Search results for: real-time data visualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24711

Search results for: real-time data visualization

24651 Using Visualization Techniques to Support Common Clinical Tasks in Clinical Documentation

Authors: Jonah Kenei, Elisha Opiyo

Abstract:

Electronic health records, as a repository of patient information, is nowadays the most commonly used technology to record, store and review patient clinical records and perform other clinical tasks. However, the accurate identification and retrieval of relevant information from clinical records is a difficult task due to the unstructured nature of clinical documents, characterized in particular by a lack of clear structure. Therefore, medical practice is facing a challenge thanks to the rapid growth of health information in electronic health records (EHRs), mostly in narrative text form. As a result, it's becoming important to effectively manage the growing amount of data for a single patient. As a result, there is currently a requirement to visualize electronic health records (EHRs) in a way that aids physicians in clinical tasks and medical decision-making. Leveraging text visualization techniques to unstructured clinical narrative texts is a new area of research that aims to provide better information extraction and retrieval to support clinical decision support in scenarios where data generated continues to grow. Clinical datasets in electronic health records (EHR) offer a lot of potential for training accurate statistical models to classify facets of information which can then be used to improve patient care and outcomes. However, in many clinical note datasets, the unstructured nature of clinical texts is a common problem. This paper examines the very issue of getting raw clinical texts and mapping them into meaningful structures that can support healthcare professionals utilizing narrative texts. Our work is the result of a collaborative design process that was aided by empirical data collected through formal usability testing.

Keywords: classification, electronic health records, narrative texts, visualization

Procedia PDF Downloads 99
24650 Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization

Authors: Kwang Chun, John Kemeny

Abstract:

Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling.

Keywords: finite element analysis, LiDAR, remote-sensing, scientific visualization, underground stability

Procedia PDF Downloads 150
24649 Monotone Rational Trigonometric Interpolation

Authors: Uzma Bashir, Jamaludin Md. Ali

Abstract:

This study is concerned with the visualization of monotone data using a piece-wise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and other two are left-free. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves.

Keywords: trigonometric splines, monotone data, shape preserving, C1 monotone interpolant

Procedia PDF Downloads 253
24648 The Coexistence of Creativity and Information in Convergence Journalism: Pakistan's Evolving Media Landscape

Authors: Misha Mirza

Abstract:

In recent years, the definition of journalism in Pakistan has changed, so has the mindset of people and their approach towards a news story. For the audience, news has become more interesting than a drama or a film. This research thus provides an insight into Pakistan’s evolving media landscape. It tries not only to bring forth the outcomes of cross-platform cooperation among print and broadcast journalism but also gives an insight into the interactive data visualization techniques being used. The storytelling in journalism in Pakistan has evolved from depicting merely the truth to tweaking, fabricating and producing docu-dramas. It aims to look into how news is translated to a visual. Pakistan acquires a diverse cultural heritage and by engaging audience through media, this history translates into the storytelling platform today. The paper explains how journalists are thriving in a converging media environment and provides an analysis of the narratives in television talk shows today.’ Jack of all, master of none’ is being challenged by the journalists today. One has to be a quality information gatherer and an effective storyteller at the same time. Are journalists really looking more into what sells rather than what matters? Express Tribune is a very popular news platform among the youth. Not only is their newspaper more attractive than the competitors but also their style of narrative and interactive web stories lead to well-rounded news. Interviews are used as the basic methodology to get an insight into how data visualization is compassed. The quest for finding out the difference between visualization of information versus the visualization of knowledge has led the author to delve into the work of David McCandless in his book ‘Knowledge is beautiful’. Journalism in Pakistan has evolved from information to combining knowledge, infotainment and comedy. What is being criticized the most by the society most often becomes the breaking news. Circulation in today’s world is carried out in cultural and social networks. In recent times, we have come across many examples where people have gained overnight popularity by releasing songs with substandard lyrics or senseless videos perhaps because creativity has taken over information. This paper thus discusses the various platforms of convergence journalism from Pakistan’s perspective. The study concludes with proving how Pakistani pop culture Truck art is coexisting with all the platforms in convergent journalism. The changing media landscape thus challenges the basic rules of journalism. The slapstick humor and ‘jhatka’ in Pakistani talk shows has evolved from the Pakistani truck art poetry. Mobile journalism has taken over all the other mediums of journalism; however, the Pakistani culture coexists with the converging landscape.

