Search results for: computational vision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3078

Search results for: computational vision

3018 The Role of Parental Health Beliefs in Seeking an Eye Examination for Their Child

Authors: Dua Masarwa, Yulia Niazov, Merav Ben Natan, Dina Mostovoy

Abstract:

Background: the aimed to explore the role of parental health beliefs in parent seeking of eye examinations for their children, using the Health Belief Model. Methods: In this quantitative correlational survey study, 100 parents who presented to Barzilai University Medical Center in July 2021 to perform an eye examination to their child completed a questionnaire. Results: Only 29.6% of the parents knew that a vision screening is performed in first grade, and 10% of the parents were unsure about where to find local eye care for their kids. Moreover, 19% of the parents indicated that they were concerned that their child would be prescribed glasses unnecessarily, and 10% believed that wearing glasses would weaken their child's eyes. Various parental health beliefs regarding children's eye examinations were found associated with parent seeking of eye examinations for their child. Thus, perceived susceptibility (r = 0.52, p < 0.01), perceived benefits (r = 0.39, p < 0.01), and perceived barriers (r=-0.31, p < 0.01) are associated with parent seeking of eye examinations for their child. Also, parents' level of knowledge was associated with seeking eye examinations for their child (r = 0.20, p < 0.01). Conclusion: Parent perceptions of the child's susceptibility to vision problems and perceived barriers to seeking eye examinations predicted parents seeking of eye examinations for their child. Interventions aimed at increasing timely eye examinations among children should focus on raising parent awareness of vision problems in childhood, dispelling misconceptions, and providing parents with practical information regarding available services.

Keywords: children, parents, eye examination, health beliefs, vision problems

Procedia PDF Downloads 29
3017 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision

Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari

Abstract:

In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.

Keywords: breakage, computer vision, husking, rice kernel

Procedia PDF Downloads 381
3016 Shoulder Range of Motion Measurements using Computer Vision Compared to Hand-Held Goniometric Measurements

Authors: Lakshmi Sujeesh, Aaron Ramzeen, Ricky Ziming Guo, Abhishek Agrawal

Abstract:

Introduction: Range of motion (ROM) is often measured by physiotherapists using hand-held goniometer as part of mobility assessment for diagnosis. Due to the nature of hand-held goniometer measurement procedure, readings often tend to have some variations depending on the physical therapist taking the measurements (Riddle et al.). This study aims to validate computer vision software readings against goniometric measurements for quick and consistent ROM measurements to be taken by clinicians. The use of this computer vision software hopes to improve the future of musculoskeletal space with more efficient diagnosis from recording of patient’s ROM with minimal human error across different physical therapists. Methods: Using the hand-held long arm goniometer measurements as the “gold-standard”, healthy study participants (n = 20) were made to perform 4 exercises: Front elevation, Abduction, Internal Rotation, and External Rotation, using both arms. Assessment of active ROM using computer vision software at different angles set by goniometer for each exercise was done. Interclass Correlation Coefficient (ICC) using 2-way random effects model, Box-Whisker plots, and Root Mean Square error (RMSE) were used to find the degree of correlation and absolute error measured between set and recorded angles across the repeated trials by the same rater. Results: ICC (2,1) values for all 4 exercises are above 0.9, indicating excellent reliability. Lowest overall RMSE was for external rotation (5.67°) and highest for front elevation (8.00°). Box-whisker plots showed have showed that there is a potential zero error in the measurements done by the computer vision software for abduction, where absolute error for measurements taken at 0 degree are shifted away from the ideal 0 line, with its lowest recorded error being 8°. Conclusion: Our results indicate that the use of computer vision software is valid and reliable to use in clinical settings by physiotherapists for measuring shoulder ROM. Overall, computer vision helps improve accessibility to quality care provided for individual patients, with the ability to assess ROM for their condition at home throughout a full cycle of musculoskeletal care (American Academy of Orthopaedic Surgeons) without the need for a trained therapist.

Keywords: physiotherapy, frozen shoulder, joint range of motion, computer vision

Procedia PDF Downloads 107
3015 Traumatic Chiasmal Syndrome Following Traumatic Brain Injury

Authors: Jiping Cai, Ningzhi Wangyang, Jun Shao

Abstract:

Traumatic brain injury (TBI) is one of the major causes of morbidity and mortality that leads to structural and functional damage in several parts of the brain, such as cranial nerves, optic nerve tract or other circuitry involved in vision and occipital lobe, depending on its location and severity. As a result, the function associated with vision processing and perception are significantly affected and cause blurred vision, double vision, decreased peripheral vision and blindness. Here two cases complaining of monocular vision loss (actually temporal hemianopia) due to traumatic chiasmal syndrome after frontal head injury were reported, and were compared the findings with individual case reports published in the literature. Reported cases of traumatic chiasmal syndrome appear to share some common features, such as injury to the frontal bone and fracture of the anterior skull base. The degree of bitemporal hemianopia and visual loss acuity have a variable presentation and was not necessarily related to the severity of the craniocerebral trauma. Chiasmal injury may occur even in the absence bony chip impingement. Isolated bitemporal hemianopia is rare and clinical improvement usually may not occur. Mechanisms of damage to the optic chiasm after trauma include direct tearing, contusion haemorrhage and contusion necrosis, and secondary mechanisms such as cell death, inflammation, edema, neurogenesis impairment and axonal damage associated with TBI. Beside visual field test, MRI evaluation of optic pathways seems to the strong objective evidence to demonstrate the impairment of the integrity of visual systems following TBI. Therefore, traumatic chiasmal syndrome should be considered as a differential diagnosis by both neurosurgeons and ophthalmologists in patients presenting with visual impairment, especially bitemporal hemianopia after head injury causing frontal and anterior skull base fracture.

Keywords: bitemporal hemianopia, brain injury, optic chiasma, traumatic chiasmal syndrome.

Procedia PDF Downloads 79
3014 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method

Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson

Abstract:

Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 193
3013 Laser Corneoplastique™: A Refractive Surgery for Corneal Scars

Authors: Arun C. Gulani, Aaishwariya A. Gulani, Amanda Southall

Abstract:

Background: Laser Corneoplastique™ as a least interventional, visually promising technique for patients with vision disability from corneal scars of varied causes has been retrospectively reviewed and proves to cause a paradigm shift in mindset and approach towards corneal scars as a Refractive surgery aiming for emmetropic, unaided vision of 20;/20 in most cases. Three decades of work on this technique has been compiled in this 15-year study. Subject and Methods: The objective of this study was to determine the success of Laser Corneoplastique™ surgery as a treatment of corneal scar cases. A survey of corneal scar cases caused by various medical histories that had undergone Laser Corneoplastique™ surgery over the past twenty years by a single surgeon Arun C. Gulani, M.D. were retrospectively reviewed. The details of each of the cases were retrieved from their medical records and analyzed. Each patient had been examined thoroughly at their preoperative appointments for stability of refraction and vision, depth of scar, pachymetry, topography, pattern of the scar and uncorrected and best corrected vision potential, which were all taken into account in the patients' treatment plans. Results: 64 eyes of 53 patients were investigated for scar etiology, keratometry, visual acuity, and complications. There were 25 different etiologies seen, with the most common being a Herpetic scar. The average visual acuity post-op was, on average, 20/23.55 (±7.05). Laser parameters used were depth and pulses. Overall, the mean Laser ablation depth was 30.67 (±19.05), ranging from 2 to 73 µm. Number of Laser pulses averaged 191.85 (±112.02). Conclusion: Refractive Laser Corneoplastique™ surgery, when practiced as an art, can address all levels of ametropia while reversing complex corneas and scars from refractive surgery complications back to 20/20 vision.

Keywords: corneal scar, refractive surgery, corneal transplant, laser corneoplastique

Procedia PDF Downloads 189
3012 Usability Evaluation of a Mobile Application to Enhance the Use of Smartphone, by Visually Impaired Users in Indonesia

Authors: Johanna Renny Octavia, Kamila Okta Saarah

Abstract:

Smartphone nowadays is widely used by many people all over the world. However, people with vision impairment may experience difficulties that interfere with the proper usage of the smartphone. In Indonesia, the population of visually impaired is about 13 million people (estimated 285 million people worldwide). There are a number of mobile applications developed to enhance the use of smartphone by visually impaired. This paper discusses the usability evaluation of a mobile application, namely Ray Vision, designed to help visually impaired in using smartphone. A series of usability testing with a number of Indonesian visually impaired revealed 28 usability problems in the mobile application that led to 14 design recommendations. The redesigned application was then re-evaluated through another usability testing series. The results showed that all five usability criteria assessed were increased (usefulness by 13%, effectiveness by 27%, efficiency by 27%, satisfaction by 23%, and learnability by 12%). The System Usability Score (SUS) was also increased by 14.92%.

Keywords: mobile application, smartphone, usability evaluation, vision impaired

Procedia PDF Downloads 312
3011 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 125
3010 A Computational Study of the Electron Transport in HgCdTe Bulk Semiconductor

Authors: N. Dahbi, M. Daoudi

Abstract:

This paper deals with the use of computational method based on Monte Carlo simulation in order to investigate the transport phenomena of the electron in HgCdTe narrow band gap semiconductor. Via this method we can evaluate the time dependence of the transport parameters: velocity, energy and mobility of electrons through matter (HgCdTe).

Keywords: Monte Carlo, transport parameters, HgCdTe, computational mechanics

Procedia PDF Downloads 475
3009 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 26
3008 Stereo Motion Tracking

Authors: Yudhajit Datta, Hamsi Iyer, Jonathan Bandi, Ankit Sethia

Abstract:

Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.

Keywords: kalman filter, stereo vision, motion tracking, matlab, object tracking, camera calibration, computer vision system toolbox

Procedia PDF Downloads 327
3007 Managing Subretinal Bleeds with Intravitreal Aflibercept

Authors: Prachi Abhishek Dave, Abhishek Dave

Abstract:

Purpose: The purpose of this study is to elucidate the role of intravitreal injection Aflibercept in managing complex cases of Wet Age Related Macular Degeneration (ARMD) and the gratifying visual recovery experienced with a minimally invasive procedure. Methods: A 73-year-old gentleman presented with a drop in vision in the left eye for 25 days. On examination, his best corrected visual acuity (BCVA) in the Right eye (OD) was 6/60, and finger counting close to face in the Left eye (OS). On multimodal imaging, he was diagnosed to have a scarred Wet ARMD in OD and an active Wet ARMD with a large subretinal bleed secondary to Wet ARMD in OS. Treatment management options included monotherapy with an Injection Aflibercept or an intravitreal gas injection with tPA followed by Injection Aflibercept. Considering his one-eyed status, the patient decided to go for Aflibercept monotherapy. Results: After 3 monthly injections of injection Aflibercept, the subretinal bleed reduced, the subretinal fluid resolved, and his vision in OS improved to 6/9. He is on a regular follow-up and has not needed any further injections in OS and he maintains 6/9 vision. Conclusions: Conventional treatment guidelines for a large subretinal bleed dictate the use of gas followed by intravitreal Injection Aflibercept. However, gas has its own limitations of causing a rise in intraocular pressure and a transient loss of vision, which is particularly troublesome in one-eyed patients. Injection Aflibercept offers a much safer, less invasive, and elegant treatment option for such patients with equally good or even better visual outcomes.

Keywords: wet ARMD, subretinal bleed, intravitreal injections, aflibercept, EYELEA, intravitreal gas

Procedia PDF Downloads 41
3006 Research Activity in Computational Science Using High Performance Computing: Co-Authorship Network Analysis

Authors: Sul-Ah Ahn, Youngim Jung

Abstract:

The research activities of the computational scientists using high-performance computing are analyzed using bibliometric approaches. This study aims at providing computational scientists using high-performance computing and relevant policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of computational scientists using high-performance computing as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2006-2015. We extracted the author rank in the computational science field using high-performance computing by the number of papers published during ten years from 2006. Finally, we drew the co-authorship network for 50 top-authors and their coauthors and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

Keywords: co-authorship network analysis, computational science, high performance computing, research activity

Procedia PDF Downloads 323
3005 Expert Review on Conceptual Design Model of Assistive Courseware for Low Vision (AC4LV) Learners

Authors: Nurulnadwan Aziz, Ariffin Abdul Mutalib, Siti Mahfuzah Sarif

Abstract:

This paper reports an ongoing project regarding the development of Conceptual Design Model of Assistive Courseware for Low Vision (AC4LV) learners. Having developed the intended model, it has to be validated prior to producing it as guidance for the developers to develop an AC4LV. This study requires two phases of validation process which are through expert review and prototyping method. This paper presents a part of the validation process which is findings from experts review on Conceptual Design Model of AC4LV which has been carried out through a questionnaire. Results from 12 international and local experts from various respectable fields in Human-Computer Interaction (HCI) were discussed and justified. In a nutshell, reviewed Conceptual Design Model of AC4LV was formed. Future works of this study are to validate the reviewed model through prototyping method prior to testing it to the targeted users.

Keywords: assistive courseware, conceptual design model, expert review, low vision learners

Procedia PDF Downloads 546
3004 Critical Vision Innovation and Creativity in the Architecture and Urbanism of the Land in Islam between Traditionalism and Positivism

Authors: Wafeek Mohamed Ibrahim Mohamed

Abstract:

In the era of globalization and openness informational. Anyone who thinks about innovation in the earth population in Islam in our contemporary reality, he will find that it is not destined to its civilized extension to last. The purpose of the research is a trial to reach a realistic vision for creative, innovative and intellectual thought for the earth population in Islam as an instrument to Confrontation and observe the changes that have affected in the architecture of the land during different eras. Through knowing the controls of the ruling legitimacy(that served as definitions and laws which formulate its features) and using customs, traditions, and conventions as a telescope for the earth population in Islam, It explained the impact of them on features of creative formation for the architecture of the land in our contemporary reality. The study shows a modern vision to identify innovation in the earth population in Islam. As well as reformulating its mental image and monitoring its changes in Islamic heritage cities. This will be done through a two main branches: firstly, set forth a theory represented in studying creative concepts which formulate the population of the earth in Islam. Such as initiative and responsibility for reviving the dead land, the lane [alley] as formation unit and social solidarity,… Etc.. The second branch is preparing a practical, critical vision for innovative conceptual thought for the architecture of the land of Islam, through studying the development of a traditional Islamic city., The conceptual thought of making the birth festival ["Al-Refaee"] and its emulation for governing roles in the traditional city building. The research concludes The necessity of forming the suggested a creative vision for identifying how to re-form the conceptual for our contemporary population of the earth. It poses an important question which is how to return to creativity in the architecture of the land of Islam in our built environments.

Keywords: innovation and creation, architecture, the land in Islam, criticism of design

Procedia PDF Downloads 458
3003 Analysing Social Media Coverage of Political Speeches in Relation to Discourse and Context

Authors: Yaser Mohammed Altameemi

Abstract:

This research looks at the representation of the social media for the Saudi Government decrees regarding the developmental projects of the Saudi 2030 vision. The paper analyses a television interview with the Crown Prince Mohammed Bin Salman who talks about the progress of the Saudi vision of 2030, and how the government had acted as response to the COVID-19 pandemic. The interview was on 28/4/2021. The paper analyses the tweets on Twitter that cover the interview for the purpose of investigating the development of concepts and meanings regarding the Saudi peoples’ orientations towards the Saudi projects. The data include all related tweets from the day of the interview and the following seven days after the interview. The finding of the collocation analysis suggests that nationalism notion is explicitly expressed by users in Twitter. The main finding of this paper suggests the importance of further analyses for the concordance lines. However, the collocation network suggests that there is a clear highlight for nationalism.

Keywords: social media, twitter, political interview, prince Mohammed Bin Salman, Saudi vision 2030

Procedia PDF Downloads 191
3002 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 73
3001 Design of a Computer Vision Based Exercise Video Game for Senior Citizens

Authors: June Tay, Ivy Chia

Abstract:

There are numerous changes, both mental and physical, taking place when people age. We need to understand the different aspects required for healthy living, including meeting nutritional needs, regular physical activities to keep agility, sufficient rest and sleep to have physical and mental well-being, social engagement to avoid the risk of social isolation and depression, and access to healthcare to detect and manage chronic conditions. Promoting physical activities for an ageing population is necessary as many may have enjoyed sedentary lifestyles for some time. In our study, we evaluate the considerations when designing a computer vision video game for the elderly. We need to design some low-impact activities, such as stretching and gentle movements, because some elderly individuals may have joint pains or mobility issues. The exercise game should consist of simple movements that are easy to follow and remember. It should be fun and enjoyable so that they can be motivated to do some exercise. Social engagement can keep the elderly motivated and competitive, and they are more willing to engage in game exercises. Elderly citizens can compare their game scores and try to improve them. We propose a computer vision-based video game for the elderly that will capture and track the movement of the elderly hand pushing a ball on the screen into a circle. It can be easily set up using a PC laptop with a webcam. Our video game adhered to the design framework we employed, and it encompassed ease of use, a simple graphical interface, easy-to-play game exercise, and fun gameplay.

Keywords: about computer vision, video games, gerontology technology, caregiving

Procedia PDF Downloads 81
3000 Alternative Computational Arrangements on g-Group (g > 2) Profile Analysis

Authors: Emmanuel U. Ohaegbulem, Felix N. Nwobi

Abstract:

Alternative and simple computational arrangements in carrying out multivariate profile analysis when more than two groups (populations) are involved are presented. These arrangements have been demonstrated to not only yield equivalent results for the test statistics (the Wilks lambdas), but they have less computational efforts relative to other arrangements so far presented in the literature; in addition to being quite simple and easy to apply.

Keywords: coincident profiles, g-group profile analysis, level profiles, parallel profiles, repeated measures MANOVA

Procedia PDF Downloads 448
2999 Using Artificial Vision Techniques for Dust Detection on Photovoltaic Panels

Authors: Gustavo Funes, Eduardo Peters, Jose Delpiano

Abstract:

It is widely known that photovoltaic technology has been massively distributed over the last decade despite its low-efficiency ratio. Dust deposition reduces this efficiency even more, lowering the energy production and module lifespan. In this work, we developed an artificial vision algorithm based on CIELAB color space to identify dust over panels in an autonomous way. We performed several experiments photographing three different types of panels, 30W, 340W and 410W. Those panels were soiled artificially with uniform and non-uniform distributed dust. The algorithm proposed uses statistical tools to provide a simulation with a 100% soiled panel and then performs a comparison to get the percentage of dirt in the experimental data set. The simulation uses a seed that is obtained by taking a dust sample from the maximum amount of dust from the dataset. The final result is the dirt percentage and the possible distribution of dust over the panel. Dust deposition is a key factor for plant owners to determine cleaning cycles or identify nonuniform depositions that could lead to module failure and hot spots.

Keywords: dust detection, photovoltaic, artificial vision, soiling

Procedia PDF Downloads 50
2998 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images

Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim

Abstract:

In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.

Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles

Procedia PDF Downloads 260
2997 A Comparative Study of Social Entrepreneurship Centers in Universities of the World

Authors: Farnoosh Alami, Nazgol Azimi

Abstract:

Universities have recently paid much attention to the subject of social entrepreneurship. As a result, many of the highly ranked universities have established centers in this regard. The present research aims to investigate vision and mission of social entrepreneurship centers of the best universities ranked under 50 by Shanghai List 2013. It tries to find the common goals and features of their mission, vision, and activities which lead to their present success. This investigation is based on the web content of the first top 10 universities; among which six had social entrepreneurship centers. This is a qualitative research, and the findings are based on content analysis of documents. The findings confirm that education, research, talent development, innovative solutions, and supporting social innovation, are shared in the vision of these centers. In regard to their missions, social participation, networking, and leader education are the most shared features. Their common activities are focused on five categories of education, research, support, promotion, and networking.

Keywords: comparative study, qualitative research, social entrepreneurship centers, universities in the world

Procedia PDF Downloads 297
2996 Integrating and Evaluating Computational Thinking in an Undergraduate Marine Science Course

Authors: Dana Christensen

Abstract:

Undergraduate students, particularly in the environmental sciences, have difficulty displaying quantitative skills in their laboratory courses. Students spend time sampling in the field, often using new methods, and are expected to make sense of the data they collect. Computational thinking may be used to navigate these new experiences. We developed a curriculum for the marine science department at a small liberal arts college in the Northeastern United States based on previous computational thinking frameworks. This curriculum incorporates marine science data sets with specific objectives and topics selected by the faculty at the College. The curriculum was distributed to all students enrolled in introductory marine science classes as a mandatory module. Two pre-tests and post-tests will be used to quantitatively assess student progress on both content-based and computational principles. Student artifacts are being collected with each lesson to be coded for content-specific and computational-specific items in qualitative assessment. There is an overall gap in marine science education research, especially curricula that focus on computational thinking and associated quantitative assessment. The curricula itself, the assessments, and our results may be modified and applied to other environmental science courses due to the nature of the inquiry-based laboratory components that use quantitative skills to understand nature.

Keywords: marine science, computational thinking, curriculum assessment, quantitative skills

Procedia PDF Downloads 59
2995 The Effects of Prolonged Social Media Use on Student Health: A Focus on Computer Vision Syndrome, Hand Pain, and Headaches and Mental Status

Authors: Augustine Ndudi Egere, Shehu Adamu, Esther Ishaya Solomon

Abstract:

As internet accessibility and smartphones continue to increase in Nigeria, Africa’s most populous country, social media platforms have become ubiquitous, causing students of 18-25 age brackets to spend more time on social media. The research investigated the impact of prolonged social media use on the physical health of students, with a specific focus on computer vision syndrome, hand pain, headaches and mental status. The study adopted a mixed-methods approach combining quantitative surveys to gather statistical data on usage patterns and symptoms, along with qualitative interviews into the experiences and perceptions of medical practitioners concerning cases under study within the geopolitical region. The result was analyzed using Regression analysis. It was observed that there is a significant correlation between social media usage by the students in the study age bracket concerning computer vision syndrome, hand pain, headache and general mental status. The research concluded by providing valuable insights into potential interventions and strategies to mitigate the adverse effects of excessive social media use on student well-being and recommends, among others, that educational institutions, parents, and students themselves collaborate to implement strategies aimed at promoting responsible and balanced use of social media.

Keywords: social media, student health, computer vision syndrome, hand pain, headaches, mental staus

Procedia PDF Downloads 45
2994 Comparative Analysis of Feature Extraction and Classification Techniques

Authors: R. L. Ujjwal, Abhishek Jain

Abstract:

In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.

Keywords: computer vision, age group, face detection

Procedia PDF Downloads 368
2993 Lexical Bundles in the Alexiad of Anna Comnena: Computational and Discourse Analysis Approach

Authors: Georgios Alexandropoulos

Abstract:

The purpose of this study is to examine the historical text of Alexiad by Anna Comnena using computational tools for the extraction of lexical bundles containing the name of her father, Alexius Comnenus. For this reason, in this research we apply corpus linguistics techniques for the automatic extraction of lexical bundles and through them we will draw conclusions about how these lexical bundles serve her support provided to her father.

Keywords: lexical bundles, computational literature, critical discourse analysis, Alexiad

Procedia PDF Downloads 624
2992 Analysis of Histogram Asymmetry for Waste Recognition

Authors: Janusz Bobulski, Kamila Pasternak

Abstract:

Despite many years of effort and research, the problem of waste management is still current. So far, no fully effective waste management system has been developed. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.

Keywords: waste management, environmental protection, image processing, computer vision

Procedia PDF Downloads 119
2991 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 103
2990 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants

Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka

Abstract:

The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.

Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset

Procedia PDF Downloads 103
2989 Binarized-Weight Bilateral Filter for Low Computational Cost Image Smoothing

Authors: Yu Zhang, Kohei Inoue, Kiichi Urahama

Abstract:

We propose a simplified bilateral filter with binarized coefficients for accelerating it. Its computational cost is further decreased by sampling pixels. This computationally low cost filter is useful for smoothing or denoising images by using mobile devices with limited computational power.

Keywords: bilateral filter, binarized-weight bilateral filter, image smoothing, image denoising, pixel sampling

Procedia PDF Downloads 469