Search results for: score prediction
4091 Predicting High-Risk Endometrioid Endometrial Carcinomas Using Protein Markers
Authors: Yuexin Liu, Gordon B. Mills, Russell R. Broaddus, John N. Weinstein
Abstract:
The lethality of endometrioid endometrial cancer (EEC) is primarily attributable to the high-stage diseases. However, there are no available biomarkers that predict EEC patient staging at the time of diagnosis. We aim to develop a predictive scheme to help in this regards. Using reverse-phase protein array expression profiles for 210 EEC cases from The Cancer Genome Atlas (TCGA), we constructed a Protein Scoring of EEC Staging (PSES) scheme for surgical stage prediction. We validated and evaluated its diagnostic potential in an independent cohort of 184 EEC cases obtained at MD Anderson Cancer Center (MDACC) using receiver operating characteristic curve analyses. Kaplan-Meier survival analysis was used to examine the association of PSES score with patient outcome, and Ingenuity pathway analysis was used to identify relevant signaling pathways. Two-sided statistical tests were used. PSES robustly distinguished high- from low-stage tumors in the TCGA cohort (area under the ROC curve [AUC]=0.74; 95% confidence interval [CI], 0.68 to 0.82) and in the validation cohort (AUC=0.67; 95% CI, 0.58 to 0.76). Even among grade 1 or 2 tumors, PSES was significantly higher in high- than in low-stage tumors in both the TCGA (P = 0.005) and MDACC (P = 0.006) cohorts. Patients with positive PSES score had significantly shorter progression-free survival than those with negative PSES in the TCGA (hazard ratio [HR], 2.033; 95% CI, 1.031 to 3.809; P = 0.04) and validation (HR, 3.306; 95% CI, 1.836 to 9.436; P = 0.0007) cohorts. The ErbB signaling pathway was most significantly enriched in the PSES proteins and downregulated in high-stage tumors. PSES may provide clinically useful prediction of high-risk tumors and offer new insights into tumor biology in EEC.Keywords: endometrial carcinoma, protein, protein scoring of EEC staging (PSES), stage
Procedia PDF Downloads 2224090 Reasons for Non-Applicability of Software Entropy Metrics for Bug Prediction in Android
Authors: Arvinder Kaur, Deepti Chopra
Abstract:
Software Entropy Metrics for bug prediction have been validated on various software systems by different researchers. In our previous research, we have validated that Software Entropy Metrics calculated for Mozilla subsystem’s predict the future bugs reasonably well. In this study, the Software Entropy metrics are calculated for a subsystem of Android and it is noticed that these metrics are not suitable for bug prediction. The results are compared with a subsystem of Mozilla and a comparison is made between the two software systems to determine the reasons why Software Entropy metrics are not applicable for Android.Keywords: android, bug prediction, mining software repositories, software entropy
Procedia PDF Downloads 5794089 Useful Lifetime Prediction of Chevron Rubber Spring for Railway Vehicle
Authors: Chang Su Woo, Hyun Sung Park
Abstract:
Useful lifetime evaluation of chevron rubber spring was very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of chevron rubber spring. In this study, we performed characteristic analysis and useful lifetime prediction of chevron rubber spring. Rubber material coefficient was obtained by curve fittings of uni-axial tension, equi bi-axial tension and pure shear test. Computer simulation was executed to predict and evaluate the load capacity and stiffness for chevron rubber spring. In order to useful lifetime prediction of rubber material, we carried out the compression set with heat aging test in an oven at the temperature ranging from 50°C to 100°C during a period 180 days. By using the Arrhenius plot, several useful lifetime prediction equations for rubber material was proposed.Keywords: chevron rubber spring, material coefficient, finite element analysis, useful lifetime prediction
Procedia PDF Downloads 5684088 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 4374087 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: classifier ensemble, breast cancer survivability, data mining, SEER
Procedia PDF Downloads 3294086 Validation Pulmonary Embolus Severity Index Score Early Mortality Rate at 1, 3, 7 Days in Patients with a Diagnosis of Pulmonary Embolism
Authors: Nicholas Marinus Batt, Angus Radford, Khaled Saraya
Abstract:
Pulmonary Embolus Severity Index (PESI) score is a well-validated decision-making score grading mortality rates (MR) in patients with a suspected or confirmed diagnosis of pulmonary embolism (PE) into 5 classes. Thirty and 90 days MR in class I and II are lower allowing the treatment of these patients as outpatients. In a London District General Hospital (DGH) with mixed ethnicity and high disease burden, we looked at MR at 1, 3, and 7 days of all PESI score classes. Our pilot study of 112 patients showed MR of 0% in class I, II, and III. The current study includes positive Computed Tomographic Scans (CT scans) for PE over the following three years (total of 555). MR was calculated for all PESI score classes at 1, 3 & 7 days. Thirty days MR was additionally calculated to validate the study. Our initial results so far are in line with our pilot studies. Further subgroup analysis accounting for the local co-morbidities and disease burden and its impact on the MR will be undertaken.Keywords: Pulmonary Embolism (PE), Pulmonary Embolism Severity Index (PESI) score, mortality rate (MR), CT pulmonary artery
Procedia PDF Downloads 2654085 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC
Authors: Qiang Zhang, Chun Yuan
Abstract:
Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel
Procedia PDF Downloads 3994084 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students
Authors: J. K. Alhassan, C. S. Actsu
Abstract:
This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.Keywords: academic performance, artificial neural network, prediction, students
Procedia PDF Downloads 4704083 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets
Authors: Mohammad Ghavami, Reza S. Dilmaghani
Abstract:
This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.Keywords: adaptive methods, LSE, MSE, prediction of financial Markets
Procedia PDF Downloads 3384082 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 3644081 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer
Authors: Surita Maini, Sanjay Dhanka
Abstract:
Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning
Procedia PDF Downloads 684080 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score
Procedia PDF Downloads 2004079 Comparative Diagnostic Performance of Diffusion-Weighted Imaging Combined With Microcalcifications on Mammography for Discriminating Malignant From Benign Bi-rads 4 Lesions With the Kaiser Score
Authors: Wangxu Xia
Abstract:
BACKGROUND BI-RADS 4 lesions raise the possibility of malignancy that warrant further clinical and radiologic work-up. This study aimed to evaluate the predictive performance of diffusion-weighted imaging(DWI) and microcalcifications on mammography for predicting malignancy of BI-RADS 4 lesions. In addition, the predictive performance of DWI combined with microcalcifications was alsocompared with the Kaiser score. METHODS During January 2021 and June 2023, 144 patients with 178 BI-RADS 4 lesions underwent conventional MRI, DWI, and mammography were included. The lesions were dichotomized intobenign or malignant according to the pathological results from core needle biopsy or surgical mastectomy. DWI was performed with a b value of 0 and 800s/mm2 and analyzed using theapparent diffusion coefficient, and a Kaiser score > 4 was considered to suggest malignancy. Thediagnostic performances for various diagnostic tests were evaluated with the receiver-operatingcharacteristic (ROC) curve. RESULTS The area under the curve (AUC) for DWI was significantly higher than that of the of mammography (0.86 vs 0.71, P<0.001), but was comparable with that of the Kaiser score (0.86 vs 0.84, P=0.58). However, the AUC for DWI combined with mammography was significantly highthan that of the Kaiser score (0.93 vs 0.84, P=0.007). The sensitivity for discriminating malignant from benign BI-RADS 4 lesions was highest at 89% for Kaiser score, but the highest specificity of 83% can be achieved with DWI combined with mammography. CONCLUSION DWI combined with microcalcifications on mammography could discriminate malignant BI-RADS4 lesions from benign ones with a high AUC and specificity. However, Kaiser score had a better sensitivity for discrimination.Keywords: MRI, DWI, mammography, breast disease
Procedia PDF Downloads 594078 Modeling and Shape Prediction for Elastic Kinematic Chains
Authors: Jiun Jeon, Byung-Ju Yi
Abstract:
This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling
Procedia PDF Downloads 6064077 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus
Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati
Abstract:
Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost
Procedia PDF Downloads 844076 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 3074075 The New Propensity Score Method and Assessment of Propensity Score: A Simulation Study
Authors: Azam Najafkouchak, David Todem, Dorothy Pathak, Pramod Pathak, Joseph Gardiner
Abstract:
Propensity score (PS) methods have recently become the standard analysis tool for causal inference in observational studies where exposure is not randomly assigned. Thus, confounding can impact the estimation of treatment effect on the outcome. Due to the dangers of discretizing continuous variables, the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect utilizing the stratification of the PS method. In this study, we will develop a new methodology to improve the efficiency of the PS analysis through stratification and simulation study. We will also explore the property of empirical distribution of average treatment effect theoretically, including asymptotic distribution, variance estimation and 95% confident Intervals.Keywords: propensity score, stratification, emprical distribution, average treatment effect
Procedia PDF Downloads 994074 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index
Authors: Todd Zhou, Mikhail Yurochkin
Abstract:
Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index
Procedia PDF Downloads 1244073 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer
Authors: Maomao Cao
Abstract:
Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance
Procedia PDF Downloads 1524072 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction
Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong
Abstract:
Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.Keywords: data refinement, machine learning, mutual information, short-term latency prediction
Procedia PDF Downloads 1704071 Automatic Music Score Recognition System Using Digital Image Processing
Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng
Abstract:
Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.Keywords: connected component labeling, image processing, morphological processing, optical musical recognition
Procedia PDF Downloads 4214070 Rehabilitation of CP Using Pediatric Functional Independent Measure (WeeFIM) as Indicator Instruments Suitable for CP: Saudi's Perspective
Authors: Bara M. Yousef
Abstract:
Kingdome of Saudi Arabia (KSA). High numbers of traffic accidents with sever, moderate and mild level of impairments admits to Sultan bin Abdulaziz humanitarian city. Over a period of 4 months the city received 111 male and 79 female subjects with CP, who received 4-6 weeks of rehabilitation and using WeeFIM score to measure rehabilitation outcomes. WeeFIM measures and covers various domains, such as: self-care, mobility, locomotion, communication and other psycho-social aspects. Our findings shed the light on the fact that nearly 85% of people at admission got better after rehabilitation program services at individual sever moderate and mild and has arrange of (59 out of 128 WeeFIM score) and by the time of discharge they leave the city with better FIM score close to (72 out of 128 WeeFIM score) for the entire study sample. WeeFIM score is providing fair evidence to rehabilitation specialists to assess their outcomes. However there is a need to implement other instruments and compare it to WeeFIM in order to reach better outcomes at discharge level.Keywords: Cerepral Palsy (CP), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability
Procedia PDF Downloads 2274069 Effect of Peppermint Essential Oil versus a Mixture of Formic and Propionic Acids on Corn Silage Volatile Fatty Acid Score
Authors: Mohsen Danesh Mesgaran, Ali Hodjatpanah Montazeri, Alireza Vakili, Mansoor Tahmasbei
Abstract:
To compare peppermint essential oil versus a mixture of formic and propionic acids a study was conducted to their effects on volatile fatty acid proportion and VFA score of corn silage. Chopped whole crop corn (control) was treated with peppermint essential oil (240 mg kg-1 DM) or a mixture of formic and propionic acids (2:1) at 0.4% of fresh forage weight, and ensiled for 30 days. Then, silage extract was provided and the concentration of each VFA was determined using gas chromatography. The VFA score was calculated according to the patented formula proposed by Dairy One Scientific Committee. The score is calculated based on the positive impact of lactic and acetic acids versus the negative effect of butyric acid to achieve a single value for evaluating silage quality. The essential oil declined pH and increased the concentration of lactic and acetic acids in the silage extract. All corn silages evaluated in this study had a VFA score between 6 through 8. However, silage with peppermint essential oils had lower volatile fatty acids score than those of the other treatments. Both of applied additives caused a significant improvement in silage aerobic stability.Keywords: peppermint, essential oil, corn silage, VFA (volatile fatty acids)
Procedia PDF Downloads 4074068 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 1574067 Prevalence Post Partum Depression in NICU
Authors: Ahmad Shahfarhat, Ashraf Mohammadzade, Reza Saeedi, Hadi Hesari
Abstract:
Background: Mothers of infants admitted at NICU are vulnerable to depression (affecting 10 to 20% of mothers during the first year after delivery) As you know, about half of women with prominent postpartum depression (PPD) symptoms are not diagnosed. The Edinburgh Postnatal Depression Scale (EPDS) is the most widely used screening instrument for PPD. In this study, we checked EPDS score of 12 or more on the second day (D2), discharge, day 28(D28), and day42 (D42) postpartum to determine the risk factors as well as the prevalence of PPD in a sample of mothers of NICU admitted neonates. Methods: A sample of 682 women used the EPDS on admission and at discharge. An assessment for PPD was performed on D28 and D42 by a telephone interview. Results: On admission, the average score on EPDS was 9.72 (SD = 4.4), and 27.4% of women (187) had an EPDS score ≥12. On Discharge, 4weeks and 6weeks postpartum the average score was ordinary 9.34 (SD = 3.8), 9.12 (SD = 3.7), 8.52(SD = 3.36), and (173)25.4 %,( 141)23.3 %,( 88)15.3% of women presented with PPD. a positive correlation was found between scores on EPDS on admission and D42 (P = 0.001). An analysis shows that mothers of twins (P = 0.001) and higher age mothers (P=0.001) are significantly associated with PPD. Conclusion: Women with EPDS score more than 12 and/or older will benefit from a closer follow-up during the rest of the post-partum period, and it is better to be under psychological support.Keywords: NICU, depression, pregnancy, mothers
Procedia PDF Downloads 1084066 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece
Authors: Dimitrios Triantakonstantis, Demetris Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction
Procedia PDF Downloads 5304065 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction
Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung
Abstract:
In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality
Procedia PDF Downloads 4744064 Educational Theatre Making Project: Prior Conditions
Authors: Larisa Akhmylovskaia, Andriana Barysh
Abstract:
The present paper is introducing the translation score developing methodology and methods in the cross-cultural communication. The ideas and examples presented by the authors illustrate the universal character of translation score developing methods under analysis. Personal experience in the international theatre-making projects, opera laboratories, cross-cultural master-classes give more opportunities to single out the conditions, forms, means and principles of translation score developing as well as the translator/interpreter’s functions as cultural liaison for multiethnic collaboration.Keywords: methodology of translation score developing, pre-production, analysis, production, post-production, ethnic scene theory, theatre anthropology, laboratory, master-class, educational project, academic project, participant observation, super-objective
Procedia PDF Downloads 5154063 Cross Project Software Fault Prediction at Design Phase
Authors: Pradeep Singh, Shrish Verma
Abstract:
Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.Keywords: software metrics, fault prediction, cross project, within project.
Procedia PDF Downloads 3444062 Dental Students’ Self-Assessment of Their Performance in a Preclinical Endodontic Practice
Authors: Minseock Seo
Abstract:
Dental education consists of both theoretical and practical learning for students. When dental students encounter practical courses as a new educational experience, they must also learn to evaluate themselves. The aim of this study was to investigate the self-assessment scores of third-year dental students and compare with the scores graded by the faculty in preclinical endodontic practice in a dental school in Korea. Faculty- and student-assigned scores were calculated from preclinical endodontic practice performed on phantom patients. The students were formally instructed on grading procedures for endodontic treatment. After each step, each item was assessed by the student. The students’ self-assessment score was then compared to the score by the faculty. The students were divided into 4 groups by analyzing the scores of self-assessment and faculty-assessment and statistically analyzed by summing the theoretical and practical examination scores. In the theoretical exam score, the group who over-estimated their performance (H group) was lower than the group with lower evaluation (L group). When comparing the first and last score determined by the faculty, H groups didn’t show any improvement, while the other group did. In H group, the less improvement of the self-assessment, the higher the theoretical exam score. In L group, the higher improvement of the self-assessment, the better the theoretical exam score. The results point to the need to develop students’ self-insight with more exercises and practical training.Keywords: dental students, endodontic, preclinical practice, self-assessment
Procedia PDF Downloads 253