Keywords: convergence journalism in Pakistan, data visualization, interactive narrative in Pakistani news, mobile journalism, Pakistan's truck art culture

Procedia PDF Downloads 269
24647 An Integrated Visualization Tool for Heat Map and Gene Ontology Graph

Authors: Somyung Oh, Jeonghyeon Ha, Kyungwon Lee, Sejong Oh

Abstract:

Microarray is a general scheme to find differentially expressed genes for target concept. The output is expressed by heat map, and biologists analyze related terms of gene ontology to find some characteristics of differentially expressed genes. In this paper, we propose integrated visualization tool for heat map and gene ontology graph. Previous two methods are used by static manner and separated way. Proposed visualization tool integrates them and users can interactively manage it. Users may easily find and confirm related terms of gene ontology for given differentially expressed genes. Proposed tool also visualize connections between genes on heat map and gene ontology graph. We expect biologists to find new meaningful topics by proposed tool.

Keywords: heat map, gene ontology, microarray, differentially expressed gene

Procedia PDF Downloads 297
24646 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies

Authors: Monica Lia

Abstract:

This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.

Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes

Procedia PDF Downloads 413
24645 Evaluation of UI for 3D Visualization-Based Building Information Applications

Authors: Monisha Pattanaik

Abstract:

In scenarios where users have to work with large amounts of hierarchical data structures combined with visualizations (For example, Construction 3d Models, Manufacturing equipment's models, Gantt charts, Building Plans), the data structures have a high density in terms of consisting multiple parent nodes up to 50 levels and their siblings to descendants, therefore convey an immediate feeling of complexity. With customers moving to consumer-grade enterprise software, it is crucial to make sophisticated features made available to touch devices or smaller screen sizes. This paper evaluates the UI component that allows users to scroll through all deep density levels using a slider overlay on top of the hierarchy table, performing several actions to focus on one set of objects at any point in time. This overlay component also solves the problem of excessive horizontal scrolling of the entire table on a fixed pane for a hierarchical table. This component can be customized to navigate through parents, only siblings, or a specific component of the hierarchy only. The evaluation of the UI component was done by End Users of application and Human-Computer Interaction (HCI) experts to test the UI component's usability with statistical results and recommendations to handle complex hierarchical data visualizations.

Keywords: building information modeling, digital twin, navigation, UI component, user interface, usability, visualization

Procedia PDF Downloads 118
24644 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 24
24643 Direct Visualization of Shear Induced Structures in Wormlike Micellar Solutions by Microfluidics and Advanced Microscopy

Authors: Carla Caiazza, Valentina Preziosi, Giovanna Tomaiuolo, Denis O'Sullivan, Vincenzo Guida, Stefano Guido

Abstract:

In the last decades, wormlike micellar solutions have been extensively used to tune the rheological behavior of home care and personal care products. This and other successful applications underlie the growing attention that both basic and applied research are devoting to these systems, and to their unique rheological and flow properties. One of the key research topics is the occurrence of flow instabilities at high shear rates (such as shear banding), with the possibility of appearance of flow induced structures. In this scenario, microfluidics is a powerful tool to get a deeper insight into the flow behavior of a wormlike micellar solution, as the high confinement of a microfluidic device facilitates the onset of the flow instabilities; furthermore, thanks to its small dimensions, it can be coupled with optical microscopy, allowing a direct visualization of flow structuring phenomena. Here, the flow of a widely used wormlike micellar solution through a glass capillary has been studied, by coupling the microfluidic device with μPIV techniques. The direct visualization of flow-induced structures and the flow visualization analysis highlight a relationship between solution structuring and the onset of discontinuities in the velocity profile.

Keywords: flow instabilities, flow-induced structures, μPIV, wormlike micelles

Procedia PDF Downloads 331
24642 Research and Application of the Three-Dimensional Visualization Geological Modeling of Mine

Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three dimensional visualization geological modeling of mine is the digital characterization of mineral deposit, and is one of the key technology of digital mine. The three-dimensional geological modeling is a technology that combines the geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in three-dimensional environment with computer technology, and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provided scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 54
24641 Alternate Methods to Visualize 2016 U.S. Presidential Election Result

Authors: Hong Beom Hur

Abstract:

Politics in America is polarized. The best illustration of this is the 2016 presidential election result map. States with megacities like California, New York, Illinois, Virginia, and others are marked blue to signify the color of the Democratic party. States located in inland and south like Texas, Florida, Tennesse, Kansas and others are marked red to signify the color of the Republican party. Such a stark difference between two colors, red and blue, combined with geolocations of each state with their borderline remarks one central message; America is divided into two colors between urban Democrats and rural Republicans. This paper seeks to defy the visualization by pointing out its limitations and search for alternative ways to visualize the 2016 election result. One such limitation is that geolocations of each state and state borderlines limit the visualization of population density. As a result, the election result map does not convey the fact that Clinton won the popular vote and only accentuates the voting patterns of urban and rural states. The paper seeks whether an alternative narrative can be observed by factoring in the population number into the size of each state and manipulating the state borderline according to the normalization. Yet another alternative narrative may be reached by factoring the size of each state by the number of the electoral college of each state by voting and visualize the number. Other alternatives will be discussed but are not implemented in visualization. Such methods include dividing the land of America into about 120 million cubes each representing a voter or by the number of whole population 300 million cubes. By exploring these alternative methods to visualize the politics of the 2016 election map, the public may be able to question whether it is possible to be free from the narrative of the divide-conquer when interpreting the election map and to look at both parties as a story of the United States of America.

Keywords: 2016 U.S. presidential election, data visualization, population scale, geo-political

Procedia PDF Downloads 103
24640 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method

Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi

Abstract:

This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.

Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure

Procedia PDF Downloads 475
24639 Experimental Investigation of Boundary Layer Instability and Transition on a Rotating Parabola in Axial Flow

Authors: Ali Kargar, Kamyar Mansour

Abstract:

In this paper the boundary layer instability and transition on a rotating parabola which is sheathed shape on a rotating 30 degrees total apex angle cone have been study by smoke visualization. The rotating cone especially 30 degrees total apex angle is a well-established subject in some previous novel works and also in our previous works. But in this paper a stabilizing effect is detected by the bluntness of nose and also surface curvature. A parabola model which is satisfying those conditions (sheathed parabola of the 30 degrees cone) has been built and studied in the wind tunnel. The results are shown that the boundary layer transition occurs at higher rotational Reynolds number in comparison by the cone. The results are shown in the visualization pictures and also are compared graphically.

Keywords: transitional Reynolds number, wind tunnel, smoke visualization, rotating parabola

Procedia PDF Downloads 401
24638 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac

Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 62
24637 Visualization of Latent Sweat Fingerprints Deposit on Paper by Infrared Radiation and Blue Light

Authors: Xiaochun Huang, Xuejun Zhao, Yun Zou, Feiyu Yang, Wenbin Liu, Nan Deng, Ming Zhang, Nengbin Cai

Abstract:

A simple device termed infrared radiation (IR) was developed for rapid visualization of sweat fingerprints deposit on paper with blue light (450 nm, 11 W). In this approach, IR serves as the pretreatment device before the sweat fingerprints was illuminated by blue light. An annular blue light source was adopted for visualizing latent sweat fingerprints. Sample fingerprints were examined under various conditions after deposition, and experimental results indicate that the recovery rate of the latent sweat fingerprints is in the range of 50%-100% without chemical treatments. A mechanism for the observed visibility is proposed based on transportation and re-impregnation of fluorescer in paper at the region of water. And further exploratory experimental results gave the full support to the visible mechanism. Therefore, such a method as IR-pretreated in detecting latent fingerprints may be better for examination in the case where biological information of samples is needed for consequent testing.

Keywords: forensic science, visualization, infrared radiation, blue light, latent sweat fingerprints, detection

Procedia PDF Downloads 483
24636 Development of Real Time System for Human Detection and Localization from Unmanned Aerial Vehicle Using Optical and Thermal Sensor and Visualization on Geographic Information Systems Platform

Authors: Nemi Bhattarai

Abstract:

In recent years, there has been a rapid increase in the use of Unmanned Aerial Vehicle (UAVs) in search and rescue (SAR) operations, disaster management, and many more areas where information about the location of human beings are important. This research will primarily focus on the use of optical and thermal camera via UAV platform in real-time detection, localization, and visualization of human beings on GIS. This research will be beneficial in disaster management search of lost humans in wilderness or difficult terrain, detecting abnormal human behaviors in border or security tight areas, studying distribution of people at night, counting people density in crowd, manage people flow during evacuation, planning provisions in areas with high human density and many more.

Keywords: UAV, human detection, real-time, localization, visualization, haar-like, GIS, thermal sensor

Procedia PDF Downloads 445
24635 GPU-Based Back-Projection of Synthetic Aperture Radar (SAR) Data onto 3D Reference Voxels

Authors: Joshua Buli, David Pietrowski, Samuel Britton

Abstract:

Processing SAR data usually requires constraints in extent in the Fourier domain as well as approximations and interpolations onto a planar surface to form an exploitable image. This results in a potential loss of data requires several interpolative techniques, and restricts visualization to two-dimensional plane imagery. The data can be interpolated into a ground plane projection, with or without terrain as a component, all to better view SAR data in an image domain comparable to what a human would view, to ease interpretation. An alternate but computationally heavy method to make use of more of the data is the basis of this research. Pre-processing of the SAR data is completed first (matched-filtering, motion compensation, etc.), the data is then range compressed, and lastly, the contribution from each pulse is determined for each specific point in space by searching the time history data for the reflectivity values for each pulse summed over the entire collection. This results in a per-3D-point reflectivity using the entire collection domain. New advances in GPU processing have finally allowed this rapid projection of acquired SAR data onto any desired reference surface (called backprojection). Mathematically, the computations are fast and easy to implement, despite limitations in SAR phase history data size and 3D-point cloud size. Backprojection processing algorithms are embarrassingly parallel since each 3D point in the scene has the same reflectivity calculation applied for all pulses, independent of all other 3D points and pulse data under consideration. Therefore, given the simplicity of the single backprojection calculation, the work can be spread across thousands of GPU threads allowing for accurate reflectivity representation of a scene. Furthermore, because reflectivity values are associated with individual three-dimensional points, a plane is no longer the sole permissible mapping base; a digital elevation model or even a cloud of points (collected from any sensor capable of measuring ground topography) can be used as a basis for the backprojection technique. This technique minimizes any interpolations and modifications of the raw data, maintaining maximum data integrity. This innovative processing will allow for SAR data to be rapidly brought into a common reference frame for immediate exploitation and data fusion with other three-dimensional data and representations.

Keywords: backprojection, data fusion, exploitation, three-dimensional, visualization

Procedia PDF Downloads 56
24634 Cell-Cell Interactions in Diseased Conditions Revealed by Three Dimensional and Intravital Two Photon Microscope: From Visualization to Quantification

Authors: Satoshi Nishimura

Abstract:

Although much information has been garnered from the genomes of humans and mice, it remains difficult to extend that information to explain physiological and pathological phenomena. This is because the processes underlying life are by nature stochastic and fluctuate with time. Thus, we developed novel "in vivo molecular imaging" method based on single and two-photon microscopy. We visualized and analyzed many life phenomena, including common adult diseases. We integrated the knowledge obtained, and established new models that will serve as the basis for new minimally invasive therapeutic approaches.

Keywords: two photon microscope, intravital visualization, thrombus, artery

Procedia PDF Downloads 355
24633 Information Visualization Methods Applied to Nanostructured Biosensors

Authors: Osvaldo N. Oliveira Jr.

Abstract:

The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.

Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique

Procedia PDF Downloads 314
24632 Visualization of the Mobility Patterns of Public Bike Sharing System in Seoul

Authors: Young-Hyun Seo, Hosuk Shin, Eun-Hak Lee, Seung-Young Kho

Abstract:

This study analyzed and visualized the rental and return data of the public bike sharing system in Seoul, Ttareungyi, from September 2015 to October 2017. With the surge of system users, the number of times of collection and distribution in 2017 increased by three times compared to 2016. The city plans to deploy about 20,000 public bicycles by the end of 2017 to expand the system. Based on about 3.3 million historical data, we calculated the average trip time and the number of trips from one station to another station. The mobility patterns between stations are graphically displayed using R and Tableau. Demand for public bike sharing system is heavily influenced by day and weather. As a result of plotting the number of rentals and returns of some stations on weekdays and weekends at intervals of one hour, there was a difference in rental patterns. As a result of analysis of the rental and return patterns by time of day, there were a lot of returns at the morning peak and more rentals at the afternoon peak at the center of the city. It means that stock of bikes varies largely in the time zone and public bikes should be rebalanced timely. The result of this study can be applied as a primary data to construct the demand forecasting function of the station when establishing the rebalancing strategy of the public bicycle.

Keywords: demand forecasting, mobility patterns, public bike sharing system, visualization

Procedia PDF Downloads 174
24631 A Software Tool for Computer Forensic Investigation Using Client-Side Web History Visualization

Authors: Francisca Onaolapo Oladipo, Peter Afam Ugwu

Abstract:

Records of user activities which are valuable for forensic investigation purposes are provided by web browsers -these records in most cases are not in visual formats that are easily understood, thereby requiring some extra processes. This paper describes the implementation of a software tool for client-side web history visualization providing suitable forensic evidence for investigative purposes. Visual C#, Perl and gnuplot were deployed on Windows Operating System (OS) environment to implement the system and the resulting tool parses and transforms a web browser history into a visual format that enables an investigator to quickly and efficiently explore, understand, and interpret the user online activities in the context of a specific investigation. The system was tested using two forensic cases: the client-side web history files generated by Mozilla Firefox browser was extracted using MozillaHistoryView utility, then parsed and visualized using bar and stacked column charts. From the visual representation, results of user web activities across various productive and non-productive websites were obtained.

Keywords: history, forensics, visualization, web activities

Procedia PDF Downloads 278
24630 Multi-Modal Visualization of Working Instructions for Assembly Operations

Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger

Abstract:

Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.

Keywords: assembly, assistive technologies, augmented reality, manufacturing, visualization

Procedia PDF Downloads 150
24629 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles

Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado

Abstract:

In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.

Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces

Procedia PDF Downloads 364
24628 Study of Cavitation Phenomena Based on Flow Visualization Test in 3-Way Reversing Valve

Authors: Hyo Lim Kang, Tae An Kim, Seung Ho Han

Abstract:

A 3-way reversing valve has been used in automotive washing machines to remove remaining oil and dirt on machined engine and transmission blocks. It provides rapid and accurate changes of water flow direction without any precise control device. However, due to its complicated bottom-plug shape, a cavitation occurs in a wide range of the bottom-plug in a downstream. In this study, the cavitation index and POC (percent of cavitation) were used to evaluate quantitatively the cavitation phenomena occurring at the bottom-plug. An optimal shape design was carried out via parametric study for geometries of the bottom-plug, in which a simple CAE-model was used in order to avoid time-consuming CFD analysis and hard to achieve convergence. To verify the results of numerical analysis, a flow visualization test was carried out using a test specimen with a transparent acryl pipe according to ISA-RP75.23. The flow characteristics such as the cavitation occurring in the downstream were investigated by using a flow test equipment with valve and pump including a flow control system and high-speed camera.

Keywords: cavitation, flow visualization test, optimal shape design, percent of cavitation, reversing valve

Procedia PDF Downloads 285
24627 A Building Structure Health Monitoring DeviceBased on Cost Effective 1-Axis Accelerometers

Authors: Chih Hsing Lin, Wen-Ching Chen, Ssu-Ying Chen, Chih-Chyau Yang, Chien-Ming Wu, Chun-Ming Huang

Abstract:

Critical structures such as buildings, bridges and dams require periodic inspections to ensure safe operation. The reliable inspection of structures can be achieved by combing temperature sensor and accelerometers. In this work, we propose a building structure health monitoring device (BSHMD) with using three 1-axis accelerometers, gateway, analog to digital converter (ADC), and data logger to monitoring the building structure. The proposed BSHMD achieves the features of low cost by using three 1-axis accelerometers with the data synchronization problem being solved, and easily installation and removal. Furthermore, we develop a packet acquisition program to receive the sensed data and then classify it based on time and date. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 64.3% cost saving. Compared with previous structural monitoring device, the BSHMD achieves 89% area saving. Therefore, with using the proposed device, the realtime diagnosis system for building damage monitoring can be conducted effectively.

Keywords: building structure health monitoring, cost effective, 1-axis accelerometers, real-time diagnosis

Procedia PDF Downloads 340
24626 Visualization of PM₂.₅ Time Series and Correlation Analysis of Cities in Bangladesh

Authors: Asif Zaman, Moinul Islam Zaber, Amin Ahsan Ali

Abstract:

In recent years of industrialization, the South Asian countries are being affected by air pollution due to a severe increase in fine particulate matter 2.5 (PM₂.₅). Among them, Bangladesh is one of the most polluting countries. In this paper, statistical analyses were conducted on the time series of PM₂.₅ from various districts in Bangladesh, mostly around Dhaka city. Research has been conducted on the dynamic interactions and relationships between PM₂.₅ concentrations in different zones. The study is conducted toward understanding the characteristics of PM₂.₅, such as spatial-temporal characterization, correlation of other contributors behind air pollution such as human activities, driving factors and environmental casualties. Clustering on the data gave an insight on the districts groups based on their AQI frequency as representative districts. Seasonality analysis on hourly and monthly frequency found higher concentration of fine particles in nighttime and winter season, respectively. Cross correlation analysis discovered a phenomenon of correlations among cities based on time-lagged series of air particle readings and visualization framework is developed for observing interaction in PM₂.₅ concentrations between cities. Significant time-lagged correlations were discovered between the PM₂.₅ time series in different city groups throughout the country by cross correlation analysis. Additionally, seasonal heatmaps depict that the pooled series correlations are less significant in warmer months, and among cities of greater geographic distance as well as time lag magnitude and direction of the best shifted correlated particulate matter time series among districts change seasonally. The geographic map visualization demonstrates spatial behaviour of air pollution among districts around Dhaka city and the significant effect of wind direction as the vital actor on correlated shifted time series. The visualization framework has multipurpose usage from gathering insight of general and seasonal air quality of Bangladesh to determining the pathway of regional transportation of air pollution.

Keywords: air quality, particles, cross correlation, seasonality

Procedia PDF Downloads 97
24625 Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube

Authors: Mohd Hazwan bin Yusof, Hiroshi Katanoda

Abstract:

In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75 mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.

Keywords: flow visualization, pressure measurement, reverse flow, vortex tube

Procedia PDF Downloads 499
24624 Visualization of Quantitative Thresholds in Stocks

Authors: Siddhant Sahu, P. James Daniel Paul

Abstract:

Technical analysis comprised by various technical indicators is a holistic way of representing price movement of stocks in the market. Various forms of indicators have evolved from the primitive ones in the past decades. There have been many attempts to introduce volume as a major determinant to determine strong patterns in market forecasting. The law of demand defines the relationship between the volume and price. Most of the traders are familiar with the volume game. Including the time dimension to the law of demand provides a different visualization to the theory. While attempting the same, it was found that there are different thresholds in the market for different companies. These thresholds have a significant influence on the price. This article is an attempt in determining the thresholds for companies using the three dimensional graphs for optimizing the portfolios. It also emphasizes on the magnitude of importance of volumes as a key factor for determining of predicting strong price movements, bullish and bearish markets. It uses a comprehensive data set of major companies which form a major chunk of the Indian automotive sector and are thus used as an illustration.

Keywords: technical analysis, expert system, law of demand, stocks, portfolio analysis, Indian automotive sector

Procedia PDF Downloads 296
24623 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data

Authors: Adarsh Shroff

Abstract:

Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.

Keywords: big data, map reduce, incremental processing, iterative computation

Procedia PDF Downloads 328
24622 Digital Twin Platform for BDS-3 Satellite Navigation Using Digital Twin Intelligent Visualization Technology

Authors: Rundong Li, Peng Wu, Junfeng Zhang, Zhipeng Ren, Chen Yang, Jiahui Gan, Lu Feng, Haibo Tong, Xuemei Xiao, Yuying Chen

Abstract:

The research of Beidou-3 satellite navigation is on the rise, but in actual work, it is inevitable that satellite data is insecure, research and development is inefficient, and there is no ability to deal with failures in advance. Digital twin technology has obvious advantages in the simulation of life cycle models of aerospace satellite navigation products. In order to meet the increasing demand, this paper builds a Beidou-3 satellite navigation digital twin platform (BDSDTP). The basic establishment of BDSDTP was completed by establishing a digital twin double, Beidou-3 comprehensive digital twin design, predictive maintenance (PdM) mathematical model, and visual interaction design. Finally, this paper provides a time application case of the platform, which provides a reference for the application of BDSDTP in various fields of navigation and provides obvious help for extending the full cycle life of Beidou-3 satellite navigation.

Keywords: BDS-3, digital twin, visualization, PdM

Procedia PDF Downloads 110