Search results for: rigid pavement
593 Peeling Behavior of Thin Elastic Films Bonded to Rigid Substrate of Random Surface Topology
Authors: Ravinu Garg, Naresh V. Datla
Abstract:
We study the fracture mechanics of peeling of thin films perfectly bonded to a rigid substrate of any random surface topology using an analytical formulation. A generalized theoretical model has been developed to determine the peel strength of thin elastic films. It is demonstrated that an improvement in the peel strength can be achieved by modifying the surface characteristics of the rigid substrate. Characterization study has been performed to analyze the effect of different parameters on effective peel force from the rigid surface. Different surface profiles such as circular and sinusoidal has been considered to demonstrate the bonding characteristics of film-substrate interface. Condition for the instability in the debonding of the film is analyzed, where the localized self-debonding arises depending upon the film and surface characteristics. This study is towards improved adhesion strength of thin films to rigid substrate using different textured surfaces.Keywords: debonding, fracture mechanics, peel test, thin film adhesion
Procedia PDF Downloads 449592 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 93591 Numerical Multi-Scale Modeling of Rubber Friction on Rough Pavements Using Finite Element Method
Authors: Ashkan Nazari, Saied Taheri
Abstract:
Knowledge of tire-pavement interaction plays a crucial role in designing safer and more reliable tires. Characterizing the tire-pavement frictional interaction leads to a better understanding of vehicle performance in braking and acceleration. In this work, we devise a multi-scale simulation approach to incorporate the effect of pavement surface asperities in different length-scales. We construct two- and three-dimensional Finite Element (FE) models to simulate the interaction between a rubber block and a rough pavement surface with asperities in different scales. To achieve this, the road profile is scanned via a laser profilometer and the obtained asperities are implemented in an FE software (ABAQUS) in micro and macro length-scales. The hysteresis friction, which is due to the dissipative nature of rubber, is the main component of the friction force and therefore is the subject of study in this work. Using different scales not only will assist in characterizing the pavement asperities with sufficient details but also, it is highly effective in preventing extreme local deformations and stress gradients which results in divergence in FE simulations. The simulation results will be validated with experimental results as well as the results reported in the literature.Keywords: friction, finite element, multi-scale modeling, rubber
Procedia PDF Downloads 137590 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia
Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman
Abstract:
Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.Keywords: mechanistic-empirical pavement design guide (MEPDG), traffic characteristics, materials properties, climate, Riyadh
Procedia PDF Downloads 226589 Developing Pavement Maintenance Management System (PMMS) for Small Cities, Aswan City Case Study
Authors: Ayman Othman, Tallat Ali
Abstract:
A pavement maintenance management system (PMMS) was developed for the city of Aswan as a model of a small city to provide the road maintenance department in Aswan city with the capabilities for comprehensive planning of the maintenance activities needed to put the internal pavement network into desired physical condition in view of maintenance budget constraints. The developed system consists of three main stages. First is the inventory & condition survey stage where the internal pavement network of Aswan city was inventoried and its actual conditions were rated in segments of 100 meters length. Second is the analysis stage where pavement condition index (PCI) was calculated and the most appropriate maintenance actions were assigned for each segment. The total maintenance budget was also estimated and a parameter based ranking criteria were developed to prioritize maintenance activities when the available maintenance budget is not sufficient. Finally comes the packaging stage where approved maintenance budget is packed into maintenance projects for field implementation. System results indicate that, the system output maintenance budget is very reasonable and the system output maintenance programs agree to a great extent with the actual maintenance needs of the network. Condition survey of Aswan city road network showed that roughness is the most dominate distress. In general, the road network can be considered in a fairly reasonable condition, however, the developed PMMS needs to be officially adapted to maintain the road network in a desirable condition and to prevent further deterioration.Keywords: pavement, maintenance, management, system, distresses, survey, ranking
Procedia PDF Downloads 248588 Evaluation of Mixtures of Recycled Concrete Aggregate and Reclaimed Asphalt Pavement Aggregate in Road Subbases
Authors: Vahid Ayan, Joshua R Omer, Alireza Khavandi, Mukesh C Limbachiya
Abstract:
In Iran, utilization of reclaimed asphalt pavement (RAP) aggregate has become a common practice in pavement rehabilitation during the last ten years. Such developments in highway engineering have necessitated several studies to clarify the technical and environmental feasibility of other alternative materials in road rehabilitation and maintenance. The use of recycled concrete aggregates (RCA) in asphalt pavements is one of the major goals of municipality of Tehran. Nevertheless little research has been done to examine the potential benefits of local RCA. The objective of this study is laboratory investigation of incorporating RCA into RAP for use in unbound subbase application. Laboratory investigation showed that 50%RCA+50%RAP is both technically and economically appropriate for subbase use.Keywords: Roads & highways, Sustainability, Recycling & reuse of materials
Procedia PDF Downloads 492587 Environmental Performance Measurement for Network-Level Pavement Management
Authors: Jessica Achebe, Susan Tighe
Abstract:
The recent Canadian infrastructure report card reveals the unhealthy state of municipal infrastructure intensified challenged faced by municipalities to maintain adequate infrastructure performance thresholds and meet user’s required service levels. For a road agency, huge funding gap issue is inflated by growing concerns of the environmental repercussion of road construction, operation and maintenance activities. As the reduction of material consumption and greenhouse gas emission when maintain and rehabilitating road networks can achieve added benefits including improved life cycle performance of pavements, reduced climate change impacts and human health effect due to less air pollution, improved productivity due to optimal allocation of resources and reduced road user cost. Incorporating environmental sustainability measure into pavement management is solution widely cited and studied. However measuring the environmental performance of road network is still a far-fetched practice in road network management, more so an ostensive agency-wide environmental sustainability or sustainable maintenance specifications is missing. To address this challenge, this present research focuses on the environmental sustainability performance of network-level pavement management. The ultimate goal is to develop a framework to incorporate environmental sustainability in pavement management systems for network-level maintenance programming. In order to achieve this goal, this study reviewed previous studies that employed environmental performance measures, as well as the suitability of environmental performance indicators for the evaluation of the sustainability of network-level pavement maintenance strategies. Through an industry practice survey, this paper provides a brief forward regarding the pavement manager motivations and barriers to making more sustainable decisions, and data needed to support the network-level environmental sustainability. The trends in network-level sustainable pavement management are also presented, existing gaps are highlighted, and ideas are proposed for sustainable network-level pavement management.Keywords: pavement management, sustainability, network-level evaluation, environment measures
Procedia PDF Downloads 211586 Laboratory Investigation of the Pavement Condition in Lebanon: Implementation of Reclaimed Asphalt Pavement in the Base Course and Asphalt Layer
Authors: Marinelle El-Khoury, Lina Bouhaya, Nivine Abbas, Hassan Sleiman
Abstract:
The road network in the north of Lebanon is a prime example of the lack of pavement design and execution in Lebanon. These roads show major distresses and hence, should be tested and evaluated. The aim of this research is to investigate and determine the deficiencies in road surface design in Lebanon, and to propose an environmentally friendly asphalt mix design. This paper consists of several parts: (i) evaluating pavement performance and structural behavior, (ii) identifying the distresses using visual examination followed by laboratory tests, (iii) deciding the optimal solution where rehabilitation or reconstruction is required and finally, (iv) identifying a sustainable method, which uses recycled material in the proposed mix. The asphalt formula contains Reclaimed Asphalt Pavement (RAP) in the base course layer and in the asphalt layer. Visual inspection of the roads in Tripoli shows that these roads face a high level of distress severity. Consequently, the pavement should be reconstructed rather than simply rehabilitated. Coring was done to determine the pavement layer thickness. The results were compared to the American Association of State Highway and Transportation Officials (AASHTO) design methodology and showed that the existing asphalt thickness is lower than the required asphalt thickness. Prior to the pavement reconstruction, the road materials were tested according to the American Society for Testing and Materials (ASTM) specification to identify whether the materials are suitable. Accordingly, the ASTM tests that were performed on the base course are Sieve analysis, Atterberg limits, modified proctor, Los Angeles, and California Bearing Ratio (CBR) tests. Results show a CBR value higher than 70%. Hence, these aggregates could be used as a base course layer. The asphalt layer was also tested and the results of the Marshall flow and stability tests meet the ASTM specifications. In the last section, an environmentally friendly mix was proposed. An optimal RAP percentage of 30%, which produced a well graded base course and asphalt mix, was determined through a series of trials.Keywords: asphalt mix, reclaimed asphalt pavement, California bearing ratio, sustainability
Procedia PDF Downloads 130585 Estimation of Asphalt Pavement Surfaces Using Image Analysis Technique
Authors: Mohammad A. Khasawneh
Abstract:
Asphalt concrete pavements gradually lose their skid resistance causing safety problems especially under wet conditions and high driving speeds. In order to enact the actual field polishing and wearing process of asphalt pavement surfaces in a laboratory setting, several laboratory-scale accelerated polishing devices were developed by different agencies. To mimic the actual process, friction and texture measuring devices are needed to quantify surface deterioration at different polishing intervals that reflect different stages of the pavement life. The test could still be considered lengthy and to some extent labor-intensive. Therefore, there is a need to come up with another method that can assist in investigating the bituminous pavement surface characteristics in a practical and time-efficient test procedure. The purpose of this paper is to utilize a well-developed image analysis technique to characterize asphalt pavement surfaces without the need to use conventional friction and texture measuring devices in an attempt to shorten and simplify the polishing procedure in the lab. Promising findings showed the possibility of using image analysis in lieu of the labor-sensitive-variable-in-nature friction and texture measurements. It was found that the exposed aggregate surface area of asphalt specimens made from limestone and gravel aggregates produced solid evidence of the validity of this method in describing asphalt pavement surfaces. Image analysis results correlated well with the British Pendulum Numbers (BPN), Polish Values (PV) and Mean Texture Depth (MTD) values.Keywords: friction, image analysis, polishing, statistical analysis, texture
Procedia PDF Downloads 306584 Low-Cost Image Processing System for Evaluating Pavement Surface Distress
Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa
Abstract:
Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means
Procedia PDF Downloads 181583 Implementation of Deep Neural Networks for Pavement Condition Index Prediction
Authors: M. Sirhan, S. Bekhor, A. Sidess
Abstract:
In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction
Procedia PDF Downloads 137582 Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer
Authors: Fouzieh Rouzmehr, Mehdi Mousavi
Abstract:
Hot mix asphalt concrete (HMAC) is a mixture of aggregates and bitumen. The primary ingredient that determines the mechanical properties of HMAC is the bitumen in it, which displays viscoelastic behavior under normal service conditions. For simplicity, asphalt concrete is considered an elastic material, but this is far from reality at high service temperatures and longer loading times. Viscoelasticity means that the material's stress-strain relationship depends on the strain rate and loading duration. The goal of this paper is to simulate the mechanical response of flexible pavements using linear elastic and viscoelastic modeling of asphalt concrete and predict pavement performance. Falling Weight Deflectometer (FWD) load will be simulated and the results for elastic and viscoelastic modeling will be evaluated. The viscoelastic simulation is performed by the Prony series, which will be modeled by using ANSYS software. Inflexible pavement design, tensile strain at the bottom of the surface layer and compressive strain at the top of the last layer plays an important role in the structural response of the pavement and they will imply the number of loads for fatigue (Nf) and rutting (Nd) respectively. The differences of these two modelings are investigated on fatigue cracking and rutting problem, which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between the two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives acceptable results.Keywords: flexible pavement, asphalt, FEM, viscoelastic, elastic, ANSYS, modeling
Procedia PDF Downloads 131581 Understanding Surface Failures in Thick Asphalt Pavement: A 3-D Finite Element Model Analysis
Authors: Hana Gebremariam Liliso
Abstract:
This study investigates the factors contributing to the deterioration of thick asphalt pavements, such as rutting and cracking. We focus on the combined influence of traffic loads and pavement structure. This study uses a three-dimensional finite element model with a Mohr-Coulomb failure criterion to analyze the stress levels near the pavement's surface under realistic conditions. Our model considers various factors, including tire-pavement contact stresses, asphalt properties, moving loads, and dynamic analysis. This research suggests that cracking tends to occur between dual tires. Some key discoveries include the risk of cracking increases as temperatures rise; surface cracking at high temperatures is associated with distortional deformation; using a uniform contact stress distribution underestimates the risk of failure compared to realistic three-dimensional tire contact stress, particularly at high temperatures; the risk of failure is higher near the surface when there is a negative temperature gradient in the asphalt layer; and debonding beneath the surface layer leads to increased shear stress and premature failure around the interface.Keywords: asphalt pavement, surface failure, 3d finite element model, multiaxial stress states, Mohr-Coulomb failure criterion
Procedia PDF Downloads 59580 The Effect of Nanoclay on Long Term Performance of Asphalt Concrete Pavement
Authors: A. Khodadadi, Hasani, Salehi
Abstract:
The advantages of using modified asphalt binders are widely recognized—primarily, improved rutting resistance, reduced fatigue cracking and less cold-temperature cracking. Nanoclays are known to enhance the properties of many polymers. Nanoclays are used to improve modulus and tensile strength, flame resistance and thermal and structural properties of many materials. This paper intends to investigate the application and development of nano-technological concepts for bituminous materials and asphalt pavements. The application of nano clay on the fatigue life of asphalt pavement have not been yet thoroughly understood. In this research, two type of highway asphalt materials, dense Marshall specimens, with 2% nano clay and without nano clay, were employed for the fatigue behavior of the asphalt pavement.The effect of nano additive on the performance of flexible pavements has been investigated through the indirect tensile test for the samples prepared with 2% nano clay and without nano clay in four stress levels from 200–500 kPa. The primary results indicated samples with 2% nano clay have almost double or even more fatigue life in most of stress levels.Keywords: Nano clay, Asphalt, fatigue life, pavement
Procedia PDF Downloads 455579 Influence of the Quality Differences in the Same Type of Bitumen and Dosage Rate of Reclaimed Asphalt on Lifetime
Authors: Pahirangan Sivapatham, , Esser Barbara
Abstract:
The impacts of the asphalt mix design, the properties of aggregates and quality differences in the same type of bitumen, as well as the dosage rate of reclaimed asphalt on the relevant material parameter of the analytical pavement design method are not known. Due to that, in this study, the influence of the above mentioned characteristics on relevant material parameters has been determined and analyzed by means of the analytical pavement calculations method. Therefore, material parameters for several asphalt mixes for asphalt wearing course, asphalt binder course and asphalt base course have been determined. Thereby several bitumens of the same type from different producer’s have been used. In addition, asphalt base course materials with three different dosages of reclaimed asphalt have been produced and tested. As material parameter according to the German analytical pavement design guide(RDO Asphalt), the stiffness’s at different temperatures and fatigue behavior have been determined. The findings of asphalt base course materials produced with several pen graded bitumen from different producers and different dosages of reclaimed asphalt indicate the distinct impact on fatigue behaviors and mechanical properties. The calculated test results of the analytical pavement design method show significant differences in the lifetimes. The pavement design calculation is to carry out by means of the actual material parameter. The calculated lifetime of the asphalt base course materials differentiates by the factor 3.2. The determining test results of bitumen characteristics meet the requirement according to the German Standards. But, further investigations of bitumen in different aging conditions show significant differences in their quality. The fatigue behavior and stiffness of asphalt pavement improves with increasing dosage of reclaimed asphalt. Furthermore, the type of aggregates used shows no significant influences.Keywords: reclaimed asphalt pavement, quality differences in the bitumen, life time calculation, Asphalt mix with RAP
Procedia PDF Downloads 188578 Evaluation of the Durability of a Low Carbon Asphalt Pavement Containing Carbonated Aggregates in Extreme Weather Conditions
Authors: Ka-lok Kan, Oluwatoyin Ajibade, Issa Chaer
Abstract:
Climate change’s extreme weather patterns significantly affect the durability and maintenance costs of existing asphalt Road Pavement Systems (RPS). Moreover, the current RPS imposes a considerable environmental burden, as its production involves the large-scale extraction of bitumen and the dredging of Virgin Sand and Gravel (VSG). Recent studies suggest that more sustainable alternatives, such as incorporating carbonated aggregates to reduce the use of virgin materials content in asphalt, can enhance asphalt performance while offering an effective cost management strategy. However, the impact of extreme weather conditions on the durability and maintenance requirements of these green solutions remains unexplored. This paper reports on the results of comprehensive durability tests conducted on a novel asphalt pavement to assess the effects of anticipated extreme winter and summer weather conditions. Preliminary findings indicate that the new asphalt pavement system made from carbonated aggregates demonstrates greater stability and fatigue resistance in comparison to traditional asphalt mixes.Keywords: climate change, carbonated aggregates, green solution, asphalt
Procedia PDF Downloads 19577 Redundancy Component Matrix and Structural Robustness
Authors: Xinjian Kou, Linlin Li, Yongju Zhou, Jimian Song
Abstract:
We introduce the redundancy matrix that expresses clearly the geometrical/topological configuration of the structure. With the matrix, the redundancy of the structure is resolved into redundant components and assigned to each member or rigid joint. The values of the diagonal elements in the matrix indicates the importance of the corresponding members or rigid joints, and the geometrically correlations can be shown with the non-diagonal elements. If a member or rigid joint failures, reassignment of the redundant components can be calculated with the recursive method given in the paper. By combining the indexes of reliability and redundancy components, we define an index concerning the structural robustness. To further explain the properties of the redundancy matrix, we cited several examples of statically indeterminate structures, including two trusses and a rigid frame. With the examples, some simple results and the properties of the matrix are discussed. The examples also illustrate that the redundancy matrix and the relevant concepts are valuable in structural safety analysis.Keywords: Structural Robustness, Structural Reliability, Redundancy Component, Redundancy Matrix
Procedia PDF Downloads 272576 Forward Speed and Draught Requirement of a Semi-Automatic Cassava Planter under Different Wheel Usage
Authors: Ale M. O., Manuwa S. I., Olukunle O. J., Ewetumo T.
Abstract:
Five varying speeds of 1.5, 1.8, 2.1, 2.3, and 2.6 km/h were used at a constant soil depth of 100 mm to determine the effects of forward speed on the draught requirement of a semi-automatic cassava planter under the pneumatic wheel and rigid wheel usage on a well prepared sandy clay loam soil. The soil draught was electronically measured using an on-the-go soil draught measuring instrumentation system developed for the purpose of this research. The results showed an exponential relationship between forward speed and draught, in which draught ranging between 24.91 and 744.44N increased with an increase in forward speed in the rigid wheel experiment. This is contrary to the polynomial relationship observed in the pneumatic wheel experiment in which the draught varied between 96.09 and 343.53 N. It was observed in the experiments that the optimum speed of 1.5 km/h had the least values of draught in both the pneumatic wheel and rigid wheel experiments, with higher values in the pneumatic experiment. It was generally noted that the rigid wheel planter with less value of draught requires less energy required for operation. It is therefore concluded that operating the semi-automatic cassava planter with rigid wheels will be more economical for cassava farmers than operating the planter with pneumatic wheels.Keywords: Cassava planter, planting, forward speed, draught, wheel type
Procedia PDF Downloads 96575 Relation between Pavement Roughness and Distress Parameters for Highways
Authors: Suryapeta Harini
Abstract:
Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.Keywords: roughness index, network survey vehicle, regression, correlation
Procedia PDF Downloads 176574 Analysis of Pavement Lifespan - Cost and Emissions of Greenhouse Gases: A Comparative Study of 10-year vs 30-year Design
Authors: Claudeny Simone Alves Santana, Alexandre Simas De Medeiros, Marcelino Aurélio Vieira Da Silva
Abstract:
The aim of the study was to assess the performance of pavements over time, considering the principles of Life Cycle Assessment (LCA) and the ability to withstand vehicle loads and associated environmental impacts. Within the study boundary, pavement design was conducted using the Mechanistic-Empirical Method, adopting criteria based on pavement cracking and wheel path rutting while also considering factors such as soil characteristics, material thickness, and the distribution of forces exerted by vehicles. The Ecoinvent® 3.6 database and SimaPro® software were employed to calculate emissions, and SICRO 3 information was used to estimate costs. Consequently, the study sought to identify the service that had the greatest impact on greenhouse gas emissions. The results were compared for design life periods of 10 and 30 years, considering structural performance and load-bearing capacity. Additionally, environmental impacts in terms of CO2 emissions per standard axle and construction costs in dollars per standard axle were analyzed. Based on the conducted analyses, it was possible to determine which pavement exhibited superior performance over time, considering technical, environmental, and economic criteria. One of the findings indicated that the mechanical characteristics of the soils used in the pavement layer directly influence the thickness of the pavement and the quantity of greenhouse gases, with a difference of approximately 7000 Kg CO2 Eq. The transportation service was identified as having the most significant negative impact. Other notable observations are that the study can contribute to future project guidelines and assist in decision-making regarding the selection of the most suitable pavement in terms of durability, load-bearing capacity, and sustainability.Keywords: life cycle assessment, greenhouse gases, urban paving, service cost
Procedia PDF Downloads 73573 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data
Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding
Abstract:
The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)
Procedia PDF Downloads 151572 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System
Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park
Abstract:
The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.Keywords: creep, lean concrete, pavement, fiber reinforced concrete, base
Procedia PDF Downloads 522571 Long-Term Field Performance of Paving Fabric Interlayer Systems to Reduce Reflective Cracking
Authors: Farshad Amini, Kejun Wen
Abstract:
The formation of reflective cracking of pavement overlays has confronted highway engineers for many years. Stress-relieving interlayers, such as paving fabrics, have been used in an attempt to reduce or delay reflective cracking. The effectiveness of paving fabrics in reducing reflection cracking is related to joint or crack movement in the underlying pavement, crack width, overlay thickness, subgrade conditions, climate, and traffic volume. The nonwoven geotextiles are installed between the old and new asphalt layers. Paving fabrics enhance performance through two mechanisms: stress relief and waterproofing. Several factors including proper installation, remedial work performed before overlay, overlay thickness, variability of pavement strength, existing pavement condition, base/subgrade support condition, and traffic volume affect the performance. The primary objective of this study was to conduct a long-term monitoring of the paving fabric interlayer systems to evaluate its effectiveness and performance. A comprehensive testing, monitoring, and analysis program were undertaken, where twelve 500-ft pavement sections of a four-lane highway were rehabilitated, and then monitored for seven years. A comparison between the performance of paving fabric treatment systems and control sections is reported. Lessons learned, and the various factors are discussed.Keywords: monitoring, paving fabrics, performance, reflective cracking
Procedia PDF Downloads 333570 Pavement Roughness Prediction Systems: A Bump Integrator Approach
Authors: Manish Pal, Rumi Sutradhar
Abstract:
Pavement surface unevenness plays a pivotal role on roughness index of road which affects on riding comfort ability. Comfort ability refers to the degree of protection offered to vehicle occupants from uneven elements in the road surface. So, it is preferable to have a lower roughness index value for a better riding quality of road users. Roughness is generally defined as an expression of irregularities in the pavement surface which can be measured using different equipment like MERLIN, Bump integrator, Profilometer etc. Among them Bump Integrator is quite simple and less time consuming in case of long road sections. A case study is conducted on low volume roads in West District in Tripura to determine roughness index (RI) using Bump Integrator at the standard speed of 32 km/h. But it becomes too tough to maintain the requisite standard speed throughout the road section. The speed of Bump Integrator (BI) has to lower or higher in some distinctive situations. So, it becomes necessary to convert these roughness index values of other speeds to the standard speed of 32 km/h. This paper highlights on that roughness index conversional model. Using SPSS (Statistical Package of Social Sciences) software a generalized equation is derived among the RI value at standard speed of 32 km/h and RI value at other speed conditions.Keywords: bump integrator, pavement distresses, roughness index, SPSS
Procedia PDF Downloads 247569 Two Lessons Learnt in Defining Intersections and Interfaces in Numerical Modeling with Plaxis
Authors: Mahdi Sadeghian, Somaye Sadeghian, Reza Dinarvand
Abstract:
This paper is going to discuss two issues encountered in using PLAXIS. Both issues were monitored during application of PLAXIS to estimate the excavation-induced displacement. Column Soil Mixing (CSM) was applied to stabilise the excavation. It was understood that the estimated excavation induced deformation at the top of the CSM blocks highly depends on the material type defining pavement material adjacent to the CSM blocks. Cohesive material for pavement will result in the unrealistic connection between pavement and CSM even by defining an interface element. To find the most realistic approach, the interface defined in three different manners (1) no interface elements were applied (2) a non-cohesive soil layer was defined between pavement and CSM block to represent the friction between these materials (3) built-in interface elements in PLAXIS was used to define the boundary between the pavement and the CSM block. The result showed that the option 2 would result in more realistic results. The second issue was in the modelling of the contact line between the CSM block and an inclined layer underneath. The analysis result showed that the excavation-induced deformation highly depends on how the PLAXIS user defines the contact area. It was understood that if the contact area had defined as a point in which CSM block had intersected the layer underneath the estimated lateral displacement of CSM block would be unrealistically lower than the model in which the contact area was defined as a line.Keywords: PLAXIS, FEM, CSM, Excavation-Induced Deformation
Procedia PDF Downloads 162568 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections
Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam
Abstract:
Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.Keywords: natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software
Procedia PDF Downloads 407567 Influence of Shock Absorber Condition on the Vertical Dynamic Load Applied on the Pavement by a Truck’s Front Suspension
Authors: Pablo Kubo, Cassio Paiva, Adelino Ferreira
Abstract:
The main objective of this research study is to present the results of the influence of shock absorber condition, from a truck front suspension, on the vertical dynamic load applied on the pavement. For the measurements, it has been used a durability test track located in Brazil. The shock absorber conditions were new, used and failed with a constant load of 6 tons on the front suspension, the maximum allowed load for front axle according to Brazilian legislation. By applying relative damage concept, it is possible to conclude that the variation on the shock absorber conditions will significantly affect the load applied on the pavement. Although, it is recommended to repeat the same methodology in order to analyze the influence on the variation of the quarter car model variants.Keywords: damage, shock absorber, vertical dynamic load, absorber
Procedia PDF Downloads 483566 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements
Authors: K. Sandjak, B. Tiliouine
Abstract:
This article presents the main results of three-dimensional (3-D) numerical investigation of asphalt pavement structures behaviour using a coupled Finite Element-Mapped Infinite Element (FE-MIE) model. The validation and numerical performance of this model are assessed by confronting critical pavement responses with Burmister’s solution and FEM simulation results for multi-layered elastic structures. The coupled model is then efficiently utilised to perform 3-D simulations of a typical asphalt pavement structure in order to investigate the impact of two tire configurations (conventional dual and new generation wide-base tires) on critical pavement response parameters. The numerical results obtained show the effectiveness and the accuracy of the coupled (FE-MIE) model. In addition, the simulation results indicate that, compared with conventional dual tire assembly, single wide base tire caused slightly greater fatigue asphalt cracking and subgrade rutting potentials and can thus be utilised in view of its potential to provide numerous mechanical, economic, and environmental benefits.Keywords: 3-D numerical investigation, asphalt pavements, dual and wide base tires, Infinite elements
Procedia PDF Downloads 215565 Structural Behavior of Subsoil Depending on Constitutive Model in Calculation Model of Pavement Structure-Subsoil System
Authors: M. Kadela
Abstract:
The load caused by the traffic movement should be transferred in the road constructions in a harmless way to the pavement as follows: − on the stiff upper layers of the structure (e.g. layers of asphalt: abrading and binding), and − through the layers of principal and secondary substructure, − on the subsoil, directly or through an improved subsoil layer. Reliable description of the interaction proceeding in a system “road construction – subsoil” should be in such case one of the basic requirements of the assessment of the size of internal forces of structure and its durability. Analyses of road constructions are based on: − elements of mechanics, which allows to create computational models, and − results of the experiments included in the criteria of fatigue life analyses. Above approach is a fundamental feature of commonly used mechanistic methods. They allow to use in the conducted evaluations of the fatigue life of structures arbitrarily complex numerical computational models. Considering the work of the system “road construction – subsoil”, it is commonly accepted that, as a result of repetitive loads on the subsoil under pavement, the growth of relatively small deformation in the initial phase is recognized, then this increase disappears, and the deformation takes the character completely reversible. The reliability of calculation model is combined with appropriate use (for a given type of analysis) of constitutive relationships. Phenomena occurring in the initial stage of the system “road construction – subsoil” is unfortunately difficult to interpret in the modeling process. The classic interpretation of the behavior of the material in the elastic-plastic model (e-p) is that elastic phase of the work (e) is undergoing to phase (e-p) by increasing the load (or growth of deformation in the damaging structure). The paper presents the essence of the calibration process of cooperating subsystem in the calculation model of the system “road construction – subsoil”, created for the mechanistic analysis. Calibration process was directed to show the impact of applied constitutive models on its deformation and stress response. The proper comparative base for assessing the reliability of created. This work was supported by the on-going research project “Stabilization of weak soil by application of layer of foamed concrete used in contact with subsoil” (LIDER/022/537/L-4/NCBR/2013) financed by The National Centre for Research and Development within the LIDER Programme. M. Kadela is with the Department of Building Construction Elements and Building Structures on Mining Areas, Building Research Institute, Silesian Branch, Katowice, Poland (phone: +48 32 730 29 47; fax: +48 32 730 25 22; e-mail: m.kadela@ itb.pl). models should be, however, the actual, monitored system “road construction – subsoil”. The paper presents too behavior of subsoil under cyclic load transmitted by pavement layers. The response of subsoil to cyclic load is recorded in situ by the observation system (sensors) installed on the testing ground prepared for this purpose, being a part of the test road near Katowice, in Poland. A different behavior of the homogeneous subsoil under pavement is observed for different seasons of the year, when pavement construction works as a flexible structure in summer, and as a rigid plate in winter. Albeit the observed character of subsoil response is the same regardless of the applied load and area values, this response can be divided into: - zone of indirect action of the applied load; this zone extends to the depth of 1,0 m under the pavement, - zone of a small strain, extending to about 2,0 m.Keywords: road structure, constitutive model, calculation model, pavement, soil, FEA, response of soil, monitored system
Procedia PDF Downloads 357564 Experimental Investigation to Find Transition Temperature of VG 30 Binder
Authors: D. Latha, V. Sunitha, Samson Mathew
Abstract:
In India, most of the pavement is laid by bituminous road and the consumption of binder is high for pavement construction and also modified binders are used to satisfy any specific pavement requirement. Since the binders are visco-elastic material which is having the mechanical properties of binder transition from visco-elastic solid to visco-elastic fluid. In this paper, two different protocols were used to measure the viscosity property of binder using a Brookfield Viscometer and there is a need to find the appropriate mixing and compaction temperatures of various types of binders which can result in complete aggregate coating and adequate field density of HMA mixtures. The aim of this work is to find the transition temperature from Non-Newtonian behavior to Newtonian behavior of the binder by adopting a steady shear protocol and the shear rate ramp protocol. The transition from non-Newtonian to Newtonian can occur through an increase of temperature and shear of the material. The test has been conducted for unmodified binder VG 30. The transition temperature was found in the unmodified binder VG is 120oC. So the application of both modified binder and unmodified binder in the pavement construction needs to be studied properly by considering temperature and traffic loading factors of the respective project site.Keywords: unmodified and modified binders, Brookfield viscometer, transition temperature, steady shear and shear rate protocol
Procedia PDF Downloads 215