Search results for: optimal train control
13751 Disaster Probability Analysis of Banghabandhu Multipurpose Bridge for Train Accidents and Its Socio-Economic Impact on Bangladesh
Authors: Shahab Uddin, Kazi M. Uddin, Hamamah Sadiqa
Abstract:
The paper deals with the Banghabandhu Multipurpose Bridge (BMB), the 11th longest bridge in the world was constructed in 1998 aimed at contributing to promote economic development in Bangladesh. In recent years, however, the high incidence of traffic accidents and injuries at the bridge sites looms as a great safety concern. Investigation into the derailment of nine bogies out of thirteen of Dinajpur-bound intercity train ‘Drutajan Express ’were derailed and inclined on the Banghabandhu Multipurpose Bridge on 28 April 2014. The train accident in Bridge will be deep concern for both structural safety of bridge and people than other vehicles accident. In this study we analyzed the disaster probability of the Banghabandhu Multipurpose Bridge for accidents by checking the fitness of Bridge structure. We found that train accident impact is more risky than other vehicles accidents. We also found that socio-economic impact on Bangladesh will be deep concerned.Keywords: train accident, derailment, disaster, socio-economic
Procedia PDF Downloads 29913750 Experimental and Numerical Investigations of Impact Response on High-Speed Train Windshield
Authors: Wen Ma, Yong Peng, Zhixiang Li
Abstract:
Security journey is a vital focus on the field of Rail Transportation. Accidents caused by the damage of the high-speed train windshield have occurred many times and have given rise to terrible consequences. Train windshield consists of tempered glass and polyvinyl butyral (PVB) film. In this work, the quasi-static tests and the split Hopkinson pressure bar (SHPB) tests were carried out first to obtain the mechanical properties and constitutive model for the tempered glass and PVB film. These tests results revealed that stress and Young’s modulus of tempered glass were wake-sensitive to strain rate, but stress and Young’s modulus of PVB film were strong-sensitive to strain rate. Then impact experiment of the windshield was carried out to investigate dynamic response and failure characteristics of train windshield. In addition, a finite element model based on the combined finite element method was proposed to investigate fracture and fragmentation responses of train windshield under different-velocity impact. The results can be used for further design and optimization of the windshield for high-speed train application.Keywords: constitutive model, impact response, mechanism properties, PVB film, tempered glass
Procedia PDF Downloads 14613749 Microgrid Design Under Optimal Control With Batch Reinforcement Learning
Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion
Abstract:
Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.Keywords: batch-constrained reinforcement learning, control, design, optimal
Procedia PDF Downloads 12113748 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System
Authors: N. Chayaopas, W. Assawinchaichote
Abstract:
In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.Keywords: doubly fed induction generator, H-infinity fuzzy integral control, linear matrix inequality, wind energy system
Procedia PDF Downloads 34613747 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO
Procedia PDF Downloads 11013746 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Taiki Baba, Tomoaki Hashimoto
Abstract:
The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.Keywords: model predictive control, stochastic systems, probabilistic constraints, random dither quantization
Procedia PDF Downloads 28013745 Designing Directed Network with Optimal Controllability
Authors: Liang Bai, Yandong Xiao, Haorang Wang, Songyang Lao
Abstract:
The directedness of links is crucial to determine the controllability in complex networks. Even the edge directions can determine the controllability of complex networks. Obviously, for a given network, we wish to design its edge directions that make this network approach the optimal controllability. In this work, we firstly introduce two methods to enhance network by assigning edge directions. However, these two methods could not completely mitigate the negative effects of inaccessibility and dilations. Thus, to approach the optimal network controllability, the edge directions must mitigate the negative effects of inaccessibility and dilations as much as possible. Finally, we propose the edge direction for optimal controllability. The optimal method has been found to be successfully useful on real-world and synthetic networks.Keywords: complex network, dynamics, network control, optimization
Procedia PDF Downloads 18313744 Development of a Drive Cycle Based Control Strategy for the KIIRA-EV SMACK Hybrid
Authors: Richard Madanda, Paul Isaac Musasizi, Sandy Stevens Tickodri-Togboa, Doreen Orishaba, Victor Tumwine
Abstract:
New vehicle concepts targeting specific geographical markets are designed to satisfy a unique set of road and load requirements. The KIIRA-EV SMACK (KES) hybrid vehicle is designed in Uganda for the East African market. The engine and generator added to the KES electric power train serve both as the range extender and the power assist. In this paper, the design consideration taken to achieve the proper management of the on-board power from the batteries and engine-generator based on the specific drive cycle are presented. To harness the fuel- efficiency benefits of the power train, a specific control philosophy operating the engine and generator at the most efficient speed- torque and speed-power regions is presented. By using a suitable model developed in MATLAB using Simulink and Stateflow, preliminary results show that the steady-state response of the vehicle for a particular hypothetical drive cycle mimicking the expected drive conditions in the city and highway traffic is sufficient.Keywords: control strategy, drive cycle, hybrid vehicle, simulation
Procedia PDF Downloads 37813743 Optimization Based Obstacle Avoidance
Authors: R. Dariani, S. Schmidt, R. Kasper
Abstract:
Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.Keywords: autonomous driving, obstacle avoidance, optimal control, path planning
Procedia PDF Downloads 36613742 Impact Load Response of Light Rail Train Rail Guard
Authors: Eyob Hundessa Gose
Abstract:
Nowadays, it is obviously known that the construction of different infrastructures is one measurement of the development of a country; infrastructures like buildings, bridges, roads, and railways are among them. In the capital city of Ethiopia, the so-called Addis Ababa, the Light Rail Train (LRT), was built Four years ago to satisfy the demand for transportation among the people in the city. The lane of the Train and vehicle separation Media was built with a curb and rail guard installation system to show the right-of-way and for protection of vehicles entering the Train Lane, but this Rail guard fails easily when impacted by vehicles and found that the impact load response of the Rail guard is weak and the Rail guard cannot withstand impact load. This study investigates the effect of variation of parameters such as vehicle speed and different mass effects and assesses the failure mode FRP and Steel reinforcement bar rail guards of deflection and damage state.Keywords: impact load, fiber reinforced polymer, rail guard, LS-DYNA
Procedia PDF Downloads 5713741 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm
Authors: Safayat Ali Shaikh
Abstract:
Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern
Procedia PDF Downloads 20213740 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach
Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo
Abstract:
Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation
Procedia PDF Downloads 18313739 Finite Element and Split Bregman Methods for Solving a Family of Optimal Control Problem with Partial Differential Equation Constraint
Authors: Mahmoud Lot
Abstract:
In this article, we will discuss the solution of elliptic optimal control problem. First, by using the nite element method, we obtain the discrete form of the problem. The obtained discrete problem is actually a large scale constrained optimization problem. Solving this optimization problem with traditional methods is difficult and requires a lot of CPU time and memory. But split Bergman method converts the constrained problem to an unconstrained, and hence it saves time and memory requirement. Then we use the split Bregman method for solving this problem, and examples show the speed and accuracy of split Bregman methods for solving these types of problems. We also use the SQP method for solving the examples and compare with the split Bregman method.Keywords: Split Bregman Method, optimal control with elliptic partial differential equation constraint, finite element method
Procedia PDF Downloads 15013738 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids
Authors: Niklas Panten, Eberhard Abele
Abstract:
This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control
Procedia PDF Downloads 19213737 Climate Physical Processes Mathematical Modeling for Dome-Like Traditional Residential Building
Authors: Artem Sedov, Aigerim Uyzbayeva, Valeriya Tyo
Abstract:
The presented article is showing results of dynamic modeling with Mathlab software of optimal automatic room climate control system for two experimental houses in Astana, one of which has circle plan and the other one has square plan. These results are showing that building geometry doesn't influence on climate system PID-controls configuring. This confirms theoretical implication that optimal automatic climate control system parameters configuring should depend on building's internal space volume, envelope heat transfer, number of people inside, supply ventilation air flow and outdoor temperature.Keywords: climate control system, climate physics, dome-like building, mathematical modeling
Procedia PDF Downloads 36113736 Automatic Registration of Rail Profile Based Local Maximum Curvature Entropy
Authors: Hao Wang, Shengchun Wang, Weidong Wang
Abstract:
On the influence of train vibration and environmental noise on the measurement of track wear, we proposed a method for automatic extraction of circular arc on the inner or outer side of the rail waist and achieved the high-precision registration of rail profile. Firstly, a polynomial fitting method based on truncated residual histogram was proposed to find the optimal fitting curve of the profile and reduce the influence of noise on profile curve fitting. Then, based on the curvature distribution characteristics of the fitting curve, the interval search algorithm based on dynamic window’s maximum curvature entropy was proposed to realize the automatic segmentation of small circular arc. At last, we fit two circle centers as matching reference points based on small circular arcs on both sides and realized the alignment from the measured profile to the standard designed profile. The static experimental results show that the mean and standard deviation of the method are controlled within 0.01mm with small measurement errors and high repeatability. The dynamic test also verified the repeatability of the method in the train-running environment, and the dynamic measurement deviation of rail wear is within 0.2mm with high repeatability.Keywords: curvature entropy, profile registration, rail wear, structured light, train-running
Procedia PDF Downloads 25813735 Optimal Tamping for Railway Tracks, Reducing Railway Maintenance Expenditures by the Use of Integer Programming
Authors: Rui Li, Min Wen, Kim Bang Salling
Abstract:
For the modern railways, maintenance is critical for ensuring safety, train punctuality and overall capacity utilization. The cost of railway maintenance in Europe is high, on average between 30,000 – 100,000 Euros per kilometer per year. In order to reduce such maintenance expenditures, this paper presents a mixed 0-1 linear mathematical model designed to optimize the predictive railway tamping activities for ballast track in the planning horizon of three to four years. The objective function is to minimize the tamping machine actual costs. The approach of the research is using the simple dynamic model for modelling condition-based tamping process and the solution method for finding optimal condition-based tamping schedule. Seven technical and practical aspects are taken into account to schedule tamping: (1) track degradation of the standard deviation of the longitudinal level over time; (2) track geometrical alignment; (3) track quality thresholds based on the train speed limits; (4) the dependency of the track quality recovery on the track quality after tamping operation; (5) Tamping machine operation practices (6) tamping budgets and (7) differentiating the open track from the station sections. A Danish railway track between Odense and Fredericia with 42.6 km of length is applied for a time period of three and four years in the proposed maintenance model. The generated tamping schedule is reasonable and robust. Based on the result from the Danish railway corridor, the total costs can be reduced significantly (50%) than the previous model which is based on optimizing the number of tamping. The different maintenance strategies have been discussed in the paper. The analysis from the results obtained from the model also shows a longer period of predictive tamping planning has more optimal scheduling of maintenance actions than continuous short term preventive maintenance, namely yearly condition-based planning.Keywords: integer programming, railway tamping, predictive maintenance model, preventive condition-based maintenance
Procedia PDF Downloads 44113734 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 20013733 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm
Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew
Abstract:
The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence
Procedia PDF Downloads 39513732 Stochastic Control of Decentralized Singularly Perturbed Systems
Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan
Abstract:
Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.Keywords: decentralized, optimal control, output, singular perturb
Procedia PDF Downloads 36713731 Prediction of CO2 Concentration in the Korea Train Express (KTX) Cabins
Authors: Yong-Il Lee, Do-Yeon Hwang, Won-Seog Jeong, Duckshin Park
Abstract:
Recently, because of the high-speed trains forced ventilation, it is important to control the ventilation. The ventilation is for controlling various contaminants, temperature, and humidity. The high-speed train route is straight to a destination having a high speed. And there are many mountainous areas in Korea. So, tunnel rate is higher then other country. KTX HVAC block off the outdoor air, when entering tunnel. So the high tunnel rate is an effect of ventilation in the KTX cabin. It is important to reduction rate in CO2 concentration prediction. To meet the air quality of the public transport vehicles recommend standards, the KTX cabin of CO2 concentration should be managed. In this study, the concentration change was predicted by CO2 prediction simulation in route to be opened.Keywords: CO2 prediction, KTX, ventilation, infrastructure and transportation engineering
Procedia PDF Downloads 54313730 Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index
Authors: Minjeong Kim, Seungchul Lee, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo
Abstract:
A trajectory of set-point of ventilation control systems plays an important role for efficient ventilation inside subway stations since it affects the level of indoor air pollutants and ventilation energy consumption. To maintain indoor air quality (IAQ) at a comfortable range with lower ventilation energy consumption, the optimal trajectory of the ventilation control system needs to be determined. The concentration of air pollutants inside the station shows a diurnal variation in accordance with the variations in the number of passengers and subway frequency. To consider the diurnal variation of IAQ, an iterative dynamic programming (IDP) that searches for a piecewise control policy by separating whole duration into several stages is used. When outdoor air is contaminated by pollutants, it enters the subway station through the ventilation system, which results in the deteriorated IAQ and adverse effects on passenger health. In this study, to consider the influence of outdoor air quality (OAQ), a new performance index of the IDP with the passenger health risk and OAQ is proposed. This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station.Keywords: indoor air quality, iterative dynamic algorithm, outdoor air information, ventilation control system
Procedia PDF Downloads 50013729 Jointly Optimal Statistical Process Control and Maintenance Policy for Deteriorating Processes
Authors: Lucas Paganin, Viliam Makis
Abstract:
With the advent of globalization, the market competition has become a major issue for most companies. One of the main strategies to overcome this situation is the quality improvement of the product at a lower cost to meet customers’ expectations. In order to achieve the desired quality of products, it is important to control the process to meet the specifications, and to implement the optimal maintenance policy for the machines and the production lines. Thus, the overall objective is to reduce process variation and the production and maintenance costs. In this paper, an integrated model involving Statistical Process Control (SPC) and maintenance is developed to achieve this goal. Therefore, the main focus of this paper is to develop the jointly optimal maintenance and statistical process control policy minimizing the total long run expected average cost per unit time. In our model, the production process can go out of control due to either the deterioration of equipment or other assignable causes. The equipment is also subject to failures in any of the operating states due to deterioration and aging. Hence, the process mean is controlled by an Xbar control chart using equidistant sampling epochs. We assume that the machine inspection epochs are the times when the control chart signals an out-of-control condition, considering both true and false alarms. At these times, the production process will be stopped, and an investigation will be conducted not only to determine whether it is a true or false alarm, but also to identify the causes of the true alarm, whether it was caused by the change in the machine setting, by other assignable causes, or by both. If the system is out of control, the proper actions will be taken to bring it back to the in-control state. At these epochs, a maintenance action can be taken, which can be no action, or preventive replacement of the unit. When the equipment is in the failure state, a corrective maintenance action is performed, which can be minimal repair or replacement of the machine and the process is brought to the in-control state. SMDP framework is used to formulate and solve the joint control problem. Numerical example is developed to demonstrate the effectiveness of the control policy.Keywords: maintenance, semi-Markov decision process, statistical process control, Xbar control chart
Procedia PDF Downloads 9013728 Hearing Aids Maintenance Training for Hearing-Impaired Preschool Children with the Help of Motion Graphic Tools
Authors: M. Mokhtarzadeh, M. Taheri Qomi, M. Nikafrooz, A. Atashafrooz
Abstract:
The purpose of the present study was to investigate the effectiveness of using motion graphics as a learning medium on training hearing aids maintenance skills to hearing-impaired children. The statistical population of this study consisted of all children with hearing loss in Ahvaz city, at age 4 to 7 years old. As the sample, 60, whom were selected by multistage random sampling, were randomly assigned to two groups; experimental (30 children) and control (30 children) groups. The research method was experimental and the design was pretest-posttest with the control group. The intervention consisted of a 2-minute motion graphics clip to train hearing aids maintenance skills. Data were collected using a 9-question researcher-made questionnaire. The data were analyzed by using one-way analysis of covariance. Results showed that the training of hearing aids maintenance skills with motion graphics was significantly effective for those children. The results of this study can be used by educators, teachers, professionals, and parents to train children with disabilities or normal students.Keywords: hearing aids, hearing aids maintenance skill, hearing impaired children, motion graphics
Procedia PDF Downloads 15513727 Optimal-Based Structural Vibration Attenuation Using Nonlinear Tuned Vibration Absorbers
Authors: Pawel Martynowicz
Abstract:
Vibrations are a crucial problem for slender structures such as towers, masts, chimneys, wind turbines, bridges, high buildings, etc., that is why most of them are equipped with vibration attenuation or fatigue reduction solutions. In this work, a slender structure (i.e., wind turbine tower-nacelle model) equipped with nonlinear, semiactive tuned vibration absorber(s) is analyzed. For this study purposes, magnetorheological (MR) dampers are used as semiactive actuators. Several optimal-based approaches to structural vibration attenuation are investigated against the standard ‘ground-hook’ law and passive tuned vibration absorber(s) implementations. The common approach to optimal control of nonlinear systems is offline computation of the optimal solution, however, so determined open loop control suffers from lack of robustness to uncertainties (e.g., unmodelled dynamics, perturbations of external forces or initial conditions), and thus perturbation control techniques are often used. However, proper linearization may be an issue for highly nonlinear systems with implicit relations between state, co-state, and control. The main contribution of the author is the development as well as numerical and experimental verification of the Pontriagin maximum-principle-based vibration control concepts that produce directly actuator control input (not the demanded force), thus force tracking algorithm that results in control inaccuracy is entirely omitted. These concepts, including one-step optimal control, quasi-optimal control, and optimal-based modified ‘ground-hook’ law, can be directly implemented in online and real-time feedback control for periodic (or semi-periodic) disturbances with invariant or time-varying parameters, as well as for non-periodic, transient or random disturbances, what is a limitation for some other known solutions. No offline calculation, excitations/disturbances assumption or vibration frequency determination is necessary, moreover, all of the nonlinear actuator (MR damper) force constraints, i.e., no active forces, lower and upper saturation limits, hysteresis-type dynamics, etc., are embedded in the control technique, thus the solution is optimal or suboptimal for the assumed actuator, respecting its limitations. Depending on the selected method variant, a moderate or decisive reduction in the computational load is possible compared to other methods of nonlinear optimal control, while assuring the quality and robustness of the vibration reduction system, as well as considering multi-pronged operational aspects, such as possible minimization of the amplitude of the deflection and acceleration of the vibrating structure, its potential and/or kinetic energy, required actuator force, control input (e.g. electric current in the MR damper coil) and/or stroke amplitude. The developed solutions are characterized by high vibration reduction efficiency – the obtained maximum values of the dynamic amplification factor are close to 2.0, while for the best of the passive systems, these values exceed 3.5.Keywords: magnetorheological damper, nonlinear tuned vibration absorber, optimal control, real-time structural vibration attenuation, wind turbines
Procedia PDF Downloads 12313726 Optimal Injected Current Control for Shunt Active Power Filter Using Artificial Intelligence
Authors: Brahim Berbaoui
Abstract:
In this paper, a new particle swarm optimization (PSO) based method is proposed for the implantation of optimal harmonic power flow in power systems. In this algorithm approach, proportional integral controller for reference compensating currents of active power filter is performed in order to minimize the total harmonic distortion (THD). The simulation results show that the new control method using PSO approach is not only easy to be implanted, but also very effective in reducing the unwanted harmonics and compensating reactive power. The studies carried out have been accomplished using the MATLAB Simulink Power System Toolbox.Keywords: shunt active power filter, power quality, current control, proportional integral controller, particle swarm optimization
Procedia PDF Downloads 61313725 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control
Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak
Abstract:
With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.Keywords: price-optimal building climate control, Microgrid power flow optimisation, hierarchical model predictive control, energy efficient buildings, energy market participation
Procedia PDF Downloads 46313724 Modelling Optimal Control of Diabetes in the Workplace
Authors: Eunice Christabel Chukwu
Abstract:
Introduction: Diabetes is a chronic medical condition which is characterized by high levels of glucose in the blood and urine; it is usually diagnosed by means of a glucose tolerance test (GTT). Diabetes can cause a range of health problems if left unmanaged, as it can lead to serious complications. It is essential to manage the condition effectively, particularly in the workplace where the impact on work productivity can be significant. This paper discusses the modelling of optimal control of diabetes in the workplace using a control theory approach. Background: Diabetes mellitus is a condition caused by too much glucose in the blood. Insulin, a hormone produced by the pancreas, controls the blood sugar level by regulating the production and storage of glucose. In diabetes, there may be a decrease in the body’s ability to respond to insulin or a decrease in insulin produced by the pancreas which will lead to abnormalities in the metabolism of carbohydrates, proteins, and fats. In addition to the health implications, the condition can also have a significant impact on work productivity, as employees with uncontrolled diabetes are at risk of absenteeism, reduced performance, and increased healthcare costs. While several interventions are available to manage diabetes, the most effective approach is to control blood glucose levels through a combination of lifestyle modifications and medication. Methodology: The control theory approach involves modelling the dynamics of the system and designing a controller that can regulate the system to achieve optimal performance. In the case of diabetes, the system dynamics can be modelled using a mathematical model that describes the relationship between insulin, glucose, and other variables. The controller can then be designed to regulate the glucose levels to maintain them within a healthy range. Results: The modelling of optimal control of diabetes in the workplace using a control theory approach has shown promising results. The model has been able to predict the optimal dose of insulin required to maintain glucose levels within a healthy range, taking into account the individual’s lifestyle, medication regimen, and other relevant factors. The approach has also been used to design interventions that can improve diabetes management in the workplace, such as regular glucose monitoring and education programs. Conclusion: The modelling of optimal control of diabetes in the workplace using a control theory approach has significant potential to improve diabetes management and work productivity. By using a mathematical model and a controller to regulate glucose levels, the approach can help individuals with diabetes to achieve optimal health outcomes while minimizing the impact of the condition on their work performance. Further research is needed to validate the model and develop interventions that can be implemented in the workplace.Keywords: mathematical model, blood, insulin, pancreas, model, glucose
Procedia PDF Downloads 5913723 Estimation of Train Operation Using an Exponential Smoothing Method
Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono
Abstract:
The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.Keywords: exponential smoothing method, open data, operation estimation, train schedule
Procedia PDF Downloads 38713722 An Optimal Bayesian Maintenance Policy for a Partially Observable System Subject to Two Failure Modes
Authors: Akram Khaleghei Ghosheh Balagh, Viliam Makis, Leila Jafari
Abstract:
In this paper, we present a new maintenance model for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model. A cost-optimal Bayesian control policy is developed for maintaining the system. The control problem is formulated in the semi-Markov decision process framework. An effective computational algorithm is developed and illustrated by a numerical example.Keywords: partially observable system, hidden Markov model, competing risks, multivariate Bayesian control
Procedia PDF Downloads 455