Search results for: online and adaptive learning
1064 Image Recognition Performance Benchmarking for Edge Computing Using Small Visual Processing Unit
Authors: Kasidis Chomrat, Nopasit Chakpitak, Anukul Tamprasirt, Annop Thananchana
Abstract:
Internet of Things devices or IoT and Edge Computing has become one of the biggest things happening in innovations and one of the most discussed of the potential to improve and disrupt traditional business and industry alike. With rises of new hang cliff challenges like COVID-19 pandemic that posed a danger to workforce and business process of the system. Along with drastically changing landscape in business that left ruined aftermath of global COVID-19 pandemic, looming with the threat of global energy crisis, global warming, more heating global politic that posed a threat to become new Cold War. How emerging technology like edge computing and usage of specialized design visual processing units will be great opportunities for business. The literature reviewed on how the internet of things and disruptive wave will affect business, which explains is how all these new events is an effect on the current business and how would the business need to be adapting to change in the market and world, and example test benchmarking for consumer marketed of newer devices like the internet of things devices equipped with new edge computing devices will be increase efficiency and reducing posing a risk from a current and looming crisis. Throughout the whole paper, we will explain the technologies that lead the present technologies and the current situation why these technologies will be innovations that change the traditional practice through brief introductions to the technologies such as cloud computing, edge computing, Internet of Things and how it will be leading into future.Keywords: internet of things, edge computing, machine learning, pattern recognition, image classification
Procedia PDF Downloads 1551063 Development of Distance Training Packages for Teacher on Education Management for Learners with Special Needs
Authors: Jareeluk Ratanaphan
Abstract:
The purposed of this research were; 1. To survey the teacher’s needs on knowledge about special education management for special needs student 2. Development of distance training packages for teacher on special education management for special needs student 3. to study the effects of using the packages on trainee’s achievement 4. to study the effects of using the packages on trainee’s opinion on the distance training packages. The design of the experiment was research and development. The research sample for survey were 86 teachers, and 22 teachers for study the effects of using the packages on achievement and opinion. The research instrument comprised: 1) training packages on special education management for special needs student 2) achievement test 3) questionnaire. Mean, percentage, standard deviation, t-test and content analysis were used for data analysis. The findings of the research were as follows: 1. The teacher’s needs on knowledge about teaching for a learner with learning disability, mental retardation, autism, physical and health impairment and research in special education. 2. The package composed of special education management for special needs student document and manual of distance training packages. The document consisted by the name of packages, the explanation for the educator, content’s structure, concept, objectives, content and activities. Manual of distance training packages consisted by the explanation about a document, objectives, explanation about using the package, training schedule, and evaluation. The efficiency of packages was established at 79.50/81.35. 3. The results of using the packages were the posttest average scores of trainee’s achievement were higher than the pretest. 4. The trainee’s opinion on the package was at the highest level.Keywords: distance training package, teacher, learner with special needs
Procedia PDF Downloads 4891062 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System
Authors: Iwan Cony Setiadi, Aulia M. T. Nasution
Abstract:
The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network
Procedia PDF Downloads 3221061 Multilingualism as an Impetus to Nigerian Religious and Political Crises: the Way Forward
Authors: Kehinde, Taye Adetutu
Abstract:
The fact that Nigeria as a nation is faced by myriads of problems associated with religious crises and political insecurity is no news, the spoken statement and actions of most political giant were the major cause of this unrest. The 'unlearnt' youth within the regions has encompassed the situation. This scenario is further compounded by multilingual nature of the country as it is estimated that there exists amount 400 indigenous languages in Nigeria. It is an indisputable fact that english language which has assumed the status of an official language in Nigeria, given its status has a language of power and captivity by a few with no privilege to attend school. However, educating people in their indigenous language; crises can be averted through the proper orientation and mass literacy campaign, especially for the timid illiterate one, so as to live in unity, peace, tranquillity, and harmony as indivisible nation. In investigating the problem in this study with an emphasis on three major Nigerian language (Yoruba, Igbo and Hausa), participants observations and survey questionnaire were administered to about one hundred and twenty (120) respondents who were randomly selected throughout the three major ethnic groups in Nigeria. Findings from this study reveals that teaching and learning of cognitive words and information are more effective in ones mother tongue and helps in stimulating new ideas and changes. This paper was able to explore and critically examine the current state of affairs in Nigeria and proffer possible solutions to the prevailing situations by identifying how indigenous languages and linguistics can be used to ameliorate the present political and religious crisis for Nigeria, thus providing a proper recommendation to achieve meaningful stability and coexistence within a nation.Keywords: multilingualism, political crisis, religious, Nigeria
Procedia PDF Downloads 4401060 Natural Dyes: A Global Perspective on Commercial Solutions and Industry Players
Authors: Laura Seppälä, Ana Nuutinen
Abstract:
Environmental concerns are increasing the interest in the potential uses of natural dyes. Natural dyes are more safe and environmentally friendly option than synthetic dyes. However, one must be also cautious with natural dyes, because, for example, some dyestuff such as plants or mushrooms, as well as some mordants are poisonous. By natural dyes we mean dyes that are derived from plants, fungi, bark, lichens, algae, insects, and minerals. Different plant parts, such as stems, leaves, flowers, roots, bark, berries, fruits, and cones, can be utilized for textile dyeing and printing, pigment manufacture, and other processes depending on the season. They may be utilized to produce distinctive colour tones that are challenging to do with synthetic dyes. This adds value to textiles and makes them stand out. Synthetic dyes quickly replaced natural dyes, after being developed in the middle of the 19th century, but natural dyes have remained the dyeing method of crafters until recently. This research examines the commercial solutions for natural dyes in many parts of the world, such as Europe, the United States, South America, Africa, Asia, New Zealand, and Australia. This study aims to determine the commercial status of natural dyes. Each continent has its own traditions and specific dyestuffs. The availability of natural dyes can vary depending on several aspects, including plant species, temperature, and harvesting techniques, which poses a challenge to the work of designers and crafters. While certain plants may only provide dyes during specific seasons, others may do so continuously. To find the ideal time to collect natural dyes, it is critical to research various plant species and their harvesting techniques. Furthermore, to guarantee the quality and colour of the dye, plant material must be handled and processed properly. This research was conducted via an internet search, and results were searched systematically for commercial stakeholders in the field. The research question looked at commercial players in the field of natural dyes. This qualitative case study interpreted the data using thematic analysis. Each webpage was screenshotted and analyzed in reflection on to research question. Online content analysis means systematically coding and analyzing qualitative data. The most evident result was that the natural dyes interest in different parts of the World. There are clothing collections dyed with natural dyes, dyestuff stores, and courses for natural dyeing. This article presents the designers who work with natural dyes and actors who are involved with the natural dye industry. Several websites emphasized the safety and environmental benefits of natural dyes. Many of them included eye-catching images of textiles dyed naturally, and the colours of such dyes are thought to be attractive since they are beautiful and natural hues. The search did not find big-scale industrial solutions for natural dyes, but there were several instances of dyeing with natural dyes. Understanding the players, designers, and stakeholders in the natural dye business is the purpose of this article. The comprehension of the current state of the art illustrates the direction that the natural dye business is currently taking.Keywords: commercial solutions, environmental issues, key stakeholders, natural dyes, sustainability, textile dyeing
Procedia PDF Downloads 651059 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 4801058 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series
Procedia PDF Downloads 1431057 A Comprehensive Study of Spread Models of Wildland Fires
Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling
Procedia PDF Downloads 811056 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes
Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali
Abstract:
Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture
Procedia PDF Downloads 541055 Identification and Prioritisation of Students Requiring Literacy Intervention and Subsequent Communication with Key Stakeholders
Authors: Emilie Zimet
Abstract:
During networking and NCCD moderation meetings, best practices for identifying students who require Literacy Intervention are often discussed. Once these students are identified, consideration is given to the most effective process for prioritising those who have the greatest need for Literacy Support and the allocation of resources, tracking of intervention effectiveness and communicating with teachers/external providers/parents. Through a workshop, the group will investigate best practices to identify students who require literacy support and strategies to communicate and track their progress. In groups, participants will examine what they do in their settings and then compare with other models, including the researcher’s model, to decide the most effective path to identification and communication. Participants will complete a worksheet at the beginning of the session to deeply consider their current approaches. The participants will be asked to critically analyse their own identification processes for Literacy Intervention, ensuring students are not overlooked if they fall into the borderline category. A cut-off for students to access intervention will be considered so as not to place strain on already stretched resources along with the most effective allocation of resources. Furthermore, communicating learning needs and differentiation strategies to staff is paramount to the success of an intervention, and participants will look at the frequency of communication to share such strategies and updates. At the end of the session, the group will look at creating or evolving models that allow for best practices for the identification and communication of Literacy Interventions. The proposed outcome for this research is to develop a model of identification of students requiring Literacy Intervention that incorporates the allocation of resources and communication to key stakeholders. This will be done by pooling information and discussing a variety of models used in the participant's school settings.Keywords: identification, student selection, communication, special education, school policy, planning for intervention
Procedia PDF Downloads 471054 Empowering Women through the Fishermen of Functional Skills for City Gorontalo Indonesia
Authors: Abdul Rahmat
Abstract:
Community-based education in the economic empowerment of the family is an attempt to accelerate human development index (HDI) Dumbo Kingdom District of Gorontalo economics (purchasing power) program developed in this activity is the manufacture of functional skills shredded fish, fish balls, fish nuggets, chips anchovies, and corn sticks fish. The target audience of this activity is fishing se mothers subdistrict Dumbo Kingdom include Talumolo Village, Village Botu, Kampung Bugis Village, Village North and Sub Leato South Leato that each village is represented by 20 participants so totaling 100 participants. Time activities beginning in October s/d November 2014 held once a week on every Saturday at 9.00 s/d 13:00/14:00. From the results of the learning process of testing the skills of functional skills of making shredded fish, fish balls, fish nuggets, chips anchovies, fish and corn sticks residents have additional knowledge and experience are: 1) Order the concept include: nutrient content, processing food with fish raw materials , variations in taste, packaging, pricing and marketing sales. 2) Products made: in accordance with the wishes of the residents learned that estimated Eligible selling, product packaging logo creation, preparation and realization of the establishment of Business Study Group (KBU) and pioneered the marketing network with restaurant, store / shop staple food vendors that are around CLC.Keywords: community development, functional skills, gender, HDI
Procedia PDF Downloads 3131053 Multimedia Technologies Utilisation as Predictors of Lecturers’ Teaching Effectiveness in Colleges of Education in South-West, Nigeria
Authors: Abel Olusegun Egunjobi, Olusegun Oyeleye Adesanya
Abstract:
Teaching effectiveness of lecturers in a tertiary institution in Nigeria is one of the determinants of the lecturer’s productivity. In this study, therefore, lecturers’ teaching effectiveness was examined vis-à-vis their multimedia technologies utilisation in Colleges of Education (CoE) in South-West, Nigeria. This is for the purpose of ascertaining the relationship and contribution of multimedia technologies utilisation to lecturers’ teaching effectiveness in Nigerian colleges of education. The descriptive survey research design was adopted in the study, while a multi-stage sampling procedure was used in the study. A stratified sampling technique was used to select colleges of education, and a simple random sampling method was employed to select lecturers from the selected colleges of education. A total of 862 lecturers (627 males and 235 females) were selected from the colleges of education used for the study. The instrument used was lecturers’ questionnaire on multimedia technologies utilisation and teaching effectiveness with a reliability coefficient of 0.85 at 0.05 level of significance. The data collected were analysed using descriptive statistics, multiple regression, and t-test. The findings showed that the level of multimedia technologies utilisation in colleges of education was low, whereas lecturers’ teaching effectiveness was high. Findings also revealed that the lecturers used multimedia technologies purposely for personal and professional developments, so also for up to date news on economic and political matters. Also, findings indicated that laptop, Ipad, CD-ROMs, and computer instructional software were the multimedia technologies frequently utilised by the lecturers. There was also a significant difference in the teaching effectiveness between lecturers in the Federal and State COE. The government should, therefore, make adequate provision for multimedia technologies in the COE in Nigeria for lecturers’ utilisation in their instructions so as to boost their students’ learning outcomes.Keywords: colleges of education, lecturers’ teaching effectiveness, multimedia technologies utilisation, Southwest Nigeria
Procedia PDF Downloads 1401052 Opportunities and Challenges: Tracing the Evolution of India's First State-led Curriculum-based Media Literacy Intervention
Authors: Ayush Aditya
Abstract:
In today's digitised world, the extent of an individual’s social involvement is largely determined by their interaction over the internet. The Internet has emerged as a primary source of information consumption and a reliable medium for receiving updates on everyday activities. Owing to this change in the information consumption pattern, the internet has also emerged as a hotbed of misinformation. Experts are of the view that media literacy has emerged as one of the most effective strategies for addressing the issue of misinformation. This paper aims to study the evolution of the Kerala government's media literacy policy, its implementation strategy, challenges and opportunities. The objective of this paper is to create a conceptual framework containing details of the implementation strategy based on the Kerala model. Extensive secondary research of literature, newspaper articles, and other online sources was carried out to locate the timeline of this policy. This was followed by semi-structured interview discussions with government officials from Kerala to trace the origin and evolution of this policy. Preliminary findings based on the collected data suggest that this policy is a case of policy by chance, as the officer who headed this policy during the state level implementation was the one who has already piloted a media literacy program in a district called Kannur as the district collector. Through this paper, an attempt is made to trace the history of the media literacy policy starting from the Kannur intervention in 2018, which was started to address the issue of vaccine hesitancy around measles rubella(MR) vaccination. If not for the vaccine hesitancy, this program would not have been rolled out in Kannur. Interviews with government officials suggest that when authorities decided to take up this initiative in 2020, a huge amount of misinformation emerging during the COVID-19 pandemic was the trigger. There was misinformation regarding government orders, healthcare facilities, vaccination, and lockdown regulations, which affected everyone, unlike the case of Kannur, where it was only a certain age group of kids. As a solution to this problem, the state government decided to create a media literacy curriculum to be taught in all government schools of the state starting from standard 8 till graduation. This was a tricky task, as a new course had to be immediately introduced in the school curriculum amid all the disruptions in the education system caused by the pandemic. It was revealed during the interview that in the case of the state-wide implementation, every step involved multiple checks and balances, unlike the earlier program where stakeholders were roped-in as and when the need emerged. On the pedagogy, while the training during the pilot could be managed through PowerPoint presentation, designing a state-wide curriculum involved multiple iterations and expert approvals. The reason for this is COVID-19 related misinformation has lost its significance. In the next phase of the research, an attempt will be made to compare other aspects of the pilot implementation with the state-wide implementation.Keywords: media literacy, digital media literacy, curriculum based media literacy intervention, misinformation
Procedia PDF Downloads 931051 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection
Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew
Abstract:
The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.
Procedia PDF Downloads 471050 Chronic Cognitive Impacts of Mild Traumatic Brain Injury during Aging
Authors: Camille Charlebois-Plante, Marie-Ève Bourassa, Gaelle Dumel, Meriem Sabir, Louis De Beaumont
Abstract:
To the extent of our knowledge, there has been little interest in the chronic effects of mild traumatic brain injury (mTBI) on cognition during normal aging. This is rather surprising considering the impacts on daily and social functioning. In addition, sustaining a mTBI during late adulthood may increase the effect of normal biological aging in individuals who consider themselves normal and healthy. The objective of this study was to characterize the persistent neuropsychological repercussions of mTBI sustained during late adulthood, on average 12 months prior to testing. To this end, 35 mTBI patients and 42 controls between the ages of 50 and 69 completed an exhaustive neuropsychological assessment lasting three hours. All mTBI patients were asymptomatic and all participants had a score ≥ 27 at the MoCA. The evaluation consisted of 20 standardized neuropsychological tests measuring memory, attention, executive and language functions, as well as information processing speed. Performance on tests of visual (Brief Visuospatial Memory Test Revised) and verbal memory (Rey Auditory Verbal Learning Test and WMS-IV Logical Memory subtest), lexical access (Boston Naming Test) and response inhibition (Stroop) revealed to be significantly lower in the mTBI group. These findings suggest that a mTBI sustained during late adulthood induces lasting effects on cognitive function. Episodic memory and executive functions seem to be particularly vulnerable to enduring mTBI effects.Keywords: cognitive function, late adulthood, mild traumatic brain injury, neuropsychology
Procedia PDF Downloads 1691049 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism
Abstract:
Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning
Procedia PDF Downloads 181048 Communicating Nuclear Energy in Southeast Asia: A Cross-Country Comparison of Communication Channels and Source Credibility
Authors: Shirley S. Ho, Alisius X. L. D. Leong, Jiemin Looi, Agnes S. F. Chuah
Abstract:
Nuclear energy is a contentious technology that has attracted much public debate over the years. The prominence of nuclear energy in Southeast Asia (SEA) has burgeoned due to the surge of interest and plans for nuclear development in the region. Understanding public perceptions of nuclear energy in SEA is pertinent given the limited number of studies conducted. In particular, five SEA nations – Singapore, Malaysia, Indonesia, Thailand, and Vietnam are of immediate interest as that they are amongst the most economically developed or developing nations in the SEA region. High energy demands from economic development in these nations have led to considerations of adopting nuclear energy as an alternative source of energy. This study aims to explore whether differences in the nuclear developmental stage in each country affects public perceptions of nuclear energy. In addition, this study seeks to find out about the type and importance of communication credibility as a judgement heuristic in facilitating message acceptance across these five countries. Credibility of a communication channel is a crucial component influencing public perception, acceptance, and attitudes towards nuclear energy. Aside from simply identifying the frequently used communication channels, it is of greater significance to understand public perception of source and media credibility. Given the lack of studies conducted in SEA, this exploratory study adopts a qualitative approach to elicit a spectrum of opinions and insights regarding the key communication aspects influencing public perceptions of nuclear energy. Specifically, the capitals of each of the abovementioned countries - Kuala Lumpur, Bangkok, and Hanoi - were selected, with the exception of Singapore, an island city-state, and Yogyakarta, the most populous island of Indonesia to better understand public perception towards nuclear energy. Focus group discussions were utilized as the mode of data collection to elicit a wide variety of viewpoints held by the participants, which is well-suited for exploratory research. In total, 156 participants took part in the 13 focus group discussions. The participants were either local citizens or permanent residents aged between 18 and 69 years old. Each of the focus groups consists of 8-10 participants, including both male and female participants. The transcripts from each focus group were analysed using NVivo 10, and the text was organised according to the emerging themes or categories. The general public in all the countries was familiar but had no in-depth knowledge with nuclear energy. Four dimensions of nuclear energy communication were identified based on the focus group discussions: communication channels, perceived credibility of sources, circumstances for discussion, and discussion style. The first dimension, communication channels refers to the medium through which participants receive information about nuclear energy. Four types of media emerged from the discussions. They included online and social media, broadcast media, print media, and word-of- mouth (WOM). Collectively, across all five countries, participants were found to engage in different types of knowledge acquisition and information seeking behavior depending on the communication channels used.Keywords: nuclear energy, public perception, communication, Southeast Asia, source credibility
Procedia PDF Downloads 3071047 Challenges for Persons with Disabilities During COVID-19 Pandemic in Thailand
Authors: Tavee Cheausuwantavee
Abstract:
: COVID-19 pandemic significantly has impacted everyone’s life. Persons with disabilities (PWDs) in Thailand have been also effected by COVID-19 situation in many aspects of their lives, while there have been no more appropriate services of the government and providers. Research projects had been only focused on health precaution and protection. Rapid need assessments on populations and vulnerable groups were limited and conducted via social media and an online survey. However, little is known about the real problems and needs of Thai PWDs during the COVID-19 pandemic for an effective plan and integral services for those PWDs. Therefore, this study aims to explore the diverse problems and needs of Thai PWDs in the COVID -19 pandemic. Results from the study can be used by the government and other stakeholders for further effective services. Methods: This study was used a mixed-method design that consisted of both quantitative and qualitative measures. In terms of the quantitative approach, there were 744 PWDs and caregivers of all types of PWDs selected by proportional multistage stratified random sampling according to their disability classification and geographic location. Questionnaires with 59 items regarding participant characteristics, problems, and needs in health, education, employment, and other social inclusion, were distributed to all participants and some caregivers completed questionnaires when PWDs were not able to due to limited communication and/or literacy skills. Completed questionnaires were analyzed by descriptive statistics. For qualitative design, 62 key informants who were PWDs or caregivers were selected by purposive sampling. Ten focus groups, each consisting of 5-6 participants and 7 in-depth interviews from all the groups identified above, were conducted by researchers across five regions. Focus group and in-depth interview guidelines with 6 items regarding problems and needs in health, education, employment, other social inclusion, and their coping during COVID -19 pandemic. Data were analyzed using a modification of thematic content analysis. Results: Both quantitative and qualitative studies showed that PWDs and their caregivers had significant problems and needs all aspects of their life, including income and employment opportunity, daily living and social inclusion, health, and education, respectively. These problems and needs were related to each other, forming a vicious cycle. Participants also learned from negative pandemic to more positive life aspects, including their health protection, financial plan, family cohesion, and virtual technology literacy and innovation. Conclusion and implications: There have been challenges facing all life aspects of PWDs in Thailand during the COVID -19 pandemic, particularly incomes and daily living. All challenges have been the vicious cycle and complicated. There have been also a positive lesson learned of participants from the pandemic. Recommendations for government and stakeholders in the COVID-19 pandemic for PWDs are the following. First, the health protection strategy and policy of PWDs should be promoted together with other quality of life development including income generation, education and social inclusion. Second, virtual technology and alternative innovation should be enhanced for proactive service providers. Third, accessible information during the pandemic for all PWDs must be concerned. Forth, lesson learned from the pandemic should be shared and disseminated for crisis preparation and a positive mindset in the disruptive world.Keywords: challenge, COVID-19, disability, Thailand
Procedia PDF Downloads 771046 Meaning and Cultivating Factors of Mindfulness as Experienced by Thai Females Who Practice Dhamma
Authors: Sukjai Charoensuk, Penphan Pitaksongkram, Michael Christopher
Abstract:
Preliminary evidences supported the effectiveness of mindfulness-based interventions in reducing symptoms associated with a variety of medical and psychological conditions. However, the measurements of mindfulness are questionable since they have not been developed based-on Buddhist experiences. The purpose of this qualitative study was to describe meaning and cultivating factors of mindfulness as experienced by Thai females who practice Dhamma. Participants were purposively selected to include 2 groups of Thai females who practice Dhamma. The first group consisted of 6 female Buddhist monks, and the second group consisted of 7 female who practice Dhamma without ordaining. Data were collected using in-depth interview. The instruments used were demographic data questionnaire and guideline for in-depth interview developed by researchers. Content analysis was employed to analyze the data. The results revealed that Thai women who practice Dhamma described their experience in 2 themes, which were meaning and cultivating factors of mindfulness. The meaning composed of 4 categories; 1) Being Present, 2) Self-awareness, 3) Contemplation, and 4) Neutral. The cultivating factors of mindfulness composed of 2 categories; In-personal factors and Ex-personal factors. The In-personal cultivating factors included 4 sub-categories; Faith and Love, the Five Precepts, Sound body, and Practice. The Ex-personal cultivating factors included 2 sub-categories; Serenity, and Learning. These findings increase understanding about meaning of mindfulness and its cultivating factors. These could be used as a guideline to promote mental health and develop nursing interventions using mindfulness based, as well as, develop the instrument for assessing mindfulness in Thai context.Keywords: cultivating factor, meaning of mindfulness, practice Dhamma, Thai women
Procedia PDF Downloads 3511045 Training the Hospitality Entrepreneurship on the Account of Constructing Nascent Entrepreneurial Competence
Authors: Ching-Hsu Huang, Yao-Ling Liu
Abstract:
Over the past several decades there has been considerable research on the topics of entrepreneurship education and nascent entrepreneurial competence. The purpose of this study is to explore the nascent entrepreneurial competence within entrepreneurship education via the use of three studies. It will be a three-phrases longitudinal study and the effective plan will combine the qualitative and quantitative mixed research methodology in order to understand the issues of nascent entrepreneurship and entrepreneurial competence in hospitality industry in Taiwan. In study one, the systematic literature reviews and twelve nascent entrepreneurs who graduated from hospitality management department will be conducted simultaneously to construct the nascent entrepreneurial competence indicators. Nine subjects who are from industry, government, and academia will be the decision makers in terms of forming the systematic nascent entrepreneurial competence indicators. The relative importance of indicators to each decision maker will be synthesized and compared using the Analytic Hierarchy Process method. According to the results of study one, this study will develop the teaching module of nascent hospitality entrepreneurship. It will include the objectives, context, content, audiences, assessment, pedagogy and outcomes. Based on the results of the second study, the quasi-experiment will be conducted in third study to explore the influence of nascent hospitality entrepreneurship teaching module on learners’ learning effectiveness. The nascent hospitality entrepreneurship education program and entrepreneurial competence will be promoted all around the hospitality industry and vocational universities. At the end, the implication for designing the nascent hospitality entrepreneurship teaching module and training programs will be suggested for the nascent entrepreneurship education. All of the proposed hypotheses will be examined and major finding, implication, discussion, and recommendations will be provided for the government and education administration in hospitality field.Keywords: entrepreneurial competence, hospitality entrepreneurship, nascent entrepreneurial, training in hospitality entrepreneurship
Procedia PDF Downloads 2441044 Relational Effect of Parent Interest, Basic School Attended, Gender, and Scare of Basic School Mathematics Teacher on Student Interest in Mathematics
Authors: Yarhands Dissou Arthur, Samuel Asiedu Addo, Jonathan Annan
Abstract:
Interest in subject specific is very essential in the quest to ensure effective teaching and learning. In building interest in subject specific areas requires certain factors and strategies well-spelled out.The factors such as the gender of the student, the type of basic school attended, the parent interest as well as the scare of the basic school mathematics teacher is very important to consider. The relational effect and the contribution these above mentioned variables on student have not been fully investigated and this paper address the effect of these factors on the student interest. In the attainment of this goal, the current paper addresses the effect of parent interest, the type of basic school attended, the scare by basic school mathematics teacher and its effect on student’s interest in mathematics. A cross sectional data collected from two hundred and sixty post-secondary school student were analyzed using descriptive and inferential statistical methods by aid of SPSS version 16. The study found that parent interest and value for mathematics significantly influenced students interest and joy in solving mathematical problems. Moreover, we also observed that the fear imposed by basic school mathematics teachers was found to significantly influence students’ interest. The study further found that the type of basic school attended and gender are factors that do not influence students’ interest in mathematics. In addition to concluding that a student’s interest is influenced by both parent interest and the fear of basic school mathematics teacher, the study also showed that the type of basic school attended and gender does not affect the students’ interest in mathematics.Keywords: gender, mathematics interest, teacher interest, teacher interest, student interest
Procedia PDF Downloads 3671043 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)
Procedia PDF Downloads 931042 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information
Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu
Abstract:
In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness
Procedia PDF Downloads 1201041 Prevalence and Molecular Characterization of Extended-Spectrum–β Lactamase and Carbapenemase-Producing Enterobacterales from Tunisian Seafood
Authors: Mehdi Soula, Yosra Mani, Estelle Saras, Antoine Drapeau, Raoudha Grami, Mahjoub Aouni, Jean-Yves Madec, Marisa Haenni, Wejdene Mansour
Abstract:
Multi-resistance to antibiotics in gram-negative bacilli and particularly in enterobacteriaceae, has become frequent in hospitals in Tunisia. However, data on antibiotic resistant bacteria in aquatic products are scarce. The aims of this study are to estimate the proportion of ESBL- and carbapenemase-producing Enterobacterales in seafood (clams and fish) in Tunisia and to molecularly characterize the collected isolates. Two types of seafood were sampled in unrelated markets in four different regions in Tunisia (641 pieces of farmed fish and 1075 mediterranean clams divided into 215 pools, and each pool contained 5 pieces). Once purchased, all samples were incubated in tubes containing peptone salt broth for 24 to 48h at 37°C. After incubation, overnight cultures were isolated on selective MacConkey agar plates supplemented with either imipenem or cefotaxime, identified using API20E test strips (bioMérieux, Marcy-l’Étoile, France) and confirmed by Maldi-TOF MS. Antimicrobial susceptibility was determined by the disk diffusion method on Mueller-Hinton agar plates and results were interpreted according to CA-SFM 2021. ESBL-producing Enterobacterales were detected using the Double Disc Synergy Test (DDST). Carbapenem-resistance was detected using an ertapenem disk and was respectively confirmed using the ROSCO KPC/MBL and OXA-48 Confirm Kit (ROSCO Diagnostica, Taastrup, Denmark). DNA was extracted using a NucleoSpin Microbial DNA extraction kit (Macherey-Nagel, Hoerdt, France), according to the manufacturer’s instructions. Resistance genes were determined using the CGE online tools. The replicon content and plasmid formula were identified from the WGS data using PlasmidFinder 2.0.1 and pMLST 2.0. From farmed fishes, nine ESBL-producing strains (9/641, 1.4%) were isolated, which were identified as E. coli (n=6) and K. pneumoniae (n=3). Among the 215 pools of 5 clams analyzed, 18 ESBL-producing isolates were identified, including 14 E. coli and 4 K. pneumoniae. A low isolation rate of ESBL-producing Enterobacterales was detected 1.6% (18/1075) in clam pools. In fish, the ESBL phenotype was due to the presence of the blaCTX-M-15 gene in all nine isolates, but no carbapenemase gene was identified. In clams, the predominant ESBL phenotype was blaCTX-M-1 (n=6/18). blaCPE (NDM1, OXA48) was detected only in 3 isolates ‘K. pneumoniae isolates’. Replicon typing on the strains carring the ESBL and carbapenemase gene revelead that the major type plasmid carried ESBL were IncF (42.3%) [n=11/26]. In all, our results suggest that seafood can be a reservoir of multi-drug resistant bacteria, most probably of human origin but also by the selection pressure of antibiotic. Our findings raise concerns that seafood bought for consumption may serve as potential reservoirs of AMR genes and pose serious threat to public health.Keywords: BLSE, carbapenemase, enterobacterales, tunisian seafood
Procedia PDF Downloads 1081040 The Impact of Technology on Media Content Regulation
Authors: Eugene Mashapa
Abstract:
The age of information has witnessed countless unprecedented technological developments, which signal the articulation of succinct technological capabilities that can match these cutting-edge technological trends. These changes have impacted patterns in the production, distribution, and consumption of media content, a space that the Film and Publication Board (FPB) is concerned with. Consequently, the FPB is keen to understand the nature and impact of these technological changes on media content regulation. This exploratory study sought to investigate how content regulators in high and middle-income economies have adapted to the changes in this space, seeking insights into innovations, technological and operational, that facilitate continued relevance during this fast-changing environment. The study is aimed at developing recommendations that could assist and inform the organisation in regulating media content as it evolves. Thus, the overall research strategy in this analysis is applied research, and the analytical model adopted is a mixed research design guided by both qualitative and quantitative research instruments. It was revealed in the study that the FPB was significantly impacted by the unprecedented technological advancements in the media regulation space. Additionally, there exists a need for the FPB to understand the current and future penetrations of 4IR technology in the industry and its impact on media governance and policy implementation. This will range from reskilling officials to align with the technological skills to developing technological innovations as well as adopting co-regulatory or self-regulatory arrangements together with content distributors, where more content is distributed in higher volumes and with increased frequency. Importantly, initiating an interactive learning process for both FPB employees and the general public can assist the regulator and improve FPB’s operational efficiency and effectiveness.Keywords: media, regulation, technology, film and publications board
Procedia PDF Downloads 1061039 The Colombian Special Jurisdiction for Peace, a Transitional Justice Mechanism That Prioritizes Reconciliation over Punishment: A Content Analysis of the Colombian Peace Agreement
Authors: Laura Mendez
Abstract:
Tribunals for the prosecution of crimes against humanity have been implemented in recent history via international intervention or imposed by one side of the conflict, as in the cases of Rwanda, Iraq, Argentina, and Chile. However, the creation of a criminal tribunal as the result of a peace agreement between formerly warring parties has been unique to the Colombian peace process. As such, the Colombian Jurisdiction for Peace (SJP), or JEP for its Spanish acronym, is viewed as a site of social contestation where actors shape its design and implementation. This study contributes to the literature of transitional justice by analyzing how the framing of the creation of the Colombian tribunal reveals the parties' interests. The analysis frames the interests of the power-brokers, i.e., the government and the Revolutionary Armed Forces of Colombia (FARC), and the victims in light of the tribunal’s functions. The purpose of this analysis is to understand how the interests of the parties are embedded in the designing of the SJP. This paper argues that the creation of the SJP rests on restorative justice, for which the victim, not the perpetrator, is at the center of prosecution. The SJP’s approach to justice moves from prosecution as punishment to prosecution as sanctions. SJP’s alternative sanctions focused on truth, reparation, and restoration are designed to humanize both the victim and the perpetrator in order to achieve reconciliation. The findings also show that requiring the perpetrator to perform labor to repair the victim as an alternative form of sanction aims to foster relations of reintegration and social learning between victims and perpetrators.Keywords: transitional justice mechanisms, criminal tribunals, Colombia, Colombian Jurisdiction for Peace, JEP
Procedia PDF Downloads 1181038 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover
Authors: Javed Mallick
Abstract:
In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islandsKeywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot
Procedia PDF Downloads 781037 Moral Decision-Making in the Criminal Justice System: The Influence of Gruesome Descriptions
Authors: Michel Patiño-Sáenz, Martín Haissiner, Jorge Martínez-Cotrina, Daniel Pastor, Hernando Santamaría-García, Maria-Alejandra Tangarife, Agustin Ibáñez, Sandra Baez
Abstract:
It has been shown that gruesome descriptions of harm can increase the punishment given to a transgressor. This biasing effect is mediated by negative emotions, which are elicited upon the presentation of gruesome descriptions. However, there is a lack of studies inquiring the influence of such descriptions on moral decision-making in people involved in the criminal justice system. Such populations are of special interest since they have experience dealing with gruesome evidence, but also formal education on how to assess evidence and gauge the appropriate punishment according to the law. Likewise, they are expected to be objective and rational when performing their duty, because their decisions can impact profoundly people`s lives. Considering these antecedents, the objective of this study was to explore the influence gruesome written descriptions on moral decision-making in this group of people. To that end, we recruited attorneys, judges and public prosecutors (Criminal justice group, CJ, n=30) whose field of specialty is criminal law. In addition, we included a control group of people who did not have a formal education in law (n=30), but who were paired in age and years of education with the CJ group. All participants completed an online, Spanish-adapted version of a moral decision-making task, which was previously reported in the literature and also standardized and validated in the Latin-American context. A series of text-based stories describing two characters, one inflicting harm on the other, were presented to participants. Transgressor's intentionality (accidental vs. intentional harm) and language (gruesome vs. plain) used to describe harm were manipulated employing a within-subjects and a between-subjects design, respectively. After reading each story, participants were asked to rate (a) the harmful action's moral adequacy, (b) the amount of punishment deserving the transgressor and (c) how damaging was his behavior. Results showed main effects of group, intentionality and type of language on all dependent measures. In both groups, intentional harmful actions were rated as significantly less morally adequate, were punished more severely and were deemed as more damaging. Moreover, control subjects deemed more damaging and punished more severely any type of action than the CJ group. In addition, there was an interaction between intentionality and group. People in the control group rated harmful actions as less morally adequate than the CJ group, but only when the action was accidental. Also, there was an interaction between intentionality and language on punishment ratings. Controls punished more when harm was described using gruesome language. However, that was not the case of people in the CJ group, who assigned the same amount of punishment in both conditions. In conclusion, participants with job experience in the criminal justice system or criminal law differ in the way they make moral decisions. Particularly, it seems that they are less sensitive to the biasing effect of gruesome evidence, which is probably explained by their formal education or their experience in dealing with such evidence. Nonetheless, more studies are needed to determine the impact this phenomenon has on the fulfillment of their duty.Keywords: criminal justice system, emotions, gruesome descriptions, intentionality, moral decision-making
Procedia PDF Downloads 1871036 Optimal-Based Structural Vibration Attenuation Using Nonlinear Tuned Vibration Absorbers
Authors: Pawel Martynowicz
Abstract:
Vibrations are a crucial problem for slender structures such as towers, masts, chimneys, wind turbines, bridges, high buildings, etc., that is why most of them are equipped with vibration attenuation or fatigue reduction solutions. In this work, a slender structure (i.e., wind turbine tower-nacelle model) equipped with nonlinear, semiactive tuned vibration absorber(s) is analyzed. For this study purposes, magnetorheological (MR) dampers are used as semiactive actuators. Several optimal-based approaches to structural vibration attenuation are investigated against the standard ‘ground-hook’ law and passive tuned vibration absorber(s) implementations. The common approach to optimal control of nonlinear systems is offline computation of the optimal solution, however, so determined open loop control suffers from lack of robustness to uncertainties (e.g., unmodelled dynamics, perturbations of external forces or initial conditions), and thus perturbation control techniques are often used. However, proper linearization may be an issue for highly nonlinear systems with implicit relations between state, co-state, and control. The main contribution of the author is the development as well as numerical and experimental verification of the Pontriagin maximum-principle-based vibration control concepts that produce directly actuator control input (not the demanded force), thus force tracking algorithm that results in control inaccuracy is entirely omitted. These concepts, including one-step optimal control, quasi-optimal control, and optimal-based modified ‘ground-hook’ law, can be directly implemented in online and real-time feedback control for periodic (or semi-periodic) disturbances with invariant or time-varying parameters, as well as for non-periodic, transient or random disturbances, what is a limitation for some other known solutions. No offline calculation, excitations/disturbances assumption or vibration frequency determination is necessary, moreover, all of the nonlinear actuator (MR damper) force constraints, i.e., no active forces, lower and upper saturation limits, hysteresis-type dynamics, etc., are embedded in the control technique, thus the solution is optimal or suboptimal for the assumed actuator, respecting its limitations. Depending on the selected method variant, a moderate or decisive reduction in the computational load is possible compared to other methods of nonlinear optimal control, while assuring the quality and robustness of the vibration reduction system, as well as considering multi-pronged operational aspects, such as possible minimization of the amplitude of the deflection and acceleration of the vibrating structure, its potential and/or kinetic energy, required actuator force, control input (e.g. electric current in the MR damper coil) and/or stroke amplitude. The developed solutions are characterized by high vibration reduction efficiency – the obtained maximum values of the dynamic amplification factor are close to 2.0, while for the best of the passive systems, these values exceed 3.5.Keywords: magnetorheological damper, nonlinear tuned vibration absorber, optimal control, real-time structural vibration attenuation, wind turbines
Procedia PDF Downloads 1241035 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 314