Search results for: Zhiwei Wang
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1366

Search results for: Zhiwei Wang

1306 Assertion-Driven Test Repair Based on Priority Criteria

Authors: Ruilian Zhao, Shukai Zhang, Yan Wang, Weiwei Wang

Abstract:

Repairing broken test cases is an expensive and challenging task in evolving software systems. Although an automated repair technique with intent preservation has been proposed, but it does not take into account the association between test repairs and assertions, leading to a large number of irrelevant candidates and decreasing the repair capability. This paper proposes an assertion-driven test repair approach. Furthermore, an intent-oriented priority criterion is raised to guide the repair candidate generation, making the repairs closer to the intent of the test. In more detail, repair targets are determined through post-dominance relations between assertions and the methods that directly cause compilation errors. Then, test repairs are generated from the target in a bottom-up way, guided by the intent-oriented priority criteria. Finally, the generated repair candidates are prioritized to match the original test intent. The approach is implemented and evaluated on the benchmark of 4 open-source programs and 91 broken test cases. The result shows that the approach can fix 89% (81/91) of broken test cases, which is more effective than the existing intentpreserved test repair approach, and our intent-oriented priority criteria work well.

Keywords: test repair, test intent, software test, test case evolution

Procedia PDF Downloads 130
1305 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields

Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-Xin Wang

Abstract:

The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.

Keywords: supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings(FW-H) equations, nozzle size

Procedia PDF Downloads 413
1304 Large-Scale Photovoltaic Generation System Connected to HVDC Grid with Centralized High Voltage and High Power DC/DC Converter

Authors: Xinke Huang, Huan Wang, Lidong Guo, Changbin Ju, Runbiao Liu, Shanshan Meng, Yibo Wang, Honghua Xu

Abstract:

Large-scale photovoltaic (PV) generation system connected to HVDC grid has many advantages compared to its counterpart of AC grid. DC connection can solve many problems that AC connection faces, such as the grid-connection and power transmission, and DC connection is the tendency. DC/DC converter as the most important device in the system has become one of the hot spots recently. The paper proposes a centralized DC/DC converter which uses Boost Full Bridge Isolated DC/DC Converter(BFBIC) topology and combination through input parallel output series(IPOS) method to improve power capacity and output voltage to match with the HVDC grid voltage. Meanwhile, it adopts input current sharing control strategy to realize input current and output voltage balance. A ±30kV/1MW system is modeled in MATLAB/SIMULINK, and a downscaled ±10kV/200kW DC/DC converter platform is built to verify the proposed topology and control strategy.

Keywords: photovoltaic generation, cascaded dc/dc converter, galvanic isolation, high-voltage, direct current (HVDC)

Procedia PDF Downloads 443
1303 Trajectory Design and Power Allocation for Energy -Efficient UAV Communication Based on Deep Reinforcement Learning

Authors: Yuling Cui, Danhao Deng, Chaowei Wang, Weidong Wang

Abstract:

In recent years, unmanned aerial vehicles (UAVs) have been widely used in wireless communication, attracting more and more attention from researchers. UAVs can not only serve as a relay for auxiliary communication but also serve as an aerial base station for ground users (GUs). However, limited energy means that they cannot work all the time and cover a limited range of services. In this paper, we investigate 2D UAV trajectory design and power allocation in order to maximize the UAV's service time and downlink throughput. Based on deep reinforcement learning, we propose a depth deterministic strategy gradient algorithm for trajectory design and power distribution (TDPA-DDPG) to solve the energy-efficient and communication service quality problem. The simulation results show that TDPA-DDPG can extend the service time of UAV as much as possible, improve the communication service quality, and realize the maximization of downlink throughput, which is significantly improved compared with existing methods.

Keywords: UAV trajectory design, power allocation, energy efficient, downlink throughput, deep reinforcement learning, DDPG

Procedia PDF Downloads 151
1302 A Students' Ability Analysis Methods, Devices, Electronic Equipment and Storage Media Design

Authors: Dequn Teng, Tianshuo Yang, Mingrui Wang, Qiuyu Chen, Xiao Wang, Katie Atkinson

Abstract:

Currently, many students are kind of at a loss in the university due to the complex environment within the campus, where every information within the campus is isolated with fewer interactions with each other. However, if the on-campus resources are gathered and combined with the artificial intelligence modelling techniques, there will be a bridge for not only students in understanding themselves, and the teachers will understand students in providing a much efficient approach in education. The objective of this paper is to provide a competency level analysis method, apparatus, electronic equipment, and storage medium. It uses a user’s target competency level analysis model from a plurality of predefined candidate competency level analysis models by obtaining a user’s promotion target parameters, promotion target parameters including at least one of the following parameters: target profession, target industry, and the target company, according to the promotion target parameters. According to the parameters, the model analyzes the user’s ability level, determines the user’s ability level, realizes the quantitative and personalized analysis of the user’s ability level, and helps the user to objectively position his ability level.

Keywords: artificial intelligence, model, university, education, recommendation system, evaluation, job hunting

Procedia PDF Downloads 144
1301 Artificial Neurons Based on Memristors for Spiking Neural Networks

Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi

Abstract:

Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to its high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO₂-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO₂-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.

Keywords: leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity

Procedia PDF Downloads 135
1300 Noncritical Phase-Matched Fourth Harmonic Generation of Converging Beam by Deuterated Potassium Dihydrogen Phosphate Crystal

Authors: Xiangxu Chai, Bin Feng, Ping Li, Deyan Zhu, Liquan Wang, Guanzhong Wang, Yukun Jing

Abstract:

In high power large-aperture laser systems, such as the inertial confinement fusion project, the Nd: glass laser (1053nm) is usually needed to be converted to ultraviolet (UV) light and the fourth harmonic generation (FHG) is one of the most favorite candidates to achieve UV light. Deuterated potassium dihydrogen phosphate (DKDP) crystal is an optimal choice for converting the Nd: glass radiation to the fourth harmonic laser by noncritical phase matching (NCPM). To reduce the damage probability of focusing lens, the DKDP crystal is suggested to be set before the focusing lens. And a converging beam enters the FHG crystal consequently. In this paper, we simulate the process of FHG in the scheme and the dependence of FHG efficiency on the lens’ F is derived. Besides, DKDP crystal with gradient deuterium is proposed to realize the NCPM FHG of the converging beam. At every position, the phase matching is achieved by adjusting the deuterium level, and the FHG efficiency increases as a result. The relation of the lens’ F with the deuterium gradient is investigated as well.

Keywords: fourth harmonic generation, laser induced damage, converging beam, DKDP crystal

Procedia PDF Downloads 230
1299 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming

Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi

Abstract:

Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.

Keywords: Gas production, hydrate, process integration, steam reforming

Procedia PDF Downloads 184
1298 Beyond Replicating Linguistic Elements: Novel Concept Combinations in Multilingual Children

Authors: Xiao-lei Wang

Abstract:

The Novel Concept Combination (NCC) refers to the unique ability of multilingual children to creatively merge and integrate different linguistic and cultural elements to form innovative and original concepts. Children raised with more than one language often exhibit this skill in their daily communication, such as creating innovative metaphors that enrich their communication, showcasing their creativity in conveying the essence of their messages. This paper explores NCC abilities in multilingual children by focusing on two male trilingual siblings exposed to Chinese, French, and English from birth. The siblings were observed for 19 years in their daily context. Seventy-six hours of video-recorded data were used for this study (38 hours for each participant). A coding scheme developed by Wang et al. was employed to code the recorded data. The results suggest that these multilingual siblings proportionally increased their NCC skills over the years, emerging at age 3 and peaking at age 15. The characteristic of their NCC lies in their capacity to not merely replicate linguistic elements of different languages but to recreate, reshape, and reconstruct novel ideas in communication, enriching their interactions. The paper also addresses the educational implications for educators and parents, emphasizing the importance of valuing these novel ideas in everyday environments to encourage NCC development. This, in turn, contributes to cognitive and social development.

Keywords: multilingual children, novel concept combination, multilingual creativity, linguistic richness

Procedia PDF Downloads 68
1297 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation

Authors: W. Du, X. Wang, Jun Cao, H. F. Wang

Abstract:

Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.

Keywords: frequency regulation, virtual inertia control, installation locations, observability, wind farms

Procedia PDF Downloads 398
1296 The Sapir-Whorf Hypothesis and Multicultural Effects on Translators: A Case Study from Chinese Ethnic Minority Literature

Authors: Yuqiao Zhou

Abstract:

The Sapir-Whorf hypothesis (SWH) emphasizes the effect produced by language on people’s minds. According to linguistic relativity, language has evolved over the course of human life on earth, and, in turn, the acquisition of language shapes learners’ thoughts. Despite much attention drawn by SWH, few scholars have attempted to analyse people’s thoughts via their literary works. And yet, the linguistic choices that create a narrative can enable us to examine its writer’s thoughts. Still, less work has been done on the impact of language on the minds of bilingual people. Internationalization has resulted in an increasing number of bilingual and multilingual individuals. In China, where more than one hundred languages are used for communication, most people are bilingual in Mandarin Chinese (the official language of China) and their own dialect. Taking as its corpus the ethnic minority myth of Ge Sa-er Wang by Alai and its English translation by Goldblatt and Lin, this paper aims to analyse the effects of culture on bilingual people’s minds. It will first analyse Alai’s thoughts on using the original version of Ge Sa-er Wang; next, it will examine the thoughts of the two translators by looking at translation choices made in the English version; finally, it will compare the cultural influences evident in the thoughts of Alai, and Goldblatt and Lin. Whereas Alai can speak two Sino-Tibetan languages – Mandarin Chinese and Tibetan – Goldblatt and Lin can speak two languages from different families – Mandarin Chinese (a Sino-Tibetan language) and English (an Indo-European language). The results reveal two systems of thought existing in the translators’ minds; Alai’s text, on the other hand, does not reveal a significant influence from North China, where Mandarin Chinese originated. The findings reveal the inconsistency of a second language’s influence on people’s minds. Notably, they suggest that the more different the two languages are, the greater the influence produced by the second language culture on people’s thoughts. It is hoped that this research will expand the scope of SWH as well as shed light on future translation studies on ethnic minority literature.

Keywords: Sapir-Whorf hypothesis, cultural translation, cultural-specific items, Ge Sa-er Wang, ethnic minority literature, Tibet

Procedia PDF Downloads 121
1295 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability

Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang

Abstract:

Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.

Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)

Procedia PDF Downloads 483
1294 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm

Authors: Xiang Jianhong, Wang Cong, Wang Linyu

Abstract:

With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.

Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal

Procedia PDF Downloads 129
1293 Recommended Practice for Experimental Evaluation of the Seepage Sensitivity Damage of Coalbed Methane Reservoirs

Authors: Hao Liu, Lihui Zheng, Chinedu J. Okere, Chao Wang, Xiangchun Wang, Peng Zhang

Abstract:

The coalbed methane (CBM) extraction industry (an unconventional energy source) is yet to promulgated an established standard code of practice for the experimental evaluation of sensitivity damage of coal samples. The existing experimental process of previous researches mainly followed the industry standard for conventional oil and gas reservoirs (CIS). However, the existing evaluation method ignores certain critical differences between CBM reservoirs and conventional reservoirs, which could inevitably result in an inaccurate evaluation of sensitivity damage and, eventually, poor decisions regarding the formulation of formation damage prevention measures. In this study, we propose improved experimental guidelines for evaluating seepage sensitivity damage of CBM reservoirs by leveraging on the shortcomings of the existing methods. The proposed method was established via a theoretical analysis of the main drawbacks of the existing methods and validated through comparative experiments. The results show that the proposed evaluation technique provided reliable experimental results that can better reflect actual reservoir conditions and correctly guide future development of CBM reservoirs. This study is pioneering the research on the optimization of experimental parameters for efficient exploration and development of CBM reservoirs.

Keywords: coalbed methane, formation damage, permeability, unconventional energy source

Procedia PDF Downloads 128
1292 Multi-Scale Control Model for Network Group Behavior

Authors: Fuyuan Ma, Ying Wang, Xin Wang

Abstract:

Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.

Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior

Procedia PDF Downloads 23
1291 Proposition on Improving Environmental Forensic System in China

Authors: Huilei Wang, Yuanfeng Wang

Abstract:

In the early period of China, economy developed rapidly at the cost of environment. Recently, it is generally recognized that the heavily polluted environment not only puts a brake on economic development but also paces negative impact on people’ health as well as probably next decades of generations. Accordingly, the latest Environmental Protection Law revised in 2014 makes a clear-cut division of environmental responsibility and regulates stricter penalties of breaching law. As the new environmental law is enforced gradually, environmental forensic is increasingly required in the process of ascertaining facts in judicial proceedings of environmental cases. Based on the outcomes of documentary analysis for all environmental cases judged on the basis of new environmental law, it is concluded that there still exists problems in present system of environmental forensic. Thus, this paper is aimed to make proposition on improving Chinese environmental forensic system, which involves: (i) promoting capability of environmental forensic system (EFS) to handle professional questions; (ii) develop price mechanism; (iii) multi-departments cooperate to establish unifying and complete EFS system;(iv) enhance the probative value of results of EFS. Such protocol for amending present regulation on environmental forensic is of significant importance because a quality report of environmental forensic will contributes to providing strong probative evidence of culprits’ activity of releasing contaminant into environment, degree of damages for victims and above all, causality between the behavior of public nuisance and damages.

Keywords: China, environmental cases, environmental forensic system, proposition

Procedia PDF Downloads 379
1290 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 307
1289 A Quasi Z-Source Based Full Bridge Isolated DC-DC Converter as a Power Module for PV System Connected to HVDC Grid

Authors: Xinke Huang, Huan Wang, Lidong Guo, Changbin Ju, Runbiao Liu, Guoen Cao, Yibo Wang, Honghua Xu

Abstract:

Grid connected photovoltaic (PV) power system is to be developed in the direction of large-scale, clustering. Large-scale PV generation systems connected to HVDC grid have many advantages compared to its counterpart of AC grid, and DC connection is the tendency. DC/DC converter as the most important device in the system, has become one of the hot spots recently. The paper proposes a Quasi Z-Source(QZS) based Boost Full Bridge Isolated DC/DC Converter(BFBIC) topology as a basis power module and combination through input parallel output series(IPOS) method to improve power capacity and output voltage to match with the HVDC grid. The topology has both traditional voltage source and current source advantages, it permit the H-bridge short through and open circuit, which adopt utility duty cycle control and achieved input current and output voltage balancing through input current sharing control strategy. A ±10kV/200kW system model is built in MATLAB/SIMULINK to verify the proposed topology and control strategy.

Keywords: PV Generation System, Cascaded DC/DC converter, HVDC, Quasi Z Source Converter

Procedia PDF Downloads 393
1288 The Impact of Character Strengths on Employee Well-Being: The Mediating Effect of Work-Family Relationship

Authors: Jing Wang, Yong Wang

Abstract:

For organizational development, employee well-being is critical and has been influenced deeply by character strengths. Therefore, investigating the relationship between character strengths and employee well-being and its inner mechanism is crucial. In this study, we explored the features of Chinese employees' character strengths, studied the relationship between character strengths and employees' subjective well-being, work well-being and psychological well-being respectively, and examined the mediating effect of work-family relationship (both enrichment and conflict). An online survey was conducted. The results showed that: (1) The top five character strengths of Chinese employees were gratitude, citizenship, kindness, appreciation of beauty and excellence, justice, while the bottom five ones were creativity, authenticity, bravery, spirituality, open-mindedness. (2) Subjective well-being was significantly correlated to courage, humanity, transcendence and justice. Work well-being was significantly correlated to wisdom, courage, humanity, justice and transcendence. Psychological well-being was significantly correlated to all the above five character strengths and temperance. (3) Wisdom and humanity influenced Chinese employees’ subjective well-being through work-family enrichment. Justice enhanced psychological well-being via work-family enrichment; meanwhile, it also played a positive role in subjective well-being, work well-being, and psychological well-being by decreasing the family-work conflict. At the end of this paper, some theoretical and practical contributions to organizational management were further discussed.

Keywords: character strengths, work-family conflict, work-family enrichment, employee well-being, work well-being

Procedia PDF Downloads 390
1287 Symbolic Computation via Grobner Basis

Authors: Haohao Wang

Abstract:

The purpose of this paper is to find elimination ideals via Grobner basis. We first introduce the concept of Grobner bases, and then, we provide computational algorithms to applications for curves and surfaces.

Keywords: curves, surfaces, Grobner basis, elimination

Procedia PDF Downloads 300
1286 Improvisation of N₂ Foam with Black Rice Husk Ash in Enhanced Oil Recovery

Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song yan Li, Wang Lei, Zhoujie Wang, Zheng Lei

Abstract:

Because nanoparticles have the potential to improve foam stability, only a small amount of surfactant or polymer is required to control gas mobility in the reservoir. Numerous researches have revealed that this specific application is in use. The goal is to improve foam formation and foam stability. As a result, the foam stability and foam ability of black rice husk ash were investigated. By injecting N₂ gases into a core flood condition, black rice husk ash was used to produce stable foam. The properties of black rice husk ash were investigated using a variety of characterization techniques. The black rice husk ash was mixed with the best-performing anionic foaming surfactants at various concentrations (ppm). Sodium dodecyl benzene sulphonate was the anionic surfactant used (SDBS). In this article, the N₂ gas- black rice husk ash (BRHA) with high Silica content is shown to be beneficial for foam stability and foam ability. For the test, a 30 cm sand pack was prepared. For the experiment, N₂ gas cylinders and SDBS surfactant liquid cylinders were used. Two N₂ gas experiments were carried out: one without a sand pack and one with a sand pack and oil addition. The black rice husk and SDBS surfactant concentration was 0.5 percent. The high silica content of black rice husk ash has the potential to improve foam stability in sand pack conditions, which is beneficial. On N₂ foam, there is an increase in black rice husk ash particles, which may play an important role in oil recovery.

Keywords: black rice husk ash nanoparticle, surfactant, N₂ foam, sand pack

Procedia PDF Downloads 211
1285 Real-Time Monitoring Approaches of Groundwater Conductivity and Level to Pre-Alert the Seawater Intrusion in Sand Coast of Liaodong Bay of China

Authors: Yuguang Wang, Chuanjun Wang

Abstract:

At present, many coastal areas around the world suffer from seawater intrusion. Seawater intrusion is the superimposed result of two factors which are nature and human social economical activities in particular area. In recent years, due to excessive exploitation of groundwater, the seawater intrusion phenomenon aggravate in coastal zone of the Bohai and Huanghai seas in our country. Moreover, with sea-level rising, the original hydrodynamic equilibrium between saltwater and freshwater has been damaged to a certain extent, and it will further aggravate seawater intrusion in the land plains. In addition, overexploitation of groundwater declined groundwater level and increase saltwater intrusion in coastal areas. Therefore, in view of the sensitivity and vulnerability of the impact of sea-level rise in the future, the risk of sea-level rise in coastal zone should be considered, reasonable exploitation, utilization and management of coastal zone’s groundwater should be formulated. The response mechanism of sea-level rise should be studied to prevent and reduce the harm of seawater intrusion, which has important theoretical and realistic significances. In this paper, through the long-term monitoring of groundwater level and conductibility in the transition region of seawater intrusion for the sand coast area, realtimely master the situation of seawater intrusion. Combined with the seasonal exploitation station of groundwater and sea level variation, early alert the seawater intrusion to prevent and reduce the harm of seawater intrusion.

Keywords: groundwater level, sea level, seawater intrusion, sand coast

Procedia PDF Downloads 472
1284 Advancement in Adhesion and Osteogenesis of Stem Cells with Histatin Coated 3D-Printed Bio-Ceramics

Authors: Haiyan Wang, Dongyun Wang, Yongyong Yan, Richard T. Jaspers, Gang Wu

Abstract:

Mesenchymal stem cell and 3D printing-based bone tissue engineering present a promising technique to repair large-volume bone defects. Its success is highly dependent on cell attachment, spreading, osteogenic differentiation, and in vivo survival of stem cells on 3D-printed scaffolds. In this study, human salivary histatin-1 (Hst1) was utilized to enhance the interactions between human adipose-derived stem cells (hASCs) and 3D-printed β-tricalcium phosphate (β-TCP) bioceramic scaffolds. Fluorescent images showed that Hst1 significantly enhanced the adhesion of hASCs to both bioinert glass and 3D-printed β-TCP scaffold. In addition, Hst1 was associated with significantly higher proliferation and osteogenic differentiation of hASCs on 3D-printed β-TCP scaffolds. Moreover, coating 3D-printed β-TCP scaffolds with histatin significantly promotes the survival of hASCs in vivo. The ERK and p38 but not JNK signaling was found to be involved in the superior adhesion of hASCs to β-TCP scaffolds with the aid of Hst1. In conclusion, Hst1 could significantly promote the adhesion, spreading, osteogenic differentiation, and in vivo survival of hASCs on 3D-printed β-TCP scaffolds, bearing a promising application in stem cell/3D printing-based constructs for bone tissue engineering.

Keywords: 3d printing, adipose-derived stem cells, bone tissue engineering, histatin-1, osteogenesis

Procedia PDF Downloads 64
1283 Real-Time Pedestrian Detection Method Based on Improved YOLOv3

Authors: Jingting Luo, Yong Wang, Ying Wang

Abstract:

Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.

Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3

Procedia PDF Downloads 143
1282 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls

Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu

Abstract:

Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.

Keywords: android, API Calls, machine learning, permissions combination

Procedia PDF Downloads 330
1281 Hot Deformation Behavior and Recrystallization of Inconel 718 Superalloy under Double Cone Compression

Authors: Wang Jianguo, Ding Xiao, Liu Dong, Wang Haiping, Yang Yanhui, Hu Yang

Abstract:

The hot deformation behavior of Inconel 718 alloy was studied by uniaxial compression tests under the deformation temperature of 940~1040℃ and strain rate of 0.001-10s⁻¹. The double cone compression (DCC) tests develop strains range from 30% to the 79% strain including all intermediate values of stains at different temperature (960~1040℃). DCC tests were simulated by finite element software which shown the strain and strain rates distribution. The result shows that the peak stress level of the alloy decreased with increasing deformation temperature and decreasing strain rate, which could be characterized by a Zener-Hollomon parameter in the hyperbolic-sine equation. The characterization method of hot processing window containing recrystallization volume fraction and average grain size was proposed for double cone compression test of uniform coarse grain, mixed crystal and uniform fine grain double conical specimen in hydraulic press and screw press. The results show that uniform microstructures can be obtained by low temperature with high deformation followed by high temperature with small deformation on the hydraulic press and low temperature, medium deformation, multi-pass on the screw press. The two methods were applied in industrial forgings process, and the forgings with uniform microstructure were obtained successfully.

Keywords: inconel 718 superalloy, hot processing windows, double cone compression, uniform microstructure

Procedia PDF Downloads 220
1280 Integrating Virtual Reality and Building Information Model-Based Quantity Takeoffs for Supporting Construction Management

Authors: Chin-Yu Lin, Kun-Chi Wang, Shih-Hsu Wang, Wei-Chih Wang

Abstract:

A construction superintendent needs to know not only the amount of quantities of cost items or materials completed to develop a daily report or calculate the daily progress (earned value) in each day, but also the amount of quantities of materials (e.g., reinforced steel and concrete) to be ordered (or moved into the jobsite) for performing the in-progress or ready-to-start construction activities (e.g., erection of reinforced steel and concrete pouring). These daily construction management tasks require great effort in extracting accurate quantities in a short time (usually must be completed right before getting off work every day). As a result, most superintendents can only provide these quantity data based on either what they see on the site (high inaccuracy) or the extraction of quantities from two-dimension (2D) construction drawings (high time consumption). Hence, the current practice of providing the amount of quantity data completed in each day needs improvement in terms of more accuracy and efficiency. Recently, a three-dimension (3D)-based building information model (BIM) technique has been widely applied to support construction quantity takeoffs (QTO) process. The capability of virtual reality (VR) allows to view a building from the first person's viewpoint. Thus, this study proposes an innovative system by integrating VR (using 'Unity') and BIM (using 'Revit') to extract quantities to support the above daily construction management tasks. The use of VR allows a system user to be present in a virtual building to more objectively assess the construction progress in the office. This VR- and BIM-based system is also facilitated by an integrated database (consisting of the information and data associated with the BIM model, QTO, and costs). In each day, a superintendent can work through a BIM-based virtual building to quickly identify (via a developed VR shooting function) the building components (or objects) that are in-progress or finished in the jobsite. And he then specifies a percentage (e.g., 20%, 50% or 100%) of completion of each identified building object based on his observation on the jobsite. Next, the system will generate the completed quantities that day by multiplying the specified percentage by the full quantities of the cost items (or materials) associated with the identified object. A building construction project located in northern Taiwan is used as a case study to test the benefits (i.e., accuracy and efficiency) of the proposed system in quantity extraction for supporting the development of daily reports and the orders of construction materials.

Keywords: building information model, construction management, quantity takeoffs, virtual reality

Procedia PDF Downloads 132
1279 Analysis of Accurate Direct-Estimation of the Maximum Power Point and Thermal Characteristics of High Concentration Photovoltaic Modules

Authors: Yan-Wen Wang, Chu-Yang Chou, Jen-Cheng Wang, Min-Sheng Liao, Hsuan-Hsiang Hsu, Cheng-Ying Chou, Chen-Kang Huang, Kun-Chang Kuo, Joe-Air Jiang

Abstract:

Performance-related parameters of high concentration photovoltaic (HCPV) modules (e.g. current and voltage) are required when estimating the maximum power point using numerical and approximation methods. The maximum power point on the characteristic curve for a photovoltaic module varies when temperature or solar radiation is different. It is also difficult to estimate the output performance and maximum power point (MPP) due to the special characteristics of HCPV modules. Based on the p-n junction semiconductor theory, a brand new and simple method is presented in this study to directly evaluate the MPP of HCPV modules. The MPP of HCPV modules can be determined from an irradiated I-V characteristic curve, because there is a non-linear relationship between the temperature of a solar cell and solar radiation. Numerical simulations and field tests are conducted to examine the characteristics of HCPV modules during maximum output power tracking. The performance of the presented method is evaluated by examining the dependence of temperature and irradiation intensity on the MPP characteristics of HCPV modules. These results show that the presented method allows HCPV modules to achieve their maximum power and perform power tracking under various operation conditions. A 0.1% error is found between the estimated and the real maximum power point.

Keywords: energy performance, high concentrated photovoltaic, maximum power point, p-n junction semiconductor

Procedia PDF Downloads 585
1278 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices

Authors: M. O. Oke, T. S. Workneh

Abstract:

Drying behaviour of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80oC) and ten sweet potato varieties sliced to 5 mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27-6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.

Keywords: sweet potato slice, drying models, moisture ratio, moisture diffusivity, activation energy

Procedia PDF Downloads 518
1277 Effects of Dust Storm Events on Tuberculosis Incidence Rate in Northwest of China

Authors: Yun Wang, Ruoyu Wang, Tuo Chen, Guangxiu Liu, Guodong Chen, Wei Zhang

Abstract:

Tuberculosis (TB) is a major public health problem in China. China has the world's second largest tuberculosis epidemic (after India). Xinjiang almost has the highest annual attendance rate of TB in China, and the province is also famous because of its severe dust storms. The epidemic timing starts in February and ends in July, and the dust storm mainly distribute throughout the spring and early summer, which strongly indicate a close linkage between causative agent of TB and dust storm events. However, mechanisms responsible for the observed patterns are still not clearly indentified. By comparing the information on cases of TB from Centers for Disease Control of China annual reports with dust storm atmosphere datasets, we constructed the relationship between the large scale annual occurrence of TB in Xinjiang, a Northwest province of China, and dust storm occurrence. Regional atmospheric indexes of dust storm based on surface wind speed show a clear link between population dynamics of the disease and the climate disaster: the onset of epidemics and the dust storm defined by the atmospheric index share the same mean year. This study is the first that provides a clear demonstration of connections that exist between TB epidemics and dust storm events in China. The development of this study will undoubtedly help early warning for tuberculosis epidemic onset in China and help nationwide and international public health institutions and policy makers to better control TB disease in Norwest China.

Keywords: dust storm, tuberculosis, Xinjiang province, epidemic

Procedia PDF Downloads 449