Search results for: bio-inspired computation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 557

Search results for: bio-inspired computation

497 Private Coded Computation of Matrix Multiplication

Authors: Malihe Aliasgari, Yousef Nejatbakhsh

Abstract:

The era of Big Data and the immensity of real-life datasets compels computation tasks to be performed in a distributed fashion, where the data is dispersed among many servers that operate in parallel. However, massive parallelization leads to computational bottlenecks due to faulty servers and stragglers. Stragglers refer to a few slow or delay-prone processors that can bottleneck the entire computation because one has to wait for all the parallel nodes to finish. The problem of straggling processors, has been well studied in the context of distributed computing. Recently, it has been pointed out that, for the important case of linear functions, it is possible to improve over repetition strategies in terms of the tradeoff between performance and latency by carrying out linear precoding of the data prior to processing. The key idea is that, by employing suitable linear codes operating over fractions of the original data, a function may be completed as soon as enough number of processors, depending on the minimum distance of the code, have completed their operations. The problem of matrix-matrix multiplication in the presence of practically big sized of data sets faced with computational and memory related difficulties, which makes such operations are carried out using distributed computing platforms. In this work, we study the problem of distributed matrix-matrix multiplication W = XY under storage constraints, i.e., when each server is allowed to store a fixed fraction of each of the matrices X and Y, which is a fundamental building of many science and engineering fields such as machine learning, image and signal processing, wireless communication, optimization. Non-secure and secure matrix multiplication are studied. We want to study the setup, in which the identity of the matrix of interest should be kept private from the workers and then obtain the recovery threshold of the colluding model, that is, the number of workers that need to complete their task before the master server can recover the product W. The problem of secure and private distributed matrix multiplication W = XY which the matrix X is confidential, while matrix Y is selected in a private manner from a library of public matrices. We present the best currently known trade-off between communication load and recovery threshold. On the other words, we design an achievable PSGPD scheme for any arbitrary privacy level by trivially concatenating a robust PIR scheme for arbitrary colluding workers and private databases and the proposed SGPD code that provides a smaller computational complexity at the workers.

Keywords: coded distributed computation, private information retrieval, secret sharing, stragglers

Procedia PDF Downloads 122
496 SIF Computation of Cracked Plate by FEM

Authors: Sari Elkahina, Zergoug Mourad, Benachenhou Kamel

Abstract:

The main purpose of this paper is to perform a computations comparison of stress intensity factor 'SIF' evaluation in case of cracked thin plate with Aluminum alloy 7075-T6 and 2024-T3 used in aeronautics structure under uniaxial loading. This evaluation is based on finite element method with a virtual power principle through two techniques: the extrapolation and G−θ. The first one consists to extrapolate the nodal displacements near the cracked tip using a refined triangular mesh with T3 and T6 special elements, while the second, consists of determining the energy release rate G through G−θ method by potential energy derivation which corresponds numerically to the elastic solution post-processing of a cracked solid by a contour integration computation via Gauss points. The SIF obtained results from extrapolation and G−θ methods will be compared to an analytical solution in a particular case. To illustrate the influence of the meshing kind and the size of integration contour position simulations are presented and analyzed.

Keywords: crack tip, SIF, finite element method, concentration technique, displacement extrapolation, aluminum alloy 7075-T6 and 2024-T3, energy release rate G, G-θ method, Gauss point numerical integration

Procedia PDF Downloads 337
495 Presenting the Mathematical Model to Determine Retention in the Watersheds

Authors: S. Shamohammadi, L. Razavi

Abstract:

This paper based on the principle concepts of SCS-CN model, a new mathematical model for computation of retention potential (S) presented. In the mathematical model, not only precipitation-runoff concepts in SCS-CN model are precisely represented in a mathematical form, but also new concepts, called “maximum retention” and “total retention” is introduced, and concepts of potential retention capacity, maximum retention, and total retention have been separated from each other. In the proposed model, actual retention (F), maximum actual retention (Fmax), total retention (S), maximum retention (Smax), and potential retention (Sp), for the first time clearly defined, so that Sp is not variable, but a function of morphological characteristics of the watershed. Indeed, based on the mathematical relation of the conceptual curve of SCS-CN model, the proposed model provides a new method for the computation of actual retention in watershed and it simply determined runoff based on. In the corresponding relations, in addition to Precipitation (P), Initial retention (Ia), cumulative values of actual retention capacity (F), total retention (S), runoff (Q), antecedent moisture (M), potential retention (Sp), total retention (S), we introduced Fmax and Fmin referring to maximum and minimum actual retention, respectively. As well as, ksh is a coefficient which depends on morphological characteristics of the watershed. Advantages of the modified version versus the original model include a better precision, higher performance, easier calibration and speed computing.

Keywords: model, mathematical, retention, watershed, SCS

Procedia PDF Downloads 456
494 Operator Optimization Based on Hardware Architecture Alignment Requirements

Authors: Qingqing Gai, Junxing Shen, Yu Luo

Abstract:

Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances.

Keywords: convolution, deconvolution, W2C, C2W, alignment, hardware accelerator

Procedia PDF Downloads 104
493 Safety Approach Highway Alignment Optimization

Authors: Seyed Abbas Tabatabaei, Marjan Naderan Tahan, Arman Kadkhodai

Abstract:

An efficient optimization approach, called feasible gate (FG), is developed to enhance the computation efficiency and solution quality of the previously developed highway alignment optimization (HAO) model. This approach seeks to realistically represent various user preferences and environmentally sensitive areas and consider them along with geometric design constraints in the optimization process. This is done by avoiding the generation of infeasible solutions that violate various constraints and thus focusing the search on the feasible solutions. The proposed method is simple, but improves significantly the model’s computation time and solution quality. On the other, highway alignment optimization through Feasible Gates, eventuates only economic model by considering minimum design constrains includes minimum reduce of circular curves, minimum length of vertical curves and road maximum gradient. This modelling can reduce passenger comfort and road safety. In most of highway optimization models, by adding penalty function for each constraint, final result handles to satisfy minimum constraint. In this paper, we want to propose a safety-function solution by introducing gift function.

Keywords: safety, highway geometry, optimization, alignment

Procedia PDF Downloads 409
492 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500

Authors: Mustafa Elfituri, Jonathan Cook

Abstract:

Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.

Keywords: graph computation, graph500 benchmark, parallel architectures, parallel programming, workload characterization.

Procedia PDF Downloads 147
491 Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition

Authors: Chiou-Yng Lee, Wen-Yo Lee, Chieh-Tsai Wu, Cheng-Chen Yang

Abstract:

Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit-level and digit-level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very-large-scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications.

Keywords: digit-serial systolic multiplier, elliptic curve cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial basis (SPB), pairing computation

Procedia PDF Downloads 361
490 Graphene-Based Nanocomposites as Ecofriendly Antifouling Surfaces

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Xiang Chen

Abstract:

After the prohibition of tin-based fouling-prevention coatings in 2003, the researchers were directed toward eco-friendly coatings. Because of their nonstick, environmental, and economic benefits, foul-release nanocoatings have received a lot of attention. They use physical anti-adhesion terminology to deter any fouling attachment.Natural bioinspired surfaces have micro/nano-roughness and low surface free energy features, which may inspire the design of dynamic antifouling coatings. Graphene-based nanocomposite surfaces were designed to combat marine-fouling adhesion with ecological as well as eco-friendly effects rather than biocidal solutions. Polymer–graphenenanofiller hybrids are a novel class of composite materials in fouling-prevention applications. The controlled preparation of nanoscale orientation, arrangement, and direction along the composite building blocks would result in superior fouling prohibition. This work representsfoul-release nanocomposite top coats for marine coating applications with superhydrophobicity, surface inertness against fouling adherence, cost-effectiveness, and increased lifetime.

Keywords: foul-release nanocoatings, graphene-based nanocomposite, polymer, nanofillers

Procedia PDF Downloads 141
489 Computation of Radiotherapy Treatment Plans Based on CT to ED Conversion Curves

Authors: B. Petrović, L. Rutonjski, M. Baucal, M. Teodorović, O. Čudić, B. Basarić

Abstract:

Radiotherapy treatment planning computers use CT data of the patient. For the computation of a treatment plan, treatment planning system must have an information on electron densities of tissues scanned by CT. This information is given by the conversion curve CT (CT number) to ED (electron density), or simply calibration curve. Every treatment planning system (TPS) has built in default CT to ED conversion curves, for the CTs of different manufacturers. However, it is always recommended to verify the CT to ED conversion curve before actual clinical use. Objective of this study was to check how the default curve already provided matches the curve actually measured on a specific CT, and how much it influences the calculation of a treatment planning computer. The examined CT scanners were from the same manufacturer, but four different scanners from three generations. The measurements of all calibration curves were done with the dedicated phantom CIRS 062M Electron Density Phantom. The phantom was scanned, and according to real HU values read at the CT console computer, CT to ED conversion curves were generated for different materials, for same tube voltage 140 kV. Another phantom, CIRS Thorax 002 LFC which represents an average human torso in proportion, density and two-dimensional structure, was used for verification. The treatment planning was done on CT slices of scanned CIRS LFC 002 phantom, for selected cases. Interest points were set in the lungs, and in the spinal cord, and doses recorded in TPS. The overall calculated treatment times for four scanners and default scanner did not differ more than 0.8%. Overall interest point dose in bone differed max 0.6% while for single fields was maximum 2.7% (lateral field). Overall interest point dose in lungs differed max 1.1% while for single fields was maximum 2.6% (lateral field). It is known that user should verify the CT to ED conversion curve, but often, developing countries are facing lack of QA equipment, and often use default data provided. We have concluded that the CT to ED curves obtained differ in certain points of a curve, generally in the region of higher densities. This influences the treatment planning result which is not significant, but definitely does make difference in the calculated dose.

Keywords: Computation of treatment plan, conversion curve, radiotherapy, electron density

Procedia PDF Downloads 486
488 Crow Search Algorithm-Based Task Offloading Strategies for Fog Computing Architectures

Authors: Aniket Ganvir, Ritarani Sahu, Suchismita Chinara

Abstract:

The rapid digitization of various aspects of life is leading to the creation of smart IoT ecosystems, where interconnected devices generate significant amounts of valuable data. However, these IoT devices face constraints such as limited computational resources and bandwidth. Cloud computing emerges as a solution by offering ample resources for offloading tasks efficiently despite introducing latency issues, especially for time-sensitive applications like fog computing. Fog computing (FC) addresses latency concerns by bringing computation and storage closer to the network edge, minimizing data travel distance, and enhancing efficiency. Offloading tasks to fog nodes or the cloud can conserve energy and extend IoT device lifespan. The offloading process is intricate, with tasks categorized as full or partial, and its optimization presents an NP-hard problem. Traditional greedy search methods struggle to address the complexity of task offloading efficiently. To overcome this, the efficient crow search algorithm (ECSA) has been proposed as a meta-heuristic optimization algorithm. ECSA aims to effectively optimize computation offloading, providing solutions to this challenging problem.

Keywords: IoT, fog computing, task offloading, efficient crow search algorithm

Procedia PDF Downloads 58
487 Real-Time Fitness Monitoring with MediaPipe

Authors: Chandra Prayaga, Lakshmi Prayaga, Aaron Wade, Kyle Rank, Gopi Shankar Mallu, Sri Satya, Harsha Pola

Abstract:

In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring.

Keywords: physical health, athletic trainers, fitness monitoring, technology driven solutions, Google’s MediaPipe, landmark detection, angle computation, real-time feedback

Procedia PDF Downloads 66
486 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle

Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia

Abstract:

Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.

Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic

Procedia PDF Downloads 299
485 Bioinspired Green Synthesis of Magnetite Nanoparticles Using Room-Temperature Co-Precipitation: A Study of the Effect of Amine Additives on Particle Morphology in Fluidic Systems

Authors: Laura Norfolk, Georgina Zimbitas, Jan Sefcik, Sarah Staniland

Abstract:

Magnetite nanoparticles (MNP) have been an area of increasing research interest due to their extensive applications in industry, such as in carbon capture, water purification, and crucially, the biomedical industry. The use of MNP in the biomedical industry is rising, with studies on their effect as Magnetic resonance imaging contrast agents, drug delivery systems, and as hyperthermic cancer treatments becoming prevalent in the nanomaterial research community. Particles used for biomedical purposes must meet stringent criteria; the particles must have consistent shape and size between particles. Variation between particle morphology can drastically alter the effective surface area of the material, making it difficult to correctly dose particles that are not homogeneous. Particles of defined shape such as octahedral and cubic have been shown to outperform irregular shaped particles in some applications, leading to the need to synthesize particles of defined shape. In nature, highly homogeneous MNP are found within magnetotactic bacteria, a unique bacteria capable of producing magnetite nanoparticles internally under ambient conditions. Biomineralisation proteins control the properties of the MNPs, enhancing their homogeneity. One of these proteins, Mms6, has been successfully isolated and used in vitro as an additive in room-temperature co-precipitation reactions (RTCP) to produce particles of defined mono-dispersed size & morphology. When considering future industrial scale-up it is crucial to consider the costs and feasibility of an additive, as an additive that is not readily available or easily synthesized at a competitive price will not be sustainable. As such, additives selected for this research are inspired by the functional groups of biomineralisation proteins, but cost-effective, environmentally friendly, and compatible with scale-up. Diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA) have been successfully used in RTCP to modulate the properties of particles synthesized, leading to the formation of octahedral nanoparticles with no use of organic solvents, heating, or toxic precursors. By extending this principle to a fluidic system, ongoing research will reveal whether the amine additives can also exert morphological control in an environment which is suited toward higher particle yield. Two fluidic systems have been employed; a peristaltic turbulent flow mixing system suitable for the rapid production of MNP, and a macrofluidic system for the synthesis of tailored nanomaterials under a laminar flow regime. The presence of the amine additives in the turbulent flow system in initial results appears to offer similar morphological control as observed under RTCP conditions, with higher proportions of octahedral particles formed. This is a proof of concept which may pave the way to green synthesis of tailored MNP on an industrial scale. Mms6 and amine additives have been used in the macrofluidic system, with Mms6 allowing magnetite to be synthesized at unfavourable ferric ratios, but no longer influencing particle size. This suggests this synthetic technique while still benefiting from the addition of additives, may not allow additives to fully influence the particles formed due to the faster timescale of reaction. The amine additives have been tested at various concentrations, the results of which will be discussed in this paper.

Keywords: bioinspired, green synthesis, fluidic, magnetite, morphological control, scale-up

Procedia PDF Downloads 113
484 Towards Computational Fluid Dynamics Based Methodology to Accelerate Bioprocess Scale Up and Scale Down

Authors: Vishal Kumar Singh

Abstract:

Bioprocess development is a time-constrained activity aimed at harnessing the full potential of culture performance in an ambience that is not natural to cells. Even with the use of chemically defined media and feeds, a significant amount of time is devoted in identifying the apt operating parameters. In addition, the scale-up of these processes is often accompanied by loss of antibody titer and product quality, which further delays the commercialization of the drug product. In such a scenario, the investigation of this disparity of culture performance is done by further experimentation at a smaller scale that is representative of at-scale production bioreactors. These scale-down model developments are also time-intensive. In this study, a computation fluid dynamics-based multi-objective scaling approach has been illustrated to speed up the process transfer. For the implementation of this approach, a transient multiphase water-air system has been studied in Ansys CFX to visualize the air bubble distribution and volumetric mass transfer coefficient (kLa) profiles, followed by the design of experiment based parametric optimization approach to define the operational space. The proposed approach is completely in silico and requires minimum experimentation, thereby rendering a high throughput to the overall process development.

Keywords: bioprocess development, scale up, scale down, computation fluid dynamics, multi-objective, Ansys CFX, design of experiment

Procedia PDF Downloads 82
483 Mortar Positioning Effects on Uniaxial Compression Behavior in Hollow Concrete Block Masonry

Authors: José Álvarez Pérez, Ramón García Cedeño, Gerardo Fajardo-San Miguel, Jorge H. Chávez Gómez, Franco A. Carpio Santamaría, Milena Mesa Lavista

Abstract:

The uniaxial compressive strength and modulus of elasticity in hollow concrete block masonry (HCBM) represent key mechanical properties for structural design considerations. These properties are obtained through experimental tests conducted on prisms or wallettes and depend on various factors, with the HCB contributing significantly to overall strength. One influential factor in the compressive behaviour of masonry is the thickness and method of mortar placement. Mexican regulations stipulate mortar placement over the entire net area (full-shell) for strength computation based on the gross area. However, in professional practice, there's a growing trend to place mortar solely on the lateral faces. Conversely, the United States of America standard dictates mortar placement and computation over the net area of HCB. The Canadian standard specifies mortar placement solely on the lateral face (Face-Shell-Bedding), where computation necessitates the use of the effective load area, corresponding to the mortar's placement area. This research aims to evaluate the influence of different mortar placement methods on the axial compression behaviour of HCBM. To achieve this, an experimental campaign was conducted, including: (1) 10 HCB specimens with mortar on the entire net area, (2) 10 HCB specimens with mortar placed on the lateral faces, (3) 10 prisms of 2-course HCB under axial compression with mortar in full-shell, (4) 10 prisms of 2-course HCB under axial compression with mortar in face-shell-bedding, (5) 10 prisms of 3-course HCB under axial compression with mortar in full-shell, (6) 10 prisms of 3-course HCB under axial compression with mortar in face-shell-bedding, (7) 10 prisms of 4-course HCB under axial compression with mortar in full-shell, and, (8) 10 prisms of 4-course HCB under axial compression with mortar in face-shell-bedding. A combination of sulphur and fly ash in a 2:1 ratio was used for the capping material, meeting the average compressive strength requirement of over 35 MPa as per NMX-C-036 standards. Additionally, a mortar with a strength of over 17 MPa was utilized for the prisms. The results indicate that prisms with mortar placed over the full-shell exhibit higher strength compared to those with mortar over the face-shell-bedding. However, the elastic modulus was lower for prisms with mortar placement over the full-shell compared to face-shell bedding.

Keywords: masonry, hollow concrete blocks, mortar placement, prisms tests

Procedia PDF Downloads 61
482 Applying Element Free Galerkin Method on Beam and Plate

Authors: Mahdad M’hamed, Belaidi Idir

Abstract:

This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate hole

Keywords: numerical computation, element-free Galerkin (EFG), moving least squares (MLS), meshless methods

Procedia PDF Downloads 283
481 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform

Procedia PDF Downloads 307
480 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems

Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong

Abstract:

For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.

Keywords: differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization

Procedia PDF Downloads 396
479 Symbolic Computation via Grobner Basis

Authors: Haohao Wang

Abstract:

The purpose of this paper is to find elimination ideals via Grobner basis. We first introduce the concept of Grobner bases, and then, we provide computational algorithms to applications for curves and surfaces.

Keywords: curves, surfaces, Grobner basis, elimination

Procedia PDF Downloads 299
478 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System

Authors: Rafal Michalski, Jakub Zygadlo

Abstract:

We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.

Keywords: atomic matters, crystal electric field (CEF) spin-orbit coupling, localized states, electron subshell, fine electronic structure

Procedia PDF Downloads 319
477 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system

Procedia PDF Downloads 154
476 A Unified Webcam Proctoring Solution on Edge

Authors: Saw Thiha, Jay Rajasekera

Abstract:

A boom in video conferencing generated millions of hours of video data daily to be analyzed. However, such enormous data pose certain scalability issues to be analyzed efficiently, let alone do it in real-time, as online conferences can involve hundreds of people and can last for hours. This paper proposes an efficient online proctoring solution that can analyze the online conferences real-time on edge devices such as Android, iOS, and desktops. Since the computation can be done upfront on the devices where online conferences take place, it can scale well without requiring intensive resources such as GPU servers and complex cloud infrastructure. According to the linear models, face orientation does indeed impact the perceived eye openness. Also, the proposed z score facial landmark standardization was proven to be functional in detecting face orientation and contributed to classifying eye blinks with single eyelid distance computation while achieving a better f1 score and accuracy than the Eye Aspect Ratio (EAR) threshold method. Last but not least, the authors implemented the solution natively in the MediaPipe framework and open-sourced it along with the reproducible experimental results on GitHub. The solution provides face orientation, eye blink, facial activity, and translation detections out of the box and is highly customizable and extensible.

Keywords: android, desktop, edge computing, blink, face orientation, facial activity and translation, MediaPipe, open source, real-time, video conference, web, iOS, Z score facial landmark standardization

Procedia PDF Downloads 97
475 Bioinformatics High Performance Computation and Big Data

Authors: Javed Mohammed

Abstract:

Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.

Keywords: high performance, big data, parallel computation, molecular data, computational biology

Procedia PDF Downloads 363
474 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System

Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu

Abstract:

Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.

Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model

Procedia PDF Downloads 111
473 Copper (II) Complex of New Tetradentate Asymmetrical Schiff Base Ligand: Synthesis, Characterization, and Catecholase-Mimetic Activity

Authors: Cahit Demetgul, Sahin Bayraktar, Neslihan Beyazit

Abstract:

Metalloenzymes are enzyme proteins containing metal ions, which are directly bound to the protein or to enzyme-bound nonprotein components. One of the major metalloenzymes that play a key role in oxidation reactions is catechol oxidase, which shows catecholase activity i.e. oxidation of a broad range of catechols to quinones through the four-electron reduction of molecular oxygen to water. Studies on the model compounds mimicking the catecholase activity are very useful and promising for the development of new, more efficient bioinspired catalysts, for in vitro oxidation reactions. In this study, a new tetradentate asymmetrical Schiff-base and its Cu(II) complex were synthesized by condensation of 4-nitro-1,2-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Cu(II) salt, respectively. The prepared compounds were characterized by elemental analysis, FT-IR, NMR, UV-Vis and magnetic susceptibility. The catecholase-mimicking activity of the new Schiff Base Cu(II) complex was performed for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) in methanol at 25 °C, where the electronic spectra were recorded at different time intervals. The yield of the quinone (3,5-DTBQ) was determined from the measured absorbance at 400 nm of the resulting solution. The compatibility of catalytic reaction with Michaelis-Menten kinetics was also investigated. In conclusion, we have found that our new Schiff Base Cu(II) complex presents a significant capacity to catalyze the oxidation reaction of the catechol to o-quinone.

Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals

Procedia PDF Downloads 309
472 Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration

Authors: Smaran Manchala

Abstract:

Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations.

Keywords: CKKS scheme, runtime efficiency, fully homomorphic encryption (FHE), GPU acceleration, vector parallelization

Procedia PDF Downloads 23
471 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 113
470 Heuristic Algorithms for Time Based Weapon-Target Assignment Problem

Authors: Hyun Seop Uhm, Yong Ho Choi, Ji Eun Kim, Young Hoon Lee

Abstract:

Weapon-target assignment (WTA) is a problem that assigns available launchers to appropriate targets in order to defend assets. Various algorithms for WTA have been developed over past years for both in the static and dynamic environment (denoted by SWTA and DWTA respectively). Due to the problem requirement to be solved in a relevant computational time, WTA has suffered from the solution efficiency. As a result, SWTA and DWTA problems have been solved in the limited situation of the battlefield. In this paper, the general situation under continuous time is considered by Time based Weapon Target Assignment (TWTA) problem. TWTA are studied using the mixed integer programming model, and three heuristic algorithms; decomposed opt-opt, decomposed opt-greedy, and greedy algorithms are suggested. Although the TWTA optimization model works inefficiently when it is characterized by a large size, the decomposed opt-opt algorithm based on the linearization and decomposition method extracted efficient solutions in a reasonable computation time. Because the computation time of the scheduling part is too long to solve by the optimization model, several algorithms based on greedy is proposed. The models show lower performance value than that of the decomposed opt-opt algorithm, but very short time is needed to compute. Hence, this paper proposes an improved method by applying decomposition to TWTA, and more practical and effectual methods can be developed for using TWTA on the battlefield.

Keywords: air and missile defense, weapon target assignment, mixed integer programming, piecewise linearization, decomposition algorithm, military operations research

Procedia PDF Downloads 336
469 Body Armours in Amazonian Fish

Authors: Fernando G. Torres, Donna M. Ebenstein, Monica Merino

Abstract:

Most fish are covered by a protective external armour. The characteristics of these armours depend on the individual elements that form them, such as scales, scutes or dermal plates. In this work, we assess the properties of two different types of protective elements: scales from A. gigas and dermal plates from P. pardalis. A. Gigas and P. Pardalis are two Amazonian fish with a rather prehistoric aspect. They have large scales and dermal plates that form two different types of protective body armours. Although both scales and dermal plates are formed by collagen and hydroxyapatite, their structures display remarkable differences. The structure and composition of the samples were assessed by means of X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). Morphology studies were carried out using a Scanning Electron Microscopy (SEM). Nanoindentation tests were performed to measure the reduced moduli in A. gigas scales and P. pardalis plates. The similarities and differences between scales and dermal plates are discussed based on the experimental results. Both protective armours are designed to be lightweight, flexible and tough. A. Gigas scales are are light laminated composites, while P. pardalis dermal plates show a sandwich like structure with dense outer layers and a porous inner matrix. It seems that the armour of P. pardalis is more suited for a bottom-dwelling fish and allows for protection against predators. The scales from A. Gigas are more adapted to give protection to a swimming fish. The information obtained from these studies is also important for the development of bioinspired nanocomposites, with potential applications in the biomedical field.

Keywords: pterygoplichthys pardalis, dermal plates arapaima gigas, fish scales

Procedia PDF Downloads 391
468 The Relevance of Bioinspired Architecture and Programmable Materials for Development of 4D Printing

Authors: Daniela Ribeiro, Silvia Lenyra Meirelles Campos Titotto

Abstract:

Nature has long served as inspiration for humans, since various technologies present in society are a mirror of the natural world. This is due to the fact that nature has adapted for millions of years to possess the characteristics they have today. In this sense, man takes advantage of this situation and uses it to produce his own objects and solve his problems. This concept, which is known as biomimetics, is something relatively new, once it was only denominated in 1957. Nature, in turn, responds directly and consistently to environmental conditions. For example, plants that have touch sensitivity contract with this stimulus. Such a situation resembles a technology that has been gaining ground in the contemporary world of scientific innovation: 4D printing. 4D printing technology emerged in 2012 as a complement to 3D printing and presents numerous benefits since it provides a deficiency in the second kind of printing mentioned. This type of technology reaches several areas, since it is capable of producing materials that change over time, be it in its composition, form or properties and is such a characteristic that determines the additional dimension of the material. Precisely because of these factors, this type of impression resembles nature and is related to biomimetics. However, only certain types of ‘intelligent’ materials are generally employed in this type of impression, since only they will respond well to such stimuli, one of which is the hydrogel. The hydrogel is a biocompatible polymer that presents several applications, these in turn will be briefly mentioned in this article to exemplify its importance and the reason for choosing this material as object of study. In addition, aspects that configure 4D printing will be treated here, such as the importance of architecture, programming language and the reversibility of printed materials.

Keywords: 4D printing, biomimetic, hydrogel, materials

Procedia PDF Downloads 169