Search results for: quality systems and models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22925

Search results for: quality systems and models

14105 Bioclimatic Design, Evaluation of Energy Behavior and Energy-Saving Interventions at the Theagenio Cancer Hospital

Authors: Emmanouel Koumoulas, Aikaterini Rokkou, Marios Moschakis

Abstract:

Theagenio" in Thessaloniki exists and works for three centuries now as a hospital. Since 1975, it has been operating as an Integrated Special Cancer Hospital and since 1985 it has been integrated into the National Health System. "Theagenio" Cancer Hospital is located at the central web of Thessaloniki residential complex and consists of two buildings, the "Symeonidio Research Center", which was completed in 1962 and the Nursing Ward, a project that was later completed in 1975. This paper examines the design of the Hospital Unit according to the requirements of the energy design of buildings. Initially, the energy characteristics of the Hospital are recorded, followed by a detailed presentation of the electromechanical installations. After the existing situation has been captured and with the help of the software TEE-KENAK, different scenarios for the energy upgrading of the buildings have been studied. Proposals for upgrading concern both the shell, e.g. installation of external thermal insulation, replacement of frames, addition of shading systems, etc. as well as electromechanical installations, e.g. use of ceiling fans, improvements in heating and cooling systems, interventions in lighting, etc. The simulation calculates the future energy status of the buildings and presents the economic benefits of the proposed interventions with reference to the environmental profits that arise.

Keywords: energy consumption in hospitals, energy saving interventions, energy upgrading, hospital facilities

Procedia PDF Downloads 152
14104 Energy Harvesting and Storage System for Marine Applications

Authors: Sayem Zafar, Mahmood Rahi

Abstract:

Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.

Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine

Procedia PDF Downloads 138
14103 Relationship of Indoor and Outdoor Levels of Black Carbon in an Urban Environment

Authors: Daria Pashneva, Julija Pauraite, Agne Minderyte, Vadimas Dudoitis, Lina Davuliene, Kristina Plauskaite, Inga Garbariene, Steigvile Bycenkiene

Abstract:

Black carbon (BC) has received particular attention around the world, not only for its impact on regional and global climate change but also for its impact on air quality and public health. In order to study the relationship between indoor and outdoor BC concentrations, studies were carried out in Vilnius, Lithuania. The studies are aimed at determining the relationship of concentrations, identifying dependencies during the day and week with a further opportunity to analyze the key factors affecting the indoor concentration of BC. In this context, indoor and outdoor continuous real-time measurements of optical BC-related light absorption by aerosol particles were carried out during the cold season (from October to December 2020). The measurement venue was an office located in an urban background environment. Equivalent black carbon (eBC) mass concentration was measured by an Aethalometer (Magee Scientific, model AE-31). The optical transmission of carbonaceous aerosol particles was measured sequentially at seven wavelengths (λ= 370, 470, 520, 590, 660, 880, and 950 nm), where the eBC mass concentration was derived from the light absorption coefficient (σab) at 880 nm wavelength. The diurnal indoor eBC mass concentration was found to vary in the range from 0.02 to 0.08 µgm⁻³, while the outdoor eBC mass concentration - from 0.34 to 0.99 µgm⁻³. Diurnal variations of eBC mass concentration outdoor vs. indoor showed an increased contribution during 10:00 and 12:00 AM (GMT+2), with the highest indoor eBC mass concentration of 0.14µgm⁻³. An indoor/outdoor eBC ratio (I/O) was below one throughout the entire measurement period. The weekend levels of eBC mass concentration were lower than in weekdays for indoor and outdoor for 33% and 28% respectively. Hourly mean mass concentrations of eBC for weekdays and weekends show diurnal cycles, which could be explained by the periodicity of traffic intensity and heating activities. The results show a moderate influence of outdoor eBC emissions on the indoor eBC level.

Keywords: black carbon, climate change, indoor air quality, I/O ratio

Procedia PDF Downloads 199
14102 Flood Risk Assessment for Agricultural Production in a Tropical River Delta Considering Climate Change

Authors: Chandranath Chatterjee, Amina Khatun, Bhabagrahi Sahoo

Abstract:

With the changing climate, precipitation events are intensified in the tropical river basins. Since these river basins are significantly influenced by the monsoonal rainfall pattern, critical impacts are observed on the agricultural practices in the downstream river reaches. This study analyses the crop damage and associated flood risk in terms of net benefit in the paddy-dominated tropical Indian delta of the Mahanadi River. The Mahanadi River basin lies in eastern part of the Indian sub-continent and is greatly affected by the southwest monsoon rainfall extending from the month of June to September. This river delta is highly flood-prone and has suffered from recurring high floods, especially after the 2000s. In this study, the lumped conceptual model, Nedbør Afstrømnings Model (NAM) from the suite of MIKE models, is used for rainfall-runoff modeling. The NAM model is laterally integrated with the MIKE11-Hydrodynamic (HD) model to route the runoffs up to the head of the delta region. To obtain the precipitation-derived future projected discharges at the head of the delta, nine Global Climate Models (GCMs), namely, BCC-CSM1.1(m), GFDL-CM3, GFDL-ESM2G, HadGEM2-AO, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM-CHEM and NorESM1-M, available in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) archive are considered. These nine GCMs are previously found to best-capture the Indian Summer Monsoon rainfall. Based on the performance of the nine GCMs in reproducing the historical discharge pattern, three GCMs (HadGEM2-AO, IPSL-CM5A-MR and MIROC-ESM-CHEM) are selected. A higher Taylor Skill Score is considered as the GCM selection criteria. Thereafter, the 10-year return period design flood is estimated using L-moments based flood frequency analysis for the historical and three future projected periods (2010-2039, 2040-2069 and 2070-2099) under Representative Concentration Pathways (RCP) 4.5 and 8.5. A non-dimensional hydrograph analysis is performed to obtain the hydrographs for the historical/projected 10-year return period design floods. These hydrographs are forced into the calibrated and validated coupled 1D-2D hydrodynamic model, MIKE FLOOD, to simulate the flood inundation in the delta region. Historical and projected flood risk is defined based on the information about the flood inundation simulated by the MIKE FLOOD model and the inundation depth-damage-duration relationship of a normal rice variety cultivated in the river delta. In general, flood risk is expected to increase in all the future projected time periods as compared to the historical episode. Further, in comparison to the 2010s (2010-2039), an increased flood risk in the 2040s (2040-2069) is shown by all the three selected GCMs. However, the flood risk then declines in the 2070s as we move towards the end of the century (2070-2099). The methodology adopted herein for flood risk assessment is one of its kind and may be implemented in any world-river basin. The results obtained from this study can help in future flood preparedness by implementing suitable flood adaptation strategies.

Keywords: flood frequency analysis, flood risk, global climate models (GCMs), paddy cultivation

Procedia PDF Downloads 75
14101 Study of the Anaerobic Degradation Potential of High Strength Molasses Wastewater

Authors: M. Mischopoulou, P. Naidis, S. Kalamaras, T. Kotsopoulos, P. Samaras

Abstract:

The treatment of high strength wastewater by an Upflow Anaerobic Sludge Blanket (UASB) reactor has several benefits, such as high organic removal efficiency, short hydraulic retention time along with low operating costs. In addition, high volumes of biogas are released in these reactors, which can be utilized in several industrial facilities for energy production. This study aims at the examination of the application potential of anaerobic treatment of wastewater, with high molasses content derived from yeast manufacturing, by a lab-scale UASB reactor. The molasses wastewater and the sludge used in the experiments were collected from the wastewater treatment plant of a baker’s yeast manufacturing company. The experimental set-up consisted of a 15 L thermostated UASB reactor at 37 ◦C. Before the reactor start-up, the reactor was filled with sludge and molasses wastewater at a ratio 1:1 v/v. Influent was fed to the reactor at a flowrate of 12 L/d, corresponding to a hydraulic residence time of about 30 h. Effluents were collected from the system outlet and were analyzed for the determination of the following parameters: COD, pH, total solids, volatile solids, ammonium, phosphates and total nitrogen according to the standard methods of analysis. In addition, volatile fatty acid (VFA) composition of the effluent was determined by a gas chromatograph equipped with a flame ionization detector (FID), as an indicator to evaluate the process efficiency. The volume of biogas generated in the reactor was daily measured by the water displacement method, while gas composition was analyzed by a gas chromatograph equipped with a thermal conductivity detector (TCD). The effluent quality was greatly enhanced due to the use of the UASB reactor and high rate of biogas production was observed. The anaerobic treatment of the molasses wastewater by the UASB reactor improved the biodegradation potential of the influent, resulting at high methane yields and an effluent with better quality than the raw wastewater.

Keywords: anaerobic digestion, biogas production, molasses wastewater, UASB reactor

Procedia PDF Downloads 271
14100 Large-Eddy Simulations for Aeronautical Systems

Authors: R. R. Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is embedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating, and cooling, etc. In this work will present an overview of the development of this field. Some examples will include Airfoil Noise Suppression: Large-Eddy Simulations (LES) is used to simulate the effect of synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In vertical takeoff of Aircrafts or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protecting the structure and payload from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aeroacoustics, flow control, aerodynamics, large eddy simulations

Procedia PDF Downloads 287
14099 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions

Authors: Tesfaye Mengistu

Abstract:

This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.

Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission

Procedia PDF Downloads 83
14098 Integrating Blogging into Peer Assessment on College Students’ English Writing

Authors: Su-Lien Liao

Abstract:

Most of college students in Taiwan do not have sufficient English proficiency to express themselves in written English. Teachers spent a lot of time correcting students’ English writing, but the results are not satisfactory. This study aims to use blogs as a teaching and learning tool in written English. Before applying peer assessment, students should be trained to be good reviewers. The teacher starts the course by posting the error analysis of students’ first English composition on blogs as the comment models for students. Then the students will go through the process of drafting, composing, peer response and last revision on blogs. Evaluation Questionnaires and interviews will be conducted at the end of the course to see the impact and students’ perception for the course.

Keywords: blog, peer assessment, English writing, error analysis

Procedia PDF Downloads 421
14097 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
14096 Stakeholder Mapping and Requirements Identification for Improving Traceability in the Halal Food Supply Chain

Authors: Laila A. H. F. Dashti, Tom Jackson, Andrew West, Lisa Jackson

Abstract:

Traceability systems are important in the agri-food and halal food sectors for monitoring ingredient movements, tracking sources, and ensuring food integrity. However, designing a traceability system for the halal food supply chain is challenging due to diverse stakeholder requirements and complex needs. Existing literature on stakeholder mapping and identifying requirements for halal food supply chains is limited. To address this gap, a pilot study was conducted to identify the objectives, requirements, and recommendations of stakeholders in the Kuwaiti halal food industry. The study collected data through semi-structured interviews with an international halal food manufacturer based in Kuwait. The aim was to gain a deep understanding of stakeholders' objectives, requirements, processes, and concerns related to the design of a traceability system in the country's halal food sector. Traceability systems are being developed and tested in the agri-food and halal food sectors due to their ability to monitor ingredient movements, track sources, and detect potential issues related to food integrity. Designing a traceability system for the halal food supply chain poses significant challenges due to diverse stakeholder requirements and the complexity of their needs (including varying food ingredients, different sources, destinations, supplier processes, certifications, etc.). Achieving a halal food traceability solution tailored to stakeholders' requirements within the supply chain necessitates prior knowledge of these needs. Although attempts have been made to address design-related issues in traceability systems, literature on stakeholder mapping and identification of requirements specific to halal food supply chains is scarce. Thus, this pilot study aims to identify the objectives, requirements, and recommendations of stakeholders in the halal food industry. The paper presents insights gained from the pilot study, which utilized semi-structured interviews to collect data from a Kuwait-based international halal food manufacturer. The objective was to gain an in-depth understanding of stakeholders' objectives, requirements, processes, and concerns pertaining to the design of a traceability system in Kuwait's halal food sector. The stakeholder mapping results revealed that government entities, food manufacturers, retailers, and suppliers are key stakeholders in Kuwait's halal food supply chain. Lessons learned from this pilot study regarding requirement capture for traceability systems include the need to streamline communication, focus on communication at each level of the supply chain, leverage innovative technologies to enhance process structuring and operations and reduce halal certification costs. The findings also emphasized the limitations of existing traceability solutions, such as limited cooperation and collaboration among stakeholders, high costs of implementing traceability systems without government support, lack of clarity regarding product routes, and disrupted communication channels between stakeholders. These findings contribute to a broader research program aimed at developing a stakeholder requirements framework that utilizes "business process modelling" to establish a unified model for traceable stakeholder requirements.

Keywords: supply chain, traceability system, halal food, stakeholders’ requirements

Procedia PDF Downloads 113
14095 Grey Prediction of Atmospheric Pollutants in Shanghai Based on GM(1,1) Model Group

Authors: Diqin Qi, Jiaming Li, Siman Li

Abstract:

Based on the use of the three-point smoothing method for selectively processing original data columns, this paper establishes a group of grey GM(1,1) models to predict the concentration ranges of four major air pollutants in Shanghai from 2023 to 2024. The results indicate that PM₁₀, SO₂, and NO₂ maintain the national Grade I standards, while the concentration of PM₂.₅ has decreased but still remains within the national Grade II standards. Combining the forecast results, recommendations are provided for the Shanghai municipal government's efforts in air pollution prevention and control.

Keywords: atmospheric pollutant prediction, Grey GM(1, 1), model group, three-point smoothing method

Procedia PDF Downloads 35
14094 Equilibrium, Kinetic and Thermodynamic Studies of the Biosorption of Textile Dye (Yellow Bemacid) onto Brahea edulis

Authors: G. Henini, Y. Laidani, F. Souahi, A. Labbaci, S. Hanini

Abstract:

Environmental contamination is a major problem being faced by the society today. Industrial, agricultural, and domestic wastes, due to the rapid development in the technology, are discharged in the several receivers. Generally, this discharge is directed to the nearest water sources such as rivers, lakes, and seas. While the rates of development and waste production are not likely to diminish, efforts to control and dispose of wastes are appropriately rising. Wastewaters from textile industries represent a serious problem all over the world. They contain different types of synthetic dyes which are known to be a major source of environmental pollution in terms of both the volume of dye discharged and the effluent composition. From an environmental point of view, the removal of synthetic dyes is of great concern. Among several chemical and physical methods, adsorption is a promising technique due to the ease of use and low cost compared to other applications in the process of discoloration, especially if the adsorbent is inexpensive and readily available. The focus of the present study was to assess the potentiality of Brahea edulis (BE) for the removal of synthetic dye Yellow bemacid (YB) from aqueous solutions. The results obtained here may transfer to other dyes with a similar chemical structure. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, initial dye concentration, and temperature. The biosorption kinetic data of the material (BE) was tested by the pseudo first-order and the pseudo-second-order kinetic models. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of YB on the BE is feasible, spontaneous, and endothermic. The equilibrium data were analyzed by using Langmuir, Freundlich, Elovich, and Temkin isotherm models. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g: 12 mg/g; 1.5 g: 47.44 mg/g). The maximum biosorption occurred at around pH value of 2 for the YB. The equilibrium uptake was increased with an increase in the initial dye concentration in solution (Co = 120 mg/l; q = 35.97 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficient (R2 > 0.998) and a maximum monolayer adsorption capacity of 35.97 mg/g for YB.

Keywords: adsorption, Brahea edulis, isotherm, yellow Bemacid

Procedia PDF Downloads 177
14093 Spectral Clustering from the Discrepancy View and Generalized Quasirandomness

Authors: Marianna Bolla

Abstract:

The aim of this paper is to compare spectral, discrepancy, and degree properties of expanding graph sequences. As we can prove equivalences and implications between them and the definition of the generalized (multiclass) quasirandomness of Lovasz–Sos (2008), they can be regarded as generalized quasirandom properties akin to the equivalent quasirandom properties of the seminal Chung-Graham-Wilson paper (1989) in the one-class scenario. Since these properties are valid for deterministic graph sequences, irrespective of stochastic models, the partial implications also justify for low-dimensional embedding of large-scale graphs and for discrepancy minimizing spectral clustering.

Keywords: generalized random graphs, multiway discrepancy, normalized modularity spectra, spectral clustering

Procedia PDF Downloads 197
14092 National System of Innovation in Zambia: Towards Socioeconomic Development

Authors: Ephraim Daka, Maxim Kotsemir

Abstract:

The National system Innovation (NSI) have recently proliferated as a vehicle for addressing poverty and national competitiveness in the developing countries. While several governments in Sub-Saharan Africa have adopted the developed countries’ models of innovation to local conditions, the Zambian case is rather unique. This study highlights conceptual and socioeconomic challenges directed to the performances of the NSI. The paper analyses science and technology strategies with the inclusion of “innovation” and its effect towards improving socioeconomic elements. The authors reviewed STI policy and national strategy documents, followed by interviews compared to economical regional and national data sets. The NSI and its related to inter-linkages and support mechanism to socioeconomic development were explored.

Keywords: national system of innovation, socioeconomics, development, Zambia

Procedia PDF Downloads 223
14091 Flashover Voltage of Silicone Insulating Surface Covered by Water Drops under AC Voltage

Authors: Fatiha Aouabed, Abdelhafid Bayadi, Rabah Boudissa

Abstract:

Nowadays, silicone rubber insulation materials are widely used in high voltage outdoor insulation systems as they can combat pollution flashover problems. The difference in pollution flashover performance of silicone rubber and other insulating materials is due to the way that water wets their surfaces. It resides as discrete drops on silicone rubber, and the mechanism of flashover is due to the breakdown of the air between the water drops and the distortion of these drops in the direction of the electric field which brings the insulation to degradation and failure. The main objective of this work is to quantify the effect of different types of water drops arrangements, their position and dry bands width on the flashover voltage of the silicone insulating surface with non-uniform electric field systems. The tests were carried out on a rectangular sample under AC voltage. A rod-rod electrode system is used. The findings of this work indicate that the performance of the samples decreases with the presence of water drops on their surfaces. Further, these experimental findings show that there is a limiting number of rows from which the flashover voltage of the insulation is minimal and constant. This minimum is a function of the distance between two successive rows. Finally, it is concluded that the system withstand voltage increases when the row of droplets on the electrode axis is removed.

Keywords: contamination, flashover, testing, silicone rubber insulators, surface wettability, water droplets

Procedia PDF Downloads 442
14090 Exergetic Optimization on Solid Oxide Fuel Cell Systems

Authors: George N. Prodromidis, Frank A. Coutelieris

Abstract:

Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.

Keywords: biogas, exergy, efficiency, optimization

Procedia PDF Downloads 370
14089 High Thrust Upper Stage Solar Hydrogen Rocket Design

Authors: Maged Assem Soliman Mossallam

Abstract:

The conversion of solar thruster model to an upper stage hydrogen rocket is considered. Solar thruster categorization limits its capabilities to low and moderate thrust system with high specific impulse. The current study proposes a different concept for such systems by increasing the thrust which enables using as an upper stage rocket and for future launching purposes. A computational model for the thruster is discussed for solar thruster subsystems. The first module depends on ray tracing technique to determine the intercepted solar power by the hydrogen combustion chamber. The cavity receiver is modeled using finite volume technique. The final module imports the heated hydrogen properties to the nozzle using quasi one dimensional simulation. The probability of shock waves formulation inside the nozzle is almost diminished as the outlet pressure in space environment tends to zero. The computational model relates the high thrust hydrogen rocket conversion to the design parameters and operating conditions of the thruster. Three different designs for solar thruster systems are discussed. The first design is a low thrust high specific impulse design that produces about 10 Newton of thrust .The second one output thrust is about 250 Newton and the third design produces about 1000 Newton.

Keywords: space propulsion, hydrogen rocket, thrust, specific impulse

Procedia PDF Downloads 166
14088 Relationships between Social Entrepreneurship, CSR and Social Innovation: In Theory and Practice

Authors: Krisztina Szegedi, Gyula Fülöp, Ádám Bereczk

Abstract:

The shared goal of social entrepreneurship, corporate social responsibility and social innovation is the advancement of society. The business model of social enterprises is characterized by unique strategies based on the competencies of the entrepreneurs, and is not aimed primarily at the maximization of profits, but rather at carrying out goals for the benefit of society. Corporate social responsibility refers to the active behavior of a company, by which it can create new solutions to meet the needs of society, either on its own or in cooperation with other social stakeholders. The objectives of this article are to define concepts, describe and integrate relevant theoretical models, develop a model and introduce some examples of international practice that can inspire initiatives for social development.

Keywords: corporate social responsibility, CSR, social innovation, social entrepreneurship

Procedia PDF Downloads 323
14087 Optimization of Wind Off-Grid System for Remote Area: Egyptian Application

Authors: Marwa M. Ibrahim

Abstract:

The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) off-grid system supplying a small remote gathering of four families using the HOMER software package. The second objective is to study the effect of wind energy system on the cost of generated electricity considering the cost of reducing CO₂ emissions as external benefit of wind turbines, no pollutant emission through the operational phase. The system consists of a small wind turbine, battery storage, and diesel generator. The electrical energy is to cater to the basic needs for which the daily load pattern is estimated at 8 kW peak. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for the selected site in Egypt. Using HOMER software, the simulation results shows that W/D/B systems are economical for the assumed community site as the price of generated electricity is about 0.285 $/kWh, without taking external benefits into considerations and 0.221 if CO₂ emissions taken into consideration W/D/B systems are more economical than alone diesel system as the COE is 0.432 $/kWh for diesel alone.

Keywords: renewable energy, hybrid energy system, on-off grid system, simulation, optimization and environmental impacts

Procedia PDF Downloads 102
14086 Numerical Resolving of Net Faradaic Current in Fast-Scan Cyclic Voltammetry Considering Induced Charging Currents

Authors: Gabriel Wosiak, Dyovani Coelho, Evaldo B. Carneiro-Neto, Ernesto C. Pereira, Mauro C. Lopes

Abstract:

In this work, the theoretical and experimental effects of induced charging currents on fast-scan cyclic voltammetry (FSCV) are investigated. Induced charging currents arise from the effect of ohmic drop in electrochemical systems, which depends on the presence of an uncompensated resistance. They cause the capacitive contribution to the total current to be different from the capacitive current measured in the absence of electroactive species. The paper shows that the induced charging current is relevant when the capacitive current magnitude is close to the total current, even for systems with low time constant. In these situations, the conventional background subtraction method may be inaccurate. A method is developed that separates the faradaic and capacitive currents by using a combination of voltametric experimental data and finite element simulation, by the obtention of a potential-dependent capacitance. The method was tested in a standard electrochemical cell with Platinum ultramicroelectrodes, in different experimental conditions as well in previously reported data in literature. The proposed method allows the real capacitive current to be separated even in situations where the conventional background subtraction method is clearly inappropriate.

Keywords: capacitive current, fast-scan cyclic voltammetry, finite-element method, electroanalysis

Procedia PDF Downloads 75
14085 The Influence of Project-Based Learning and Outcome-Based Education: Interior Design Tertiary Students in Focus

Authors: Omneya Messallam

Abstract:

Technology has been developed dramatically in most of the educational disciplines. For instance, digital rendering subject, which is being taught in both Interior and Architecture fields, is witnessing almost annually updated software versions. A lot of students and educators argued that there will be no need for manual rendering techniques to be learned. Therefore, the Interior Design Visual Presentation 1 course (ID133) has been chosen from the first level of the Interior Design (ID) undergraduate program, as it has been taught for six years continually. This time frame will facilitate sound observation and critical analysis of the use of appropriate teaching methodologies. Furthermore, the researcher believes in the high value of the manual rendering techniques. The course objectives are: to define the basic visual rendering principles, to recall theories and uses of various types of colours and hatches, to raise the learners’ awareness of the value of studying manual render techniques, and to prepare them to present their work professionally. The students are female Arab learners aged between 17 and 20. At the outset of the course, the majority of them demonstrated negative attitude, lacking both motivation and confidence in manual rendering skills. This paper is a reflective appraisal of deploying two student-centred teaching pedagogies which are: Project-based learning (PBL) and Outcome-based education (OBE) on ID133 students. This research aims of developing some teaching strategies to enhance the quality of teaching in this given course over an academic semester. The outcome of this research emphasized the positive influence of applying such educational methods on improving the quality of students’ manual rendering skills in terms of: materials, textiles, textures, lighting, and shade and shadow. Furthermore, it greatly motivated the students and raised the awareness of the importance of learning the manual rendering techniques.

Keywords: project-based learning, outcome-based education, visual presentation, manual render, personal competences

Procedia PDF Downloads 161
14084 Development of an Asset Database to Enhance the Circular Business Models for the European Solar Industry: A Design Science Research Approach

Authors: Ässia Boukhatmi, Roger Nyffenegger

Abstract:

The expansion of solar energy as a means to address the climate crisis is undisputed, but the increasing number of new photovoltaic (PV) modules being put on the market is simultaneously leading to increased challenges in terms of managing the growing waste stream. Many of the discarded modules are still fully functional but are often damaged by improper handling after disassembly or not properly tested to be considered for a second life. In addition, the collection rate for dismantled PV modules in several European countries is only a fraction of previous projections, partly due to the increased number of illegal exports. The underlying problem for those market imperfections is an insufficient data exchange between the different actors along the PV value chain, as well as the limited traceability of PV panels during their lifetime. As part of the Horizon 2020 project CIRCUSOL, an asset database prototype was developed to tackle the described problems. In an iterative process applying the design science research methodology, different business models, as well as the technical implementation of the database, were established and evaluated. To explore the requirements of different stakeholders for the development of the database, surveys and in-depth interviews were conducted with various representatives of the solar industry. The proposed database prototype maps the entire value chain of PV modules, beginning with the digital product passport, which provides information about materials and components contained in every module. Product-related information can then be expanded with performance data of existing installations. This information forms the basis for the application of data analysis methods to forecast the appropriate end-of-life strategy, as well as the circular economy potential of PV modules, already before they arrive at the recycling facility. The database prototype could already be enriched with data from different data sources along the value chain. From a business model perspective, the database offers opportunities both in the area of reuse as well as with regard to the certification of sustainable modules. Here, participating actors have the opportunity to differentiate their business and exploit new revenue streams. Future research can apply this approach to further industry and product sectors, validate the database prototype in a practical context, and can serve as a basis for standardization efforts to strengthen the circular economy.

Keywords: business model, circular economy, database, design science research, solar industry

Procedia PDF Downloads 128
14083 Tender Systems and Processes within the Mauritian Construction Industry: Investigating the Predominance of International Firms and the Lack of Absorptive Capacity in Local Firms

Authors: K. Appasamy, P. Paul

Abstract:

Mauritius, a developing small-island-state, is facing a recession which is having a considerable economic impact particularly on its construction sector. Further, the presence of foreign entities, both as companies and workers, within this sector is creating a very competitive environment for local firms. This study investigates the key drivers that allow foreign firms to participate in this sector, in particular looking at the international and local tender processes, and the capacity of local industry to participate. This study also looks at how the current set up may hinder the latter’s involvement. The methodology used included qualitative semi-structured interviews conducted with established foreign companies, local companies, and public bodies. Study findings indicate: there is an adequate availability of professional skills and expertise within the Mauritian construction industry but a lack of skilled labour especially at the operative level; projects awarded to foreign firms are either due to their uniqueness and hence lack of local knowledge, or due to foreign firms having lower tender bids; tendering systems and processes are weak, including monitoring and enforcement, which encourages corruption and favouritism; a high level of ignorance of this sector’s characteristics and opportunities exists amongst the local population; local entities are very profit oriented and have short term strategies that discourage long term investment in workforce training and development; but most importantly, stakeholders do not grasp the importance of encouraging youngsters to join this sector, they have no long term vision, and there is a lack of mutual involvement and collaboration between them. Although local industry is highly competent, qualified and experienced, the tendering and procurement systems in Mauritius are not conducive enough to allow for effective strategic planning and an equitable allocation of projects during an economic downturn so that the broadest spread of stakeholders’ benefit. It is of utmost importance that all sector and government entities collaborate to formulate strategies and reforms on tender processes and capacity building to ensure fairness and continuous growth of this sector in Mauritius.

Keywords: construction industry, tender process, international firms, local capacity, Mauritius

Procedia PDF Downloads 319
14082 Chronically Ill Patient Satisfaction: An Indicator of Quality of Service Provided at Primary Health Care Settings in Alexandria

Authors: Alyaa Farouk Ibrahim, Gehan ElSayed, Ola Mamdouh, Nazek AbdelGhany

Abstract:

Background: Primary health care (PHC) can be considered the first contact between the patient and the health care system. It includes all the basic health care services to be provided to the community. Patient's satisfaction regarding health care has often improved the provision of care, also considered as one of the most important measures for evaluating the health care. Objective: This study aims to identify patient’s satisfaction with services provided at the primary health care settings in Alexandria. Setting: Seven primary health care settings representing the seven zones of Alexandria governorate were selected randomly and included in the study. Subjects: The study comprised 386 patients attended the previously selected settings at least twice before the time of the study. Tools: Two tools were utilized for data collection; sociodemographic characteristics and health status structured interview schedule and patient satisfaction scale. Reliability test for the scale was done using Cronbach's Alpha test, the result of the test ranged between 0.717 and 0.967. The overall satisfaction was computed and divided into high, medium, and low satisfaction. Results: Age of the studied sample ranged between 19 and 62 years, more than half (54.2%) of them aged 40 to less than 60 years. More than half (52.8%) of the patients included in the study were diabetics, 39.1% of them were hypertensive, 19.2% had cardiovascular diseases, the rest of the sample had tumor, liver diseases, and orthopedic/neurological disorders (6.5%, 5.2% & 3.2%, respectively). The vast majority of the study group mentioned high satisfaction with overall service cost, environmental conditions, medical staff attitude and health education given at the PHC settings (87.8%, 90.7%, 86.3% & 90.9%, respectively), however, medium satisfaction was mostly reported concerning medical checkup procedures, follow-up data and referral system (41.2%, 28.5% & 28.9%, respectively). Score level of patient satisfaction with health services provided at the assessed Primary health care settings proved to be significantly associated with patients’ social status (P=0.003, X²=14.2), occupation (P=0.011, X²=11.2), and monthly income (P=0.039, X²=6.50). In addition, a significant association was observed between score level of satisfaction and type of illness (P=0.007, X²=9.366), type of medication (P=0.014, X²=9.033), prior knowledge about the health center (P=0.050, X²=3.346), and highly significant with the administrative zone (P=0.001, X²=55.294). Conclusion: The current study revealed that overall service cost, environmental conditions, staff attitude and health education at the assessed primary health care settings gained high patient satisfaction level, while, medical checkup procedures, follow-up, and referral system caused a medium level of satisfaction among assessed patients. Nevertheless, social status, occupation, monthly income, type of illness, type of medication and administrative zones are all factors influencing patient satisfaction with services provided at the health facilities.

Keywords: patient satisfaction, chronic illness, quality of health service, quality of service indicators

Procedia PDF Downloads 352
14081 Scope of Public Policies in Promoting Resource-Recovery Sanitation Systems to Answer the Open Defecation Challenges of Indian Cities: Case of Ahmedabad

Authors: Isalyne Gennaro

Abstract:

The lack of access to basic sanitation services and improper water infrastructure pollute the environment and expose people to water-borne diseases. In 2014, to address these concerns, the central government of India launched five-years urban development and sanitation programs. The national vision seemed to encourage the use of technologies which recycle and reuse wastewater for achieving open defecation free cities. As we approach 2019, it is time to reflect on these objectives. This research critically looked at the actual scope and limitations of policies and regulations to promote resource-recovery sanitation systems. This study was based on the case of the fast-growing city of Ahmedabad, Gujarat. The analysis examined the actions and priorities, financial and institutional arrangements and technologies promoted at the national, sub-national and local levels. The research work concluded that a paradigm shift is required, from providing infrastructures in a supply-driven manner to creating inclusive planning framework which focuses on local challenges and generates a demand-responsiveness from the potential users targeted.

Keywords: India, public policy, resource-recovery, urban sanitation

Procedia PDF Downloads 142
14080 Dual-use UAVs in Armed Conflicts: Opportunities and Risks for Cyber and Electronic Warfare

Authors: Piret Pernik

Abstract:

Based on strategic, operational, and technical analysis of the ongoing armed conflict in Ukraine, this paper will examine the opportunities and risks of using small commercial drones (dual-use unmanned aerial vehicles, UAV) for military purposes. The paper discusses the opportunities and risks in the information domain, encompassing both cyber and electromagnetic interference and attacks. The paper will draw conclusions on a possible strategic impact to the battlefield outcomes in the modern armed conflicts by the widespread use of dual-use UAVs. This article will contribute to filling the gap in the literature by examining based on empirical data cyberattacks and electromagnetic interference. Today, more than one hundred states and non-state actors possess UAVs ranging from low cost commodity models, widely are dual-use, available and affordable to anyone, to high-cost combat UAVs (UCAV) with lethal kinetic strike capabilities, which can be enhanced with Artificial Intelligence (AI) and Machine Learning (ML). Dual-use UAVs have been used by various actors for intelligence, reconnaissance, surveillance, situational awareness, geolocation, and kinetic targeting. Thus they function as force multipliers enabling kinetic and electronic warfare attacks and provide comparative and asymmetric operational and tactical advances. Some go as far as argue that automated (or semi-automated) systems can change the character of warfare, while others observe that the use of small drones has not changed the balance of power or battlefield outcomes. UAVs give considerable opportunities for commanders, for example, because they can be operated without GPS navigation, makes them less vulnerable and dependent on satellite communications. They can and have been used to conduct cyberattacks, electromagnetic interference, and kinetic attacks. However, they are highly vulnerable to those attacks themselves. So far, strategic studies, literature, and expert commentary have overlooked cybersecurity and electronic interference dimension of the use of dual use UAVs. The studies that link technical analysis of opportunities and risks with strategic battlefield outcomes is missing. It is expected that dual use commercial UAV proliferation in armed and hybrid conflicts will continue and accelerate in the future. Therefore, it is important to understand specific opportunities and risks related to the crowdsourced use of dual-use UAVs, which can have kinetic effects. Technical countermeasures to protect UAVs differ depending on a type of UAV (small, midsize, large, stealth combat), and this paper will offer a unique analysis of small UAVs both from the view of opportunities and risks for commanders and other actors in armed conflict.

Keywords: dual-use technology, cyber attacks, electromagnetic warfare, case studies of cyberattacks in armed conflicts

Procedia PDF Downloads 102
14079 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms

Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat

Abstract:

In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.

Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization

Procedia PDF Downloads 118
14078 Membrane Bioreactor for Wastewater Treatment and Reuse

Authors: Sarra Kitanou

Abstract:

Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future.

Keywords: hybrid process, membrane bioreactor, wastewater treatment, reuse

Procedia PDF Downloads 83
14077 A Learning-Based EM Mixture Regression Algorithm

Authors: Yi-Cheng Tian, Miin-Shen Yang

Abstract:

The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.

Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model

Procedia PDF Downloads 510
14076 A Variable Speed DC Motor Using a Converter DC-DC

Authors: Touati Mawloud

Abstract:

Between electronics and electrical systems has developed a new technology that is power electronics, also called electronic of strong currents, this application covers a very wide range of use particularly in the industrial sector, where direct current engines are frequently used, they control their speed by the use of the converters (DC-DC), which aims to deal with various mechanical disturbances (fillers) or electrical (power). In future, it will play a critical role in transforming the current electric grid into the next generation grid. Existing silicon-based PE devices enable electric grid functionalities such as fault-current limiting and converter devices. Systems of future are envisioned to be highly automated, interactive "smart" grid that can self-adjust to meet the demand for electricity reliability, securely, and economically. Transforming today’s electric grid to the grid of the future will require creating or advancing a number of technologies, tools, and techniques—specifically, the capabilities of power electronics (PE). PE devices provide an interface between electrical system, and electronics system by converting AC to direct current (DC) and vice versa. