Search results for: clinical prediction score
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7371

Search results for: clinical prediction score

7311 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 154
7310 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method

Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi

Abstract:

The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.

Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)

Procedia PDF Downloads 260
7309 Clinical Risk Score for Mortality and Predictors of Severe Disease in Adult Patients with Dengue

Authors: Siddharth Jain, Abhenil Mittal, Surendra Kumar Sharma

Abstract:

Background: With its recent emergence and re-emergence, dengue has become a major international public health concern, imposing significant financial burden especially in developing countries. Despite aggressive control measures in place, India experienced one of its largest outbreaks in 2015 with Delhi being most severely affected. There is a lack of reliable predictors of disease severity and mortality in dengue. The present study was carried out to identify these predictors during the 2015 outbreak. Methods: This prospective observational study conducted at an apex tertiary care center in Delhi, India included confirmed adult dengue patients admitted between August-November 2015. Patient demographics, clinical details, and laboratory findings were recorded in a predesigned proforma. Appropriate statistical tests were used to summarize and compare the clinical and laboratory characteristics and derive predictors of mortality and severe disease, while developing a clinical risk score for mortality. Serotype analysis was also done for 75 representative samples to identify the dominant serotypes. Results: Data of 369 patients were analyzed (mean age 30.9 years; 67% males). Of these, 198 (54%) patients had dengue fever, 125 (34%) had dengue hemorrhagic fever (DHF Grade 1,2)and 46 (12%) developed dengue shock syndrome (DSS). Twenty two (6%) patients died. Late presentation to the hospital (≥5 days after onset) and dyspnoea at rest were identified as independent predictors of severe disease. Age ≥ 24 years, dyspnoea at rest and altered sensorium were identified as independent predictors of mortality. A clinical risk score was developed (12*age + 14*sensorium + 10*dyspnoea) which, if ≥ 22, predicted mortality with a high sensitivity (81.8%) and specificity (79.2%). The predominant serotypes in Delhi (2015) were DENV-2 and DENV-4. Conclusion: Age ≥ 24 years, dyspnoea at rest and altered sensorium were identified as independent predictors of mortality. Platelet counts did not determine the outcome in dengue patients. Timely referral/access to health care is important. Development and use of validated predictors of disease severity and simple clinical risk scores, which can be applied in all healthcare settings, can help minimize mortality and morbidity, especially in resource limited settings.

Keywords: dengue, mortality, predictors, severity

Procedia PDF Downloads 307
7308 The Effect of Aromatherapy with Citrus aurantium Blossom Essential Oil on Premenstrual Syndrome in University Students: A Clinical Trial Study

Authors: Neda Jamalimoghadam, Naval Heydari, Maliheh Abootalebi, Maryam Kasraeian, M. Emamghoreishi , Akbarzadeh Marzieh

Abstract:

Background: The aim was to investigate the effect of aromatherapy using Citrus aurantium blossom essential oil on premenstrual syndrome in university students. Methods: In this double-blind clinical trial was controlled on 62 students from March 2016 to February 2017. The intervention with 0.5% of C. Aurantium blossom essential oil and control was inhalation of odorless sweet almond oil in the luteal phase of the menstrual cycle. The screening questionnaire (PSST) for PMSwas filled out before and also one and two months after the intervention. Results: Mean score of overall symptoms of PMS between the Bitter orange and control groups In the first (p < 0.003) and second months (p < 0.001) of the intervention was significant. Besides, decreased the mean score of psychological symptoms in the intervention group (p < 0.001), but on physical symptoms and social function were not significant (p > 0.05). Conclusion: The aromatherapy with Citrus aurantium blossom improved the symptoms of premenstrual syndrome.

Keywords: aromatherapy, Citrus Aurantium, premenstrual syndrome, oil, students

Procedia PDF Downloads 226
7307 Using Simulation Modeling Approach to Predict USMLE Steps 1 and 2 Performances

Authors: Chau-Kuang Chen, John Hughes, Jr., A. Dexter Samuels

Abstract:

The prediction models for the United States Medical Licensure Examination (USMLE) Steps 1 and 2 performances were constructed by the Monte Carlo simulation modeling approach via linear regression. The purpose of this study was to build robust simulation models to accurately identify the most important predictors and yield the valid range estimations of the Steps 1 and 2 scores. The application of simulation modeling approach was deemed an effective way in predicting student performances on licensure examinations. Also, sensitivity analysis (a/k/a what-if analysis) in the simulation models was used to predict the magnitudes of Steps 1 and 2 affected by changes in the National Board of Medical Examiners (NBME) Basic Science Subject Board scores. In addition, the study results indicated that the Medical College Admission Test (MCAT) Verbal Reasoning score and Step 1 score were significant predictors of the Step 2 performance. Hence, institutions could screen qualified student applicants for interviews and document the effectiveness of basic science education program based on the simulation results.

Keywords: prediction model, sensitivity analysis, simulation method, USMLE

Procedia PDF Downloads 339
7306 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: neural network, conformal prediction, cancer classification, regression

Procedia PDF Downloads 291
7305 Evaluation of Requests and Outcomes of Magnetic Resonance Imaging Assessing for Cauda Equina Syndrome at a UK Trauma Centre

Authors: Chris Cadman, Marcel Strauss

Abstract:

Background: In 2020, the University Hospital Wishaw in the United Kingdom became the centre for trauma and orthopaedics within its health board. This resulted in the majority of patients with suspected cauda equina syndrome (CES) being assessed and imaged at this site, putting an increased demand on MR imaging and displacing other previous activity. Following this transition, imaging requests for CES did not always follow national guidelines and would often be missing important clinical and safety information. There also appeared to be a very low positive scan rate compared with previously reported studies. In an attempt to improve patient selection and reduce the burden of CES imaging at this site clinical audit was performed. Methods: A total of 250 consecutive patients imaged to assess for CES were evaluated. Patients had to have presented to either the emergency or orthopaedic department acutely with a presenting complaint of suspected CES. Patients were excluded if they were not admitted acutely or were assessed by other clinical specialities. In total, 233 patients were included. Requests were assessed for appropriate clinical history, accurate and complete clinical assessment and MRI safety information. Clinical assessment was allocated a score of 1-6 based on information relating to history of pain, level of pain, dermatomes/myotomes affected, peri-anal paraesthesia/anaesthesia, anal tone and post-void bladder volume with each element scoring one point. Images were assessed for positive findings of CES, acquired spinal stenosis or nerve root compression. Results: Overall, 73% of requests had a clear clinical history of CES. The urgency of the request for imaging was given in 23% of cases. The mean clinical assessment score was 3.7 out of a total of 6. Overall, 2% of scans were positive for CES, 29% had acquired spinal stenosis and 30% had nerve root compression. For patients with CES, 75% had acute neurological signs compared with 68% of the study population. CES patients had a mean clinical history score of 5.3 compared with 3.7 for the study population. Overall, 95% of requests had appropriate MRI safety information. Discussion: it study included 233 patients who underwent specialist assessment and referral for MR imaging for suspected CES. Despite the serious nature of this condition, a large proportion of imaging requests did not have a clear clinical query of CES and the level of urgency was not given, which could potentially lead to a delay in imaging and treatment. Clinical examination was often also incomplete, which can make triaging of patients presenting with similar symptoms challenging. The positive rate for CES was only 2%, much below other studies which had positive rates of 6–40% with a large meta-analysis finding a mean positive rate of 19%. These findings demonstrate an opportunity to improve the quality of imaging requests for suspected CES. This may help to improve patient selection for imaging and result in a positive rate for CES imaging that is more in line with other centres.

Keywords: cauda equina syndrome, acute back pain, MRI, spine

Procedia PDF Downloads 11
7304 Long Term Follow-Up, Clinical Outcomes and Quality of Life after Total Arterial Revascularisation versus Conventional Coronary Surgery: A Retrospective Study

Authors: Jitendra Jain, Cassandra Hidajat, Hansraj Riteesh Bookun

Abstract:

Graft patency underpins long-term prognosis after coronary artery bypass grafting surgery (CABG). The benefits of the combined use of only the left internal mammary artery and radial artery, referred to as total arterial revascularisation (TAR), on long-term clinical outcomes and quality of life are relatively unknown. The aim of this study was to identify whether there were differences in long term clinical outcomes between recipients of TAR compared to a cohort of mostly arterial revascularization involving the left internal mammary, at least one radial artery and at least one saphenous vein graft. A retrospective analysis was performed on all patients who underwent TAR or were re-vascularized with supplementary saphenous vein graft from February 1996 to December 2004. Telephone surveys were conducted to obtain clinical outcome parameters including major adverse cardiac and cerebrovascular events (MACCE) and Short Form (SF-36v2) Health Survey responses. A total of 176 patients were successfully contacted to obtain postop follow up results. The mean follow-up length from time of surgery in our study was TAR 12.4±1.8 years and conventional 12.6±2.1. PCS score was TAR 45.9±8.8 vs LIMA/Rad/ SVG 44.9±9.2 (p=0.468) and MCS score was TAR 52.0±8.9 vs LIMA/Rad/SVG 52.5±9.3 (p=0.723). There were no significant differences between groups for NYHA class 3+ TAR 9.4% vs. LIMA/Rad/SVG 6.6%; or CCS 3+ TAR 2.35% vs. LIMA/Rad/SVG 0%.

Keywords: CABG; MACCEs; quality of life; total arterial revascularisation

Procedia PDF Downloads 217
7303 Effectiveness of Traditional Chinese Medicine in the Treatment of Eczema: A Systematic Review and Meta-Analysis Based on Eczema Area and Severity Index Score

Authors: Oliver Chunho Ma, Tszying Chang

Abstract:

Background: Traditional Chinese Medicine (TCM) has been widely used in the treatment of eczema. However, there is currently a lack of comprehensive research on the overall effectiveness of TCM in treating eczema, particularly using the Eczema Area and Severity Index (EASI) score as an evaluation tool. Meta-analysis can integrate the results of multiple studies to provide more convincing evidence. Objective: To conduct a systematic review and meta-analysis based on the EASI score to evaluate the overall effectiveness of TCM in the treatment of eczema. Specifically, the study will review and analyze published clinical studies that investigate TCM treatments for eczema and use the EASI score as an outcome measure, comparing the differences in improving the severity of eczema between TCM and other treatment modalities, such as conventional Western medicine treatments. Methods: Relevant studies, including randomized controlled trials (RCTs) and non-randomized controlled trials, that involve TCM treatment for eczema and use the EASI score as an outcome measure will be searched in medical literature databases such as PubMed, CNKI, etc. Relevant data will be extracted from the selected studies, including study design, sample size, treatment methods, improvement in EASI score, etc. The methodological quality and risk of bias of the included studies will be assessed using appropriate evaluation tools (such as the Cochrane Handbook). The results of the selected studies will be statistically analyzed, including pooling effect sizes (such as standardized mean differences, relative risks, etc.), subgroup analysis (e.g., different TCM syndromes, different treatment modalities), and sensitivity analysis (e.g., excluding low-quality studies). Based on the results of the statistical analysis and quality assessment, the overall effectiveness of TCM in improving the severity of eczema will be interpreted. Expected outcomes: By integrating the results of multiple studies, we expect to provide more convincing evidence regarding the specific effects of TCM in improving the severity of eczema. Additionally, subgroup analysis and sensitivity analysis can further elucidate whether the effectiveness of TCM treatment is influenced by different factors. Besides, we will compare the results of the meta-analysis with the clinical data from our clinic. For both the clinical data and the meta-analysis results, we will perform descriptive statistics such as means, standard deviations, percentages, etc. and compare the differences between the two using statistical tests such as independent samples t-test or non-parametric tests to assess the statistical differences between them.

Keywords: Eczema, traditional Chinese medicine, EASI, systematic review, meta-analysis

Procedia PDF Downloads 58
7302 The Clinical Characteristics and Their Relationship with Sleep Disorders in Patients with Parkinson Disease Accompanied with Cognitive Impairment

Authors: Peng Guo

Abstract:

Objective To investigate the clinical characteristics and changes of video-polysomnography (v-PSG) in Parkinson disease (PD) patients accompanied with cognitive impairment. Methods Three hundred and ninety-four patients with PD were enrolled in Beijing Tiantan Hospital, according to CI level, the patients were divided into PD without cognitive impairment (PD-NCI), PD with mild cognitive impairment (PD-MCI), and PD with dementia (PDD) group. Collect patient's demographic data, including gender, onset age, education level and duration. The cognitive function of PD patients was evaluated by Montreal cognitive assessment (MoCA) scale, and the overall cognitive function and cognitive domains of the three groups were compared.Using v-PSG to assess the sleep status of patients. Correlation analysis of MoCA Scale and v-PSG results in PD-CI group. Results 1. In 394 cases of PD, 94 cases (23.86%) in PD-NCI group , 177 cases(44.92%) in PD-MCI group , 123 cases (31.22%) in PDD group. 2.There was no significant difference in gender, age of onset, education level and duration in PD-NCI group, PD-MCI group and PDD group (P>0.05). 3. The total score of MoCA scale in PD-NCI group, PD-MCI group and PDD group decreased one by one. In PD-NCI group, PD-MCI group and PDD group, the scores of each cognitive domain in MoCA scale decreased significantly(P<0.05). 4.Compared with the PD-MCI group, PDD group had lower total sleep time, lower sleep efficiency (P<0.05). Compared with PD-NCI group, PDD group had lower total sleep time and lower sleep efficiency (P<0.05).5. The sleep efficiency of PD-CI patients is positively correlated with the total score of MoCA scale, visual spatial function, executive function, delayed recall and attention score(P<0.05). Conclusions The incidence of CI in PD patients was high; The cognitive function and cognitive domains of PD-CI patients were significantly impaired; In patients with PD-CI, total sleep time decreased, sleep efficiency decreased, and it was related to overall cognitive function and partial cognitive impairment.

Keywords: Parkinson disease, cognitive impairment, clinical characteristics, sleep disorders, video-polysomnography

Procedia PDF Downloads 30
7301 Synthesis, Antibacterial Activities, and Synergistic Effects of Novel Juglone and Naphthazarin Derivatives Against Clinical Methicillin-Resistant Staphylococcus aureus Strains

Authors: Zohra Benfodda, Valentin Duvauchelle, Chaimae Majdi, David Bénimélis, Catherine Dunyach-Remy, Patrick Meffre

Abstract:

New antibiotics are necessary to treat microbial pathogens, especially ESKAPE pathogens that are becoming increasingly resistant to available treatment. Despite the medical need, the number of newly approved drugs continues to decline. The majority of antibiotics under clinical development are natural products or derivatives thereof. 43 juglone/naphthazarin derivatives were synthesized using Minisci-type direct C–H alkylation and evaluated for their antibacterial properties against various clinical and reference Gram-positive MSSA, clinical Gram-positive MRSA. Different compounds of the synthesized series showed promising activity against clinical and reference MSSA (MIC: 1–8 μg/ml) and good efficacy against clinical MRSA (MIC: 2–8 μg/ml) strains. The synergistic effects of active compounds were evaluated with reference antibiotics (vancomycin and cloxacillin), and it was found that the antibiotic combination with those active compounds efficiently enhanced the antimicrobial activity and consequently the MIC values of reference antibiotics were lowered up to 1/16th of the original MIC. These synthesized compounds did not present hemolytic activity on sheep red blood cells. In addition to the in silico prediction of ADME profile parameter which is promising and encouraging for further development.

Keywords: juglone, naphthazarin, antibacterial, clinical MRSA, synergistic studies, MIC determination

Procedia PDF Downloads 126
7300 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters

Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu

Abstract:

An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.

Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters

Procedia PDF Downloads 309
7299 Diagnostic Clinical Skills in Cardiology: Improving Learning and Performance with Hybrid Simulation, Scripted Histories, Wearable Technology, and Quantitative Grading – The Assimilate Excellence Study

Authors: Daly M. J, Condron C, Mulhall C, Eppich W, O'Neill J.

Abstract:

Introduction: In contemporary clinical cardiology, comprehensive and holistic bedside evaluation including accurate cardiac auscultation is in decline despite having positive effects on patients and their outcomes. Methods: Scripted histories and scoring checklists for three clinical scenarios in cardiology were co-created and refined through iterative consensus by a panel of clinical experts; these were then paired with recordings of auscultatory findings from three actual patients with known valvular heart disease. A wearable vest with embedded pressure-sensitive panel speakers was developed to transmit these recordings when examined at the standard auscultation points. RCSI medical students volunteered for a series of three formative long case examinations in cardiology (LC1 – LC3) using this hybrid simulation. Participants were randomised into two groups: Group 1 received individual teaching from an expert trainer between LC1 and LC2; Group 2 received the same intervention between LC2 and LC3. Each participant’s long case examination performance was recorded and blindly scored by two peer participants and two RCSI examiners. Results: Sixty-eight participants were included in the study (age 27.6 ± 0.1 years; 74% female) and randomised into two groups; there were no significant differences in baseline characteristics between groups. Overall, the median total faculty examiner score was 39.8% (35.8 – 44.6%) in LC1 and increased to 63.3% (56.9 – 66.4%) in LC3, with those in Group 1 showing a greater improvement in LC2 total score than that observed in Group 2 (p < .001). Using the novel checklist, intraclass correlation coefficients (ICC) were excellent between examiners in all cases: ICC .994 – .997 (p < .001); correlation between peers and examiners improved in LC2 following peer grading of LC1 performances: ICC .857 – .867 (p < .001). Conclusion: Hybrid simulation and quantitative grading improve learning, standardisation of assessment, and direct comparisons of both performance and acumen in clinical cardiology.

Keywords: cardiology, clinical skills, long case examination, hybrid simulation, checklist

Procedia PDF Downloads 110
7298 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA

Procedia PDF Downloads 304
7297 Effects of Clinical Practice Guideline on Knowledge and Preventive Practices of Nursing Personnel and Incidences of Ventilator-associated Pneumonia Thailand

Authors: Phawida Wattanasoonthorn

Abstract:

Ventilator-associated pneumonia is a serious infection found to be among the top three infections in the hospital. To investigate the effects of clinical practice guideline on knowledge and preventive practices of nursing personnel, and incidences of ventilator-associated pneumonia. A pre-post quasi-experimental study on 17 professional nurses, and 123 ventilator-associated pneumonia patients admitted to the surgical intensive care unit, and the accident and surgical ward of Songkhla Hospital from October 2013 to January 2014. The study found that after using the clinical practice guideline, the subjects’ median score increased from 16.00 to 19.00. The increase in practicing correctly was from 66.01 percent to 79.03 percent with the statistical significance level of .05, and the incidences of ventilator-associated pneumonia decreased by 5.00 percent. The results of this study revealed that the use of the clinical practice guideline helped increase knowledge and practice skill of nursing personnel, and decrease incidences of ventilator-associated pneumonia. Thus, nursing personnel should be encouraged, reminded and promoted to continue using the practice guideline through various means including training, providing knowledge, giving feedback, and putting up posters to remind them of practicing correctly and sustainably.

Keywords: Clinical Practice Guideline, knowledge, Preventive Ventilator, Pneumonia

Procedia PDF Downloads 410
7296 BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching

Authors: Gianna Zou

Abstract:

Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed.

Keywords: BART, Bayesian, matching, regression

Procedia PDF Downloads 147
7295 Co-payment Strategies for Chronic Medications: A Qualitative and Comparative Analysis at European Level

Authors: Pedro M. Abreu, Bruno R. Mendes

Abstract:

The management of pharmacotherapy and the process of dispensing medicines is becoming critical in clinical pharmacy due to the increase of incidence and prevalence of chronic diseases, the complexity and customization of therapeutic regimens, the introduction of innovative and more expensive medicines, the unbalanced relation between expenditure and revenue as well as due to the lack of rationalization associated with medication use. For these reasons, co-payments emerged in Europe in the 70s and have been applied over the past few years in healthcare. Co-payments lead to a rationing and rationalization of user’s access under healthcare services and products, and simultaneously, to a qualification and improvement of the services and products for the end-user. This analysis, under hospital practices particularly and co-payment strategies in general, was carried out on all the European regions and identified four reference countries, that apply repeatedly this tool and with different approaches. The structure, content and adaptation of European co-payments were analyzed through 7 qualitative attributes and 19 performance indicators, and the results expressed in a scorecard, allowing to conclude that the German models (total score of 68,2% and 63,6% in both elected co-payments) can collect more compliance and effectiveness, the English models (total score of 50%) can be more accessible, and the French models (total score of 50%) can be more adequate to the socio-economic and legal framework. Other European models did not show the same quality and/or performance, so were not taken as a standard in the future design of co-payments strategies. In this sense, we can see in the co-payments a strategy not only to moderate the consumption of healthcare products and services, but especially to improve them, as well as a strategy to increment the value that the end-user assigns to these services and products, such as medicines.

Keywords: clinical pharmacy, co-payments, healthcare, medicines

Procedia PDF Downloads 251
7294 Ultra-deformable Drug-free Sequessome™ Vesicles (TDT 064) for the Treatment of Joint Pain Following Exercise: A Case Report and Clinical Data

Authors: Joe Collins, Matthias Rother

Abstract:

Background: Oral non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the relief of joint pain during and post-exercise. However, oral NSAIDs increase the risk of systemic side effects, even in healthy individuals, and retard recovery from muscle soreness. TDT 064 (Flexiseq®), a topical formulation containing ultra-deformable drug-free Sequessome™ vesicles, has demonstrated equivalent efficacy to oral celecoxib in reducing osteoarthritis-associated joint pain and stiffness. TDT 064 does not cause NSAID-related adverse effects. We describe clinical study data and a case report on the effectiveness of TDT 064 in reducing joint pain after exercise. Methods: Participants with a pain score ≥3 (10-point scale) 12–16 hours post-exercise were randomized to receive TDT 064 plus oral placebo, TDT 064 plus oral ketoprofen, or ketoprofen in ultra-deformable phospholipid vesicles plus oral placebo. Results: In the 168 study participants, pain scores were significantly higher with oral ketoprofen plus TDT 064 than with TDT 064 plus placebo in the 7 days post-exercise (P = 0.0240) and recovery from muscle soreness was significantly longer (P = 0.0262). There was a low incidence of adverse events. These data are supported by clinical experience. A 24-year-old male professional rugby player suffered a traumatic lisfranc fracture in March 2014 and underwent operative reconstruction. He had no relevant medical history and was not receiving concomitant medications. He had undergone anterior cruciate ligament reconstruction in 2008. The patient reported restricted training due to pain (score 7/10), stiffness (score 9/10) and poor function, as well as pain when changing direction and running on consecutive days. In July 2014 he started using TDT 064 twice daily at the recommended dose. In November 2014 he noted reduced pain on running (score 2-3/10), decreased morning stiffness (score 4/10) and improved joint mobility and was able to return to competitive rugby without restrictions. No side effects of TDT 064 were reported. Conclusions: TDT 064 shows efficacy against exercise- and injury-induced joint pain, as well as that associated with osteoarthritis. It does not retard muscle soreness recovery after exercise compared with an oral NSAID, making it an alternative approach for the treatment of joint pain during and post-exercise.

Keywords: exercise, joint pain, TDT 064, phospholipid vesicles

Procedia PDF Downloads 480
7293 A Prediction Model of Adopting IPTV

Authors: Jeonghwan Jeon

Abstract:

With the advent of IPTV in the fierce competition with existing broadcasting system, it is emerged as an important issue to predict how much the adoption of IPTV service will be. This paper aims to suggest a prediction model for adopting IPTV using classification and Ranking Belief Simplex (CaRBS). A simplex plot method of representing data allows a clear visual representation to the degree of interaction of the support from the variables to the prediction of the objects. CaRBS is applied to the survey data on the IPTV adoption.

Keywords: prediction, adoption, IPTV, CaRBS

Procedia PDF Downloads 412
7292 Comparison of Medical Students Evaluation by Serious Games and Clinical Case-Multiple Choice Questions

Authors: Chamtouri I., Kechida M.

Abstract:

Background: Evaluation has a prominent role in medical education and graduation. This evaluation has usually done in face-to-face, by written or oral questions. Simulation is increasingly taking a part as a method of evaluation. Due to the Covid-19 pandemic, which disrupted face-to-face evaluation, simulation using serious games (SG) is emerging in the field of training and assessment of medical students. The aim of our study is to compare the results of the evaluation of medical students by virtual simulation by online serious games versus clinical case-multiple choice questions (MCQ) and to assess the degree of satisfaction from these two evaluation methods. Methods: Medical students from the same study level were voluntarily participated in this study. Groupe 1 had an evaluation by SG dealing with “diagnosis and management of ST-segment elevationmyocardialinfarction (STEMI)alreadyprepared on the website www.Mediactiv.com. Groupe 2 were evaluated by clinical case-MCQ having thes same topic as SG. Results of the two groups were compared. Satisfaction questionnaire was filled by the two groups. Satisfaction degree was compared between the two groups. Results. In this study, 64 medical students (G1:31 and G2: 33) were enrolled. Obtaining complete notes in the "questioning" and "clinical examination" parts is significantly more important in-group 1 compared to group 2. No significant difference detected between the two groups in terms of “ECG interpretation” and “diagnosis of STEMI” parts. A greater number of students of group 1 obtained the full note compared to group 2 in “the initial treatment part” (54.8% vs. 39.4%; p = 0.04). Thirty learners (96.8%) in-group 1 obtained a total score ≥ 50% versus 69.7% in-group 2 (p = 0.004). The full score of 100% was obtained in three learners in-group1, while no student scored 100% in-group2 (p = 0.027). Medical evaluation using SG was reported as more innovative, fun, and realistic compared to evaluation by clinical case-MCQ. No significant difference detected between the two methods in terms of stress. Conclusion: Simulation by SG can be considered as an innovative and effective method in evaluating medical students with a higher degree of satisfaction.

Keywords: evaluation, serious games, medical students, satisfaction

Procedia PDF Downloads 142
7291 Genetic and Non-Genetic Factors Affecting the Response to Clopidogrel Therapy

Authors: Snezana Mugosa, Zoran Todorovic, Zoran Bukumiric, Ivan Radosavljevic, Natasa Djordjevic

Abstract:

Introduction: Various studies have shown that the frequency of clopidogrel resistance ranges from 4-40%. The aim of this study was to provide in depth analysis of genetic and non-genetic factors that influence clopidogrel resistance in cardiology patients. Methods: We have conducted a prospective study in 200 hospitalized patients hospitalized at Cardiology Centre of the Clinical Centre of Montenegro. CYP2C19 genetic testing was conducted, and the PREDICT score was calculated in 102 out of 200 patients treated with clopidogrel in order to determine the influence of genetic and non-genetic factors on outcomes of interest. Adverse cardiovascular events and adverse reactions to clopidogrel were assessed during 12 months follow up period. Results: PREDICT score and CYP2C19 enzymatic activity were found to be statistically significant predictors of expressing lack of therapeutic efficacy of clopidogrel by multivariate logistic regression, without multicollinearity or interaction between the predictors (p = 0.002 and 0.009, respectively). Conclusions: Pharmacogenetics analyses that were done in the Montenegrin population of patients for the first time suggest that these analyses can predict patient response to the certain therapy. Stepwise approach could be used in assessing the clopidogrel resistance in cardiology patients, combining the PREDICT score, platelet aggregation test, and genetic testing for CYP2C19 polymorphism.

Keywords: clopidogrel, pharmacogenetics, pharmacotherapy, PREDICT score

Procedia PDF Downloads 351
7290 Disease Characteristics of Neurofibromatosis Type II and Cochlear Implantation

Authors: Boxiang Zhuang

Abstract:

This study analyzes the clinical manifestations, hearing rehabilitation methods and outcomes of a complex case of neurofibromatosis type II (NF2). Methods: The clinical manifestations, medical history, clinical data, surgical methods and postoperative hearing rehabilitation outcomes of an NF2 patient were analyzed to determine the hearing reconstruction method and postoperative effect for a special type of NF2 acoustic neuroma. Results: The patient had bilateral acoustic neuromas with profound sensorineural hearing loss in both ears. Peripheral blood genetic testing did not reveal pathogenic gene mutations, suggesting mosaicism. The patient had an intracochlear schwannoma in the right ear and severely impaired vision in both eyes. Cochlear implantation with tumor retention was performed in the right ear. After 2 months of family-based auditory and speech rehabilitation, the Categories of Auditory Performance (CAP) score improved from 0 to 5. Conclusion: NF2 has complex clinical manifestations and poor prognosis. For NF2 patients with intracochlear tumors, cochlear implantation with tumor retention can be used to reconstruct hearing.

Keywords: NF2, intracochlear schwannoma, hearing reconstruction, cochlear implantation

Procedia PDF Downloads 13
7289 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction

Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi

Abstract:

For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.

Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy

Procedia PDF Downloads 113
7288 Predictors of Glycaemic Variability and Its Association with Mortality in Critically Ill Patients with or without Diabetes

Authors: Haoming Ma, Guo Yu, Peiru Zhou

Abstract:

Background: Previous studies show that dysglycemia, mostly hyperglycemia, hypoglycemia and glycemic variability(GV), are associated with excess mortality in critically ill patients, especially those without diabetes. Glycemic variability is an increasingly important measure of glucose control in the intensive care unit (ICU) due to this association. However, there is limited data pertaining to the relationship between different clinical factors and glycemic variability and clinical outcomes categorized by their DM status. This retrospective study of 958 intensive care unit(ICU) patients was conducted to investigate the relationship between GV and outcome in critically ill patients and further to determine the significant factors that contribute to the glycemic variability. Aim: We hypothesize that the factors contributing to mortality and the glycemic variability are different from critically ill patients with or without diabetes. And the primary aim of this study was to determine which dysglycemia (hyperglycemia\hypoglycemia\glycemic variability) is independently associated with an increase in mortality among critically ill patients in different groups (DM/Non-DM). Secondary objectives were to further investigate any factors affecting the glycemic variability in two groups. Method: A total of 958 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The glycemic variability was defined as the coefficient of variation (CV) of blood glucose. The main outcome was death during hospitalization. The secondary outcome was GV. The logistic regression model was used to identify factors associated with mortality. The relationships between GV and other variables were investigated using linear regression analysis. Results: Information on age, APACHE II score, GV, gender, in-ICU treatment and nutrition was available for 958 subjects. Predictors remaining in the final logistic regression model for mortality were significantly different in DM/Non-DM groups. Glycemic variability was associated with an increase in mortality in both DM(odds ratio 1.05; 95%CI:1.03-1.08,p<0.001) or Non-DM group(odds ratio 1.07; 95%CI:1.03-1.11,p=0.002). For critically ill patients without diabetes, factors associated with glycemic variability included APACHE II score(regression coefficient, 95%CI:0.29,0.22-0.36,p<0.001), Mean BG(0.73,0.46-1.01,p<0.001), total parenteral nutrition(2.87,1.57-4.17,p<0.001), serum albumin(-0.18,-0.271 to -0.082,p<0.001), insulin treatment(2.18,0.81-3.55,p=0.002) and duration of ventilation(0.006,0.002-1.010,p=0.003).However, for diabetes patients, APACHE II score(0.203,0.096-0.310,p<0.001), mean BG(0.503,0.138-0.869,p=0.007) and duration of diabetes(0.167,0.033-0.301,p=0.015) remained as independent risk factors of GV. Conclusion: We found that the relation between dysglycemia and mortality is different in the diabetes and non-diabetes groups. And we confirm that GV was associated with excess mortality in DM or Non-DM patients. Furthermore, APACHE II score, Mean BG, total parenteral nutrition, serum albumin, insulin treatment and duration of ventilation were significantly associated with an increase in GV in Non-DM patients. While APACHE II score, mean BG and duration of diabetes (years) remained as independent risk factors of increased GV in DM patients. These findings provide important context for further prospective trials investigating the effect of different clinical factors in critically ill patients with or without diabetes.

Keywords: diabetes, glycemic variability, predictors, severe disease

Procedia PDF Downloads 189
7287 The Factors That Influence the Self-Sufficiency and the Self-Efficacy Levels among Oncology Patients

Authors: Esra Danaci, Tugba Kavalali Erdogan, Sevil Masat, Selin Keskin Kiziltepe, Tugba Cinarli, Zeliha Koc

Abstract:

This study was conducted in a descriptive and cross-sectional manner to determine that factors that influence the self-efficacy and self-sufficiency levels among oncology patients. The research was conducted between January 24, 2017 and September 24, 2017 in the oncology and hematology departments of a university hospital in Turkey with 179 voluntary inpatients. The data were collected through the Self-Sufficiency/Self-Efficacy Scale and a 29-question survey, which was prepared in order to determine the sociodemographic and clinical properties of the patients. The Self-Sufficiency/Self-Efficacy Scale is a Likert-type scale with 23 articles. The scale scores range between 23 and 115. A high final score indicates a good self-sufficiency/self-efficacy perception for the individual. The data were analyzed using percentage analysis, one-way ANOVA, Mann Whitney U-test, Kruskal Wallis test and Tukey test. The demographic data of the subjects were as follows: 57.5% were male and 42.5% were female, 82.7% were married, 46.4% were primary school graduate, 36.3% were housewives, 19% were employed, 93.3% had social security, 52.5% had matching expenses and incomes, 49.2% lived in the center of the city. The mean age was 57.1±14.6. It was determined that 22.3% of the patients had lung cancer, 19.6% had leukemia, and 43.6% had a good overall condition. The mean self-sufficiency/self-efficacy score was 83,00 (41-115). It was determined that the patients' self-sufficiency/self-efficacy scores were influenced by some of their socio-demographic and clinical properties. This study has found that the patients had high self-sufficiency/self-efficacy scores. It is recommended that the nursing care plans should be developed to improve their self-sufficiency/self-efficacy levels in the light of the patients' sociodemographic and clinical properties.

Keywords: oncology, patient, self-efficacy, self-sufficiency

Procedia PDF Downloads 170
7286 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 127
7285 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 170
7284 Applying the Regression Technique for ‎Prediction of the Acute Heart Attack ‎

Authors: Paria Soleimani, Arezoo Neshati

Abstract:

Myocardial infarction is one of the leading causes of ‎death in the world. Some of these deaths occur even before the patient ‎reaches the hospital. Myocardial infarction occurs as a result of ‎impaired blood supply. Because the most of these deaths are due to ‎coronary artery disease, hence the awareness of the warning signs of a ‎heart attack is essential. Some heart attacks are sudden and intense, but ‎most of them start slowly, with mild pain or discomfort, then early ‎detection and successful treatment of these symptoms is vital to save ‎them. Therefore, importance and usefulness of a system designing to ‎assist physicians in the early diagnosis of the acute heart attacks is ‎obvious.‎ The purpose of this study is to determine how well a predictive ‎model would perform based on the only patient-reportable clinical ‎history factors, without using diagnostic tests or physical exams. This ‎type of the prediction model might have application outside of the ‎hospital setting to give accurate advice to patients to influence them to ‎seek care in appropriate situations. For this purpose, the data were ‎collected on 711 heart patients in Iran hospitals. 28 attributes of clinical ‎factors can be reported by patients; were studied. Three logistic ‎regression models were made on the basis of the 28 features to predict ‎the risk of heart attacks. The best logistic regression model in terms of ‎performance had a C-index of 0.955 and with an accuracy of 94.9%. ‎The variables, severe chest pain, back pain, cold sweats, shortness of ‎breath, nausea, and vomiting were selected as the main features.‎

Keywords: Coronary heart disease, Acute heart attacks, Prediction, Logistic ‎regression‎

Procedia PDF Downloads 449
7283 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach

Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani

Abstract:

This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.

Keywords: chaotic approach, phase space, Cao method, local linear approximation method

Procedia PDF Downloads 332
7282 Evaluation of Cooperative Hand Movement Capacity in Stroke Patients Using the Cooperative Activity Stroke Assessment

Authors: F. A. Thomas, M. Schrafl-Altermatt, R. Treier, S. Kaufmann

Abstract:

Stroke is the main cause of adult disability. Especially upper limb function is affected in most patients. Recently, cooperative hand movements have been shown to be a promising type of upper limb training in stroke rehabilitation. In these movements, which are frequently found in activities of daily living (e.g. opening a bottle, winding up a blind), the force of one upper limb has to be equally counteracted by the other limb to successfully accomplish a task. The use of standardized and reliable clinical assessments is essential to evaluate the efficacy of therapy and the functional outcome of a patient. Many assessments for upper limb function or impairment are available. However, the evaluation of cooperative hand movement tasks are rarely included in those. Thus, the aim of this study was (i) to develop a novel clinical assessment (CASA - Cooperative Activity Stroke Assessment) for the evaluation of patients’ capacity to perform cooperative hand movements and (ii) to test its inter- and interrater reliability. Furthermore, CASA scores were compared to current gold standard assessments for upper extremity in stroke patients (i.e. Fugl-Meyer Assessment, Box & Blocks Test). The CASA consists of five cooperative activities of daily living including (1) opening a jar, (2) opening a bottle, (3) open and closing of a zip, (4) unscrew a nut and (5) opening a clipbox. Here, the goal is to accomplish the tasks as fast as possible. In addition to the quantitative rating (i.e. time) which is converted to a 7-point scale, also the quality of the movement is rated in a 4-point scale. To test the reliability of CASA, fifteen stroke subjects were tested within a week twice by the same two raters. Intra-and interrater reliability was calculated using the intraclass correlation coefficient (ICC) for total CASA score and single items. Furthermore, Pearson-correlation was used to compare the CASA scores to the scores of Fugl-Meyer upper limb assessment and the box and blocks test, which were assessed in every patient additionally to the CASA. ICC scores of the total CASA score indicated an excellent- and single items established a good to excellent inter- and interrater reliability. Furthermore, the CASA score was significantly correlated to the Fugl-Meyer and Box & Blocks score. The CASA provides a reliable assessment for cooperative hand movements which are crucial for many activities of daily living. Due to its non-costly setup, easy and fast implementation, we suggest it to be well suitable for clinical application. In conclusion, the CASA is a useful tool in assessing the functional status and therapy related recovery in cooperative hand movement capacity in stroke patients.

Keywords: activitites of daily living, clinical assessment, cooperative hand movements, reliability, stroke

Procedia PDF Downloads 319