Search results for: Gaussian Conditional Random Field
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10414

Search results for: Gaussian Conditional Random Field

10354 Unsupervised Reciter Recognition Using Gaussian Mixture Models

Authors: Ahmad Alwosheel, Ahmed Alqaraawi

Abstract:

This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.

Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model

Procedia PDF Downloads 359
10353 Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma

Authors: Jyoti Wadhwa, Arvinder Singh

Abstract:

This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics.

Keywords: density rippled plasma, higher order Gaussian laser beam, moment theory approach, second harmonic generation.

Procedia PDF Downloads 155
10352 Stimulated Raman Scattering of Ultra Intense Hollow Gaussian Beam

Authors: Prerana Sharma

Abstract:

Effect of relativistic nonlinearity on stimulated Raman scattering of the propagating laser beam carrying null intensity in center (hollow Gaussian beam) by excited plasma wave are studied in a collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The analysis is done using eikonal method. The phenonmenon of Stimulated Raman scattering is shown along with the excitation of seed plasma wave. The power of plasma wave and back reflectivity is observed for higher order of hollow Gaussian beam. Back reflectivity is studied numerically for various orders of HGLB with different value of plasma density, laser power and beam radius. Numerical analysis shows that these parameters play vital role on reflectivity characteristics.

Keywords: Hollow Gaussian beam, relativistic nonlinearity, plasma physics, Raman scattering

Procedia PDF Downloads 613
10351 A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables

Authors: M. Hamdi, R. Rhouma, S. Belghith

Abstract:

Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo-random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties.

Keywords: Random Numbers, Chaotic map, S-box, cryptography, statistical tests

Procedia PDF Downloads 342
10350 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew

Abstract:

This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness

Procedia PDF Downloads 285
10349 Use of Multistage Transition Regression Models for Credit Card Income Prediction

Authors: Denys Osipenko, Jonathan Crook

Abstract:

Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.

Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability

Procedia PDF Downloads 465
10348 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 119
10347 Heuristic to Generate Random X-Monotone Polygons

Authors: Kamaljit Pati, Manas Kumar Mohanty, Sanjib Sadhu

Abstract:

A heuristic has been designed to generate a random simple monotone polygon from a given set of ‘n’ points lying on a 2-Dimensional plane. Our heuristic generates a random monotone polygon in O(n) time after O(nℓogn) preprocessing time which is improved over the previous work where a random monotone polygon is produced in the same O(n) time but the preprocessing time is O(k) for n < k < n2. However, our heuristic does not generate all possible random polygons with uniform probability. The space complexity of our proposed heuristic is O(n).

Keywords: sorting, monotone polygon, visibility, chain

Procedia PDF Downloads 407
10346 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

Authors: Wanhyun Cho, Soonja Kang, Sanggoon Kim, Soonyoung Park

Abstract:

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered an efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.

Keywords: multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, importance sampling, approximate posterior distribution, marginal likelihood evidence

Procedia PDF Downloads 417
10345 Quasistationary States and Mean Field Model

Authors: Sergio Curilef, Boris Atenas

Abstract:

Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function.

Keywords: dipole-type interactions, dynamics and thermodynamics, mean field model, quasistationary states

Procedia PDF Downloads 192
10344 Ankaferd Blood Stopper (ABS) Has Protective Effect on Colonic Inflammation: An in Vitro Study in Raw 264.7 and Caco-2 Cells

Authors: Aysegul Alyamac, Sukru Gulec

Abstract:

Ankaferd Blood Stopper (ABS) is a plant extract used to stop bleeding caused by injuries and surgical interventions. ABS also involved in wound healing of intestinal mucosal damage due to oxidative stress and inflammation. Inflammatory Bowel Disease (IBD) is a common chronic disorder of the gastrointestinal tract that causes abdominal pain, diarrhea, and gastrointestinal bleeding, and increases the risk of colon cancer. Inflammation is an essential factor in the development of IBD. The various studies have been performed about the physiological effects of ABS; however, ABS dependent mechanism on colonic inflammation has not been elucidated. Thus, the protective effect of ABS on colonic inflammation was investigated in this study. The Caco-2 and RAW 264.7 murine macrophage cells were used as a model of in vitro colonic inflammation. RAW 264.7 cells were treated with lipopolysaccharide (LPS) for 12 hours to induce the inflammation, and a conditional medium was obtained. Caco-2 cells were treated with 15 µl/ml ABS for 4 hours, then incubated with conditional medium and the cells also were incubated with 15 µl/ml ABS and conditional medium together for 4 hours. Tumor necrosis factor alpha (TNF-α) protein levels were targeted in testing inflammatory condition and its level was significantly increased (25 fold, p<0.001) compared to the control group by using Enzyme-Linked Immunosorbent Assay (ELISA) method. The COX-2 mRNA level was used as a marker gene to show the possible anti-inflammatory effect of ABS in Caco-2 cells. RAW cells-derived conditional medium significantly (3.3 fold, p<0.001) induced cyclooxygenase-2 (COX-2) mRNA levels in Caco-2 cells. The pretreatment of Caco-2 cells caused a significant decrease (3.3 fold, p<0.001) in COX-2 mRNA levels relative to conditional medium given group. Furthermore, COX-2 mRNA level was significantly reduced (4,7 fold, p<0.001) in ABS and conditional medium treated group. These results suggest that ABS might have an anti-inflammatory effect in vitro.

Keywords: Ankaferd blood stopper, CaCo-2, colonic inflammation, RAW 264.7

Procedia PDF Downloads 125
10343 Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index

Authors: Funda Kul, İsmail Gür

Abstract:

Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions.

Keywords: mortality, forecasting, lee-carter model, normal inverse gaussian distribution

Procedia PDF Downloads 336
10342 VaR Estimation Using the Informational Content of Futures Traded Volume

Authors: Amel Oueslati, Olfa Benouda

Abstract:

New Value at Risk (VaR) estimation is proposed and investigated. The well-known two stages Garch-EVT approach uses conditional volatility to generate one step ahead forecasts of VaR. With daily data for twelve stocks that decompose the Dow Jones Industrial Average (DJIA) index, this paper incorporates the volume in the first stage volatility estimation. Afterwards, the forecasting ability of this conditional volatility concerning the VaR estimation is compared to that of a basic volatility model without considering any trading component. The results are significant and bring out the importance of the trading volume in the VaR measure.

Keywords: Garch-EVT, value at risk, volume, volatility

Procedia PDF Downloads 261
10341 Facility Anomaly Detection with Gaussian Mixture Model

Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho

Abstract:

Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.

Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm

Procedia PDF Downloads 252
10340 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series

Procedia PDF Downloads 377
10339 Statistical Analysis for Overdispersed Medical Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling over-dispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling over-dispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling over-dispersed medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling over-dispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian, and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling over-dispersed medical count data when ZIP and ZINB are inadequate.

Keywords: zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit

Procedia PDF Downloads 518
10338 A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows

Authors: Tan Zhang, Zhongjian Wang, Jack Xin, Zhiwen Zhang

Abstract:

We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed.

Keywords: KPP front speeds, random flows, Feynman-Kac semigroups, interacting particle method, convergence analysis

Procedia PDF Downloads 26
10337 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario

Authors: Sarita Agarwal, Deepika Delsa Dean

Abstract:

Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.

Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation

Procedia PDF Downloads 104
10336 Additive White Gaussian Noise Filtering from ECG by Wiener Filter and Median Filter: A Comparative Study

Authors: Hossein Javidnia, Salehe Taheri

Abstract:

The Electrocardiogram (ECG) is the recording of the heart’s electrical potential versus time. ECG signals are often contaminated with noise such as baseline wander and muscle noise. As these signals have been widely used in clinical studies to detect heart diseases, it is essential to filter these noises. In this paper we compare performance of Wiener Filtering and Median Filtering methods to filter Additive White Gaussian (AWG) noise with the determined signal to noise ratio (SNR) ranging from 3 to 5 dB applied to long-term ECG recordings samples. Root mean square error (RMSE) and coefficient of determination (R2) between the filtered ECG and original ECG was used as the filter performance indicator. Experimental results show that Wiener filter has better noise filtering performance than Median filter.

Keywords: ECG noise filtering, Wiener filtering, median filtering, Gaussian noise, filtering performance

Procedia PDF Downloads 508
10335 Factorization of Computations in Bayesian Networks: Interpretation of Factors

Authors: Linda Smail, Zineb Azouz

Abstract:

Given a Bayesian network relative to a set I of discrete random variables, we are interested in computing the probability distribution P(S) where S is a subset of I. The general idea is to write the expression of P(S) in the form of a product of factors where each factor is easy to compute. More importantly, it will be very useful to give an interpretation of each of the factors in terms of conditional probabilities. This paper considers a semantic interpretation of the factors involved in computing marginal probabilities in Bayesian networks. Establishing such a semantic interpretations is indeed interesting and relevant in the case of large Bayesian networks.

Keywords: Bayesian networks, D-Separation, level two Bayesian networks, factorization of computation

Procedia PDF Downloads 503
10334 Segmentation of Liver Using Random Forest Classifier

Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir

Abstract:

Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.

Keywords: CT images, image validation, random forest, segmentation

Procedia PDF Downloads 289
10333 Measuring Banking Systemic Risk Conditional Value-At-Risk and Conditional Coherent Expected Shortfall in Taiwan Using Vector Quantile GARCH Model

Authors: Ender Su, Kai Wen Wong, I-Ling Ju, Ya-Ling Wang

Abstract:

In this study, the systemic risk change of Taiwan’s banking sector is analyzed during the financial crisis. The risk expose of each financial institutions to the whole Taiwan banking systemic risk or vice versa under financial distress are measured by conditional Value-at-Risk (CoVaR) and conditional coherent expected shortfall (CoES). The CoVaR and CoES are estimated by using vector quantile autoregression (MVMQ-CaViaR) with the daily stock returns of each banks included domestic and foreign banks in Taiwan. The daily in-sample data covered the period from 05/20/2002 to 07/31/2007 and the out-of-sample period until 12/31/2013 spanning the 2008 U.S. subprime crisis, 2010 Greek debt crisis, and post risk duration. All banks in Taiwan are categorised into several groups according to their size of market capital, leverage and domestic/foreign to find out what the extent of changes of the systemic risk as the risk changes between the individuals in the bank groups and vice versa. The final results can provide a guidance to financial supervisory commission of Taiwan to gauge the downside risk in the system of financial institutions and determine the minimum capital requirement hold by financial institutions due to the sensibility changes in CoVaR and CoES of each banks.

Keywords: bank financial distress, vector quantile autoregression, CoVaR, CoES

Procedia PDF Downloads 359
10332 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.

Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition

Procedia PDF Downloads 458
10331 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container

Authors: Mohammad R. Jalali

Abstract:

Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.

Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions

Procedia PDF Downloads 381
10330 Optimizing Skill Development in Golf Putting: An Investigation of Blocked, Random, and Increasing Practice Schedules

Authors: John White

Abstract:

This study investigated the effects of practice schedules on learning and performance in golf putting, specifically focusing on the impact of increasing contextual interference (CI). University students (n=7) were randomly assigned to blocked, random, or increasing practice schedules. During acquisition, participants performed 135 putting trials using different weighted golf balls. The blocked group followed a specific sequence of ball weights, while the random group practiced with the balls in a random order. The increasing group started with a blocked schedule, transitioned to a serial schedule, and concluded with a random schedule. Retention and transfer tests were conducted 24 hours later. The results indicated that high levels of CI (random practice) were more beneficial for learning than low levels of CI (blocked practice). The increasing practice schedule, incorporating blocked, serial, and random practice, demonstrated advantages over traditional blocked and random schedules. Additionally, EEG was used to explore the neurophysiological effects of the increasing practice schedule.

Keywords: skill acquisition, motor control, learning, contextual interference

Procedia PDF Downloads 71
10329 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process

Authors: Kai Chen, Shuguang Cui, Feng Yin

Abstract:

Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.

Keywords: Gaussian process, spectral mixture, non-stationary, convolution

Procedia PDF Downloads 175
10328 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 377
10327 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 330
10326 [Keynote Talk]: Existence of Random Fixed Point Theorem for Contractive Mappings

Authors: D. S. Palimkar

Abstract:

Random fixed point theory has received much attention in recent years, and it is needed for the study of various classes of random equations. The study of random fixed point theorems was initiated by the Prague school of probabilistic in the 1950s. The existence and uniqueness of fixed points for the self-maps of a metric space by altering distances between the points with the use of a control function is an interesting aspect in the classical fixed point theory. In a new category of fixed point problems for a single self-map with the help of a control function that alters the distance between two points in a metric space which they called an altering distance function. In this paper, we prove the results of existence of random common fixed point and its uniqueness for a pair of random mappings under weakly contractive condition for generalizing alter distance function in polish spaces using Random Common Fixed Point Theorem for Generalized Weakly Contractions.

Keywords: Polish space, random common fixed point theorem, weakly contractive mapping, altering function

Procedia PDF Downloads 253
10325 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation

Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro

Abstract:

This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.

Keywords: acceptance, block size, mixed linear model, testing order, testing order

Procedia PDF Downloads 303