Search results for: biological data mining
27245 Development of Management System of the Experience of Defensive Modeling and Simulation by Data Mining Approach
Authors: D. Nam Kim, D. Jin Kim, Jeonghwan Jeon
Abstract:
Defense Defensive Modeling and Simulation (M&S) is a system which enables impracticable training for reducing constraints of time, space and financial resources. The necessity of defensive M&S has been increasing not only for education and training but also virtual fight. Soldiers who are using defensive M&S for education and training will obtain empirical knowledge and know-how. However, the obtained knowledge of individual soldiers have not been managed and utilized yet since the nature of military organizations: confidentiality and frequent change of members. Therefore, this study aims to develop a management system for the experience of defensive M&S based on data mining approach. Since individual empirical knowledge gained through using the defensive M&S is both quantitative and qualitative data, data mining approach is appropriate for dealing with individual empirical knowledge. This research is expected to be helpful for soldiers and military policy makers.Keywords: data mining, defensive m&s, management system, knowledge management
Procedia PDF Downloads 25427244 Privacy Preserving in Association Rule Mining on Horizontally Partitioned Database
Authors: Manvar Sagar, Nikul Virpariya
Abstract:
The advancement in data mining techniques plays an important role in many applications. In context of privacy and security issues, the problems caused by association rule mining technique are investigated by many research scholars. It is proved that the misuse of this technique may reveal the database owner’s sensitive and private information to others. Many researchers have put their effort to preserve privacy in Association Rule Mining. Amongst the two basic approaches for privacy preserving data mining, viz. Randomization based and Cryptography based, the later provides high level of privacy but incurs higher computational as well as communication overhead. Hence, it is necessary to explore alternative techniques that improve the over-heads. In this work, we propose an efficient, collusion-resistant cryptography based approach for distributed Association Rule mining using Shamir’s secret sharing scheme. As we show from theoretical and practical analysis, our approach is provably secure and require only one time a trusted third party. We use secret sharing for privately sharing the information and code based identification scheme to add support against malicious adversaries.Keywords: Privacy, Privacy Preservation in Data Mining (PPDM), horizontally partitioned database, EMHS, MFI, shamir secret sharing
Procedia PDF Downloads 40827243 Mining Diagnostic Investigation Process
Authors: Sohail Imran, Tariq Mahmood
Abstract:
In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.Keywords: process mining, healthcare, diagnostic investigation process, process flow
Procedia PDF Downloads 52327242 Identify Users Behavior from Mobile Web Access Logs Using Automated Log Analyzer
Authors: Bharat P. Modi, Jayesh M. Patel
Abstract:
Mobile Internet is acting as a major source of data. As the number of web pages continues to grow the Mobile web provides the data miners with just the right ingredients for extracting information. In order to cater to this growing need, a special term called Mobile Web mining was coined. Mobile Web mining makes use of data mining techniques and deciphers potentially useful information from web data. Web Usage mining deals with understanding the behavior of users by making use of Mobile Web Access Logs that are generated on the server while the user is accessing the website. A Web access log comprises of various entries like the name of the user, his IP address, a number of bytes transferred time-stamp etc. A variety of Log Analyzer tools exists which help in analyzing various things like users navigational pattern, the part of the website the users are mostly interested in etc. The present paper makes use of such log analyzer tool called Mobile Web Log Expert for ascertaining the behavior of users who access an astrology website. It also provides a comparative study between a few log analyzer tools available.Keywords: mobile web access logs, web usage mining, web server, log analyzer
Procedia PDF Downloads 36127241 Spatial Data Mining by Decision Trees
Authors: Sihem Oujdi, Hafida Belbachir
Abstract:
Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining
Procedia PDF Downloads 61227240 Assessment of Prevalent Diseases Caused by Mining Activities in the Northern Part of Mindanao Island, Philippines
Authors: Odinah Cuartero-Enteria, Kyla Rita Mercado, Jason Salamanes, Aian Pecasales, Sherwin Sabado
Abstract:
The northern part of Mindanao Island, Philippines has sizable reserve of mineral resources. Years ago, mining activities have been flourishing which resulted to both local economic gain but with environmental concerns. This study investigates the prevalent diseases by mining activities in these areas. The study was done using the secondary data gathered from the Rural Health Units (RHU) of the selected areas. The study further determined the prevalent diseases that existed in the three areas from years 2005, 2010 and 2015 indicating before the mining activities and when mining activities are present. The results show that areas which are far from mining activities have fewer cases of patients suffering from air-borne diseases. The top ten most common diseases such as pneumonia, tuberculosis, influenza, upper respiratory tract infection (URTI) and skin diseases were caused by air-borne due to air pollution. Hence, the places where mining activities are present contribute to the prevalent diseases. Thus, addressing the air pollution caused by mining activities is very important.Keywords: Philippines, Mindanao Island, mining activities, pollution, prevalent diseases
Procedia PDF Downloads 47327239 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data
Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query
Procedia PDF Downloads 16127238 Study for Establishing a Concept of Underground Mining in a Folded Deposit with Weathering
Authors: Chandan Pramanik, Bikramjit Chanda
Abstract:
Large metal mines operated with open-cast mining methods must transition to underground mining at the conclusion of the operation; however, this requires a period of a difficult time when production convergence due to interference between the two mining methods. A transition model with collaborative mining operations is presented and established in this work, based on the case of the South Kaliapani Underground Project, to address these technical issues of inadequate production security and other mining challenges during the transition phase and beyond. By integrating the technology of the small-scale Drift and Fill method and Highly productive Sub Level Open Stoping at deep section, this hybrid mining concept tries to eliminate major bottlenecks and offers an optimized production profile with the safe and sustainable operation. Considering every geo-mining aspect, this study offers a genuine and precise technical deliberation for the transition from open pit to underground mining.Keywords: drift and fill, geo-mining aspect, sublevel open stoping, underground mining method
Procedia PDF Downloads 10027237 The Environmental and Socio Economic Impacts of Mining on Local Livelihood in Cameroon: A Case Study in Bertoua
Authors: Fongang Robert Tichuck
Abstract:
This paper reports the findings of a study undertaken to assess the socio-economic and environmental impacts of mining in Bertoua Eastern Region of Cameroon. In addition to sampling community perceptions of mining activities, the study prescribes interventions that can assist in mitigating the negative impacts of mining. Marked environmental and interrelated socio-economic improvements can be achieved within regional artisanal gold mines if the government provides technical support to local operators, regulations are improved, and illegal mining activity is reduced.Keywords: gold mining, socio-economic, mining activities, local people
Procedia PDF Downloads 39627236 An Efficient Data Mining Technique for Online Stores
Authors: Mohammed Al-Shalabi, Alaa Obeidat
Abstract:
In any food stores, some items will be expired or destroyed because the demand on these items is infrequent, so we need a system that can help the decision maker to make an offer on such items to improve the demand on the items by putting them with some other frequent item and decrease the price to avoid losses. The system generates hundreds or thousands of patterns (offers) for each low demand item, then it uses the association rules (support, confidence) to find the interesting patterns (the best offer to achieve the lowest losses). In this paper, we propose a data mining method for determining the best offer by merging the data mining techniques with the e-commerce strategy. The task is to build a model to predict the best offer. The goal is to maximize the profits of a store and avoid the loss of products. The idea in this paper is the using of the association rules in marketing with a combination with e-commerce.Keywords: data mining, association rules, confidence, online stores
Procedia PDF Downloads 41027235 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining
Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong
Abstract:
This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery
Procedia PDF Downloads 40427234 Spatio-Temporal Data Mining with Association Rules for Lake Van
Authors: Tolga Aydin, M. Fatih Alaeddinoğlu
Abstract:
People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.Keywords: apriori algorithm, association rules, data mining, spatio-temporal data
Procedia PDF Downloads 37427233 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 46427232 Machine Learning Application in Shovel Maintenance
Authors: Amir Taghizadeh Vahed, Adithya Thaduri
Abstract:
Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.Keywords: maintenance, machine learning, shovel, conditional based monitoring
Procedia PDF Downloads 21827231 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011
Authors: S. Abera, T. Gidey, W. Terefe
Abstract:
Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.Keywords: data mining, HIV, testing, ethiopia
Procedia PDF Downloads 49627230 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research
Authors: Carla Silva
Abstract:
Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.Keywords: data mining, research analysis, investment decision-making, educational research
Procedia PDF Downloads 35827229 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data
Procedia PDF Downloads 37827228 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review
Authors: Faisal Muhibuddin, Ani Dijah Rahajoe
Abstract:
This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review
Procedia PDF Downloads 6527227 A Data Mining Approach for Analysing and Predicting the Bank's Asset Liability Management Based on Basel III Norms
Authors: Nidhin Dani Abraham, T. K. Sri Shilpa
Abstract:
Asset liability management is an important aspect in banking business. Moreover, the today’s banking is based on BASEL III which strictly regulates on the counterparty default. This paper focuses on prediction and analysis of counter party default risk, which is a type of risk occurs when the customers fail to repay the amount back to the lender (bank or any financial institutions). This paper proposes an approach to reduce the counterparty risk occurring in the financial institutions using an appropriate data mining technique and thus predicts the occurrence of NPA. It also helps in asset building and restructuring quality. Liability management is very important to carry out banking business. To know and analyze the depth of liability of bank, a suitable technique is required. For that a data mining technique is being used to predict the dormant behaviour of various deposit bank customers. Various models are implemented and the results are analyzed of saving bank deposit customers. All these data are cleaned using data cleansing approach from the bank data warehouse.Keywords: data mining, asset liability management, BASEL III, banking
Procedia PDF Downloads 55227226 Hierarchical Clustering Algorithms in Data Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering.Keywords: clustering, unsupervised learning, algorithms, hierarchical
Procedia PDF Downloads 88527225 Data Mining Algorithms Analysis: Case Study of Price Predictions of Lands
Authors: Julio Albuja, David Zaldumbide
Abstract:
Data analysis is an important step before taking a decision about money. The aim of this work is to analyze the factors that influence the final price of the houses through data mining algorithms. To our best knowledge, previous work was researched just to compare results. Furthermore, before using the data of the data set, the Z-Transformation were used to standardize the data in the same range. Hence, the data was classified into two groups to visualize them in a readability format. A decision tree was built, and graphical data is displayed where clearly is easy to see the results and the factors' influence in these graphics. The definitions of these methods are described, as well as the descriptions of the results. Finally, conclusions and recommendations are presented related to the released results that our research showed making it easier to apply these algorithms using a customized data set.Keywords: algorithms, data, decision tree, transformation
Procedia PDF Downloads 37427224 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses
Authors: Erin Lynne Plettenberg, Jeremy Vickery
Abstract:
In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.Keywords: electronic medical records, information extraction, logic modeling, ontology, vetted web mining
Procedia PDF Downloads 17227223 An Improved Parallel Algorithm of Decision Tree
Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng
Abstract:
Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.Keywords: classification, Gini index, parallel data mining, pruning ahead
Procedia PDF Downloads 12327222 Design and Development of Data Mining Application for Medical Centers in Remote Areas
Authors: Grace Omowunmi Soyebi
Abstract:
Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.Keywords: data mining, medical record system, systems programming, computing
Procedia PDF Downloads 20927221 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling
Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal
Abstract:
It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability
Procedia PDF Downloads 29727220 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 37527219 An Optimized Association Rule Mining Algorithm
Authors: Archana Singh, Jyoti Agarwal, Ajay Rana
Abstract:
Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph
Procedia PDF Downloads 42027218 Mining Educational Data to Support Students’ Major Selection
Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri
Abstract:
This paper aims to create the model for student in choosing an emphasized track of student majoring in computer science at Suan Sunandha Rajabhat University. The objective of this research is to develop the suggested system using data mining technique to analyze knowledge and conduct decision rules. Such relationships can be used to demonstrate the reasonableness of student choosing a track as well as to support his/her decision and the system is verified by experts in the field. The sampling is from student of computer science based on the system and the questionnaire to see the satisfaction. The system result is found to be satisfactory by both experts and student as well.Keywords: data mining technique, the decision support system, knowledge and decision rules, education
Procedia PDF Downloads 42327217 Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules
Authors: Rizka Aisha Rahmi Hariadi, Chao Ou-Yang, Han-Cheng Wang, Rajesri Govindaraju
Abstract:
As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results.Keywords: patient re-coming, medical check-up, health examination, data mining, sequential pattern mining, association rules, discriminant analysis
Procedia PDF Downloads 64027216 Modelling of Powered Roof Supports Work
Authors: Marcin Michalak
Abstract:
Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles.Keywords: machine modelling, underground mining, coal mining, structure
Procedia PDF Downloads 368