCNN architectures namely, Resnet50, Darknet53 and Shufflenet are employed over the created dataset tuning their hyperparameters such as, learning rates, maximum epochs, Mini Batch size with different optimizers. Precision-Recall curves and F1 Scores-Threshold curves are used to evaluate the performance of the named classification algorithms. Experimental results show that Resnet50 has the highest efficiency compared to other DCNN methods.

Keywords: drone classifications, deep convolutional neural network, hyperparameters, drone audio signal

Procedia PDF Downloads 104
2126 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning

Procedia PDF Downloads 131
2125 Self-Healing Performance of Heavyweight Concrete with Steam Curing

Authors: Hideki Igawa, Yoshinori Kitsutaka, Takashi Yokomuro, Hideo Eguchi

Abstract:

In this study, the crack self-healing performance of the heavyweight concrete used in the walls of containers and structures designed to shield radioactive materials was investigated. A steam curing temperature that preserves self-healing properties and demolding strength was identified. The presented simultaneously mixing method using the expanding material and the fly ash in the process of admixture can maximize the self-curing performance. Also adding synthetic fibers in the heavyweight concrete improved the self-healing performance.

Keywords: expanding material, heavyweight concrete, self-healing performance, synthetic fiber

Procedia PDF Downloads 337
2124 Statistical Design of Synthetic VP X-bar Control Chat Using Markov Chain Approach

Authors: Ali Akbar Heydari

Abstract:

Control charts are an important tool of statistical quality control. Thesecharts are used to detect and eliminate unwanted special causes of variation that occurred during aperiod of time. The design and operation of control charts require the determination of three design parameters: the sample size (n), the sampling interval (h), and the width coefficient of control limits (k). Thevariable parameters (VP) x-bar controlchart is the x-barchart in which all the design parameters vary between twovalues. These values are a function of the most recent process information. In fact, in the VP x-bar chart, the position of each sample point on the chart establishes the size of the next sample and the timeof its sampling. The synthetic x-barcontrol chartwhich integrates the x-bar chart and the conforming run length (CRL) chart, provides significant improvement in terms of detection power over the basic x-bar chart for all levels of mean shifts. In this paper, we introduce the syntheticVP x-bar control chart for monitoring changes in the process mean. To determine the design parameters, we used a statistical design based on the minimum out of control average run length (ARL) criteria. The optimal chart parameters of the proposed chart are obtained using the Markov chain approach. A numerical example is also done to show the performance of the proposed chart and comparing it with the other control charts. The results show that our proposed syntheticVP x-bar controlchart perform better than the synthetic x-bar controlchart for all shift parameter values. Also, the syntheticVP x-bar controlchart perform better than the VP x-bar control chart for the moderate or large shift parameter values.

Keywords: control chart, markov chain approach, statistical design, synthetic, variable parameter

Procedia PDF Downloads 154
2123 2D Fingerprint Performance for PubChem Chemical Database

Authors: Fatimah Zawani Abdullah, Shereena Mohd Arif, Nurul Malim

Abstract:

The study of molecular similarity search in chemical database is increasingly widespread, especially in the area of drug discovery. Similarity search is an application in the field of Chemoinformatics to measure the similarity between the molecular structure which is known as the query and the structure of chemical compounds in the database. Similarity search is also one of the approaches in virtual screening which involves computational techniques and scoring the probabilities of activity. The main objective of this work is to determine the best fingerprint when compared to the other five fingerprints selected in this study using PubChem chemical dataset. This paper will discuss the similarity searching process conducted using 6 types of descriptors, which are ECFP4, ECFC4, FCFP4, FCFC4, SRECFC4 and SRFCFC4 on 15 activity classes of PubChem dataset using Tanimoto coefficient to calculate the similarity between the query structures and each of the database structure. The results suggest that ECFP4 performs the best to be used with Tanimoto coefficient in the PubChem dataset.

Keywords: 2D fingerprints, Tanimoto, PubChem, similarity searching, chemoinformatics

Procedia PDF Downloads 293
2122 Removal of Chromium (VI) from Contaminated Synthetic Groundwater Using Functionalized Carbon Nanomaterials Modified with Zinc and Potassium

Authors: P. D. Ibikunle, D. O. Bala, A. P. Olawolu, A. A. Adebayo

Abstract:

Chromium has been discovered as a significant contributor to water pollution that causes cancer. Modified carbon nanotubes' (CNTs) potential as an adsorbent hasn't been thoroughly investigated. The study aimed at investigating the potentials of various functionalized carbon nanomaterials for Cr (VI) removal from contaminated synthetic groundwater. Functionalized carbon nanomaterials with layered and tube-like structures were designed based on thermal (KOH-activated micrographite sheets) and impregnation methods by anchoring K and Zn on carbon nanotubes (CNTs), respectively for the removal of Cr (VI) from contaminated synthetic groundwater. Zinc acetate modified carbon nanotubes (Zn-CNTs) and potassium hydroxide modified carbon nanotubes (K-CNTs) exhibited greater adsorption capacity for the Cr (VI) adsorbate compared to KOH-activated graphite (AC-1 and AC-0). Maximum removal efficiency for both adsorbents occurred at pH 2. Omu Aran Hand dug wells can therefore be treated with K–CNTs, since the experimental outcomes showed that CNTs adsorbent could operate well in a range of the experimental scenarios.

Keywords: carbon nanotubes, Chromium (VI), adsorption, water treatment, graphitic carbon, kinetics

Procedia PDF Downloads 37
2121 A Large Dataset Imputation Approach Applied to Country Conflict Prediction Data

Authors: Benjamin Leiby, Darryl Ahner

Abstract:

This study demonstrates an alternative stochastic imputation approach for large datasets when preferred commercial packages struggle to iterate due to numerical problems. A large country conflict dataset motivates the search to impute missing values well over a common threshold of 20% missingness. The methodology capitalizes on correlation while using model residuals to provide the uncertainty in estimating unknown values. Examination of the methodology provides insight toward choosing linear or nonlinear modeling terms. Static tolerances common in most packages are replaced with tailorable tolerances that exploit residuals to fit each data element. The methodology evaluation includes observing computation time, model fit, and the comparison of known values to replaced values created through imputation. Overall, the country conflict dataset illustrates promise with modeling first-order interactions while presenting a need for further refinement that mimics predictive mean matching.

Keywords: correlation, country conflict, imputation, stochastic regression

Procedia PDF Downloads 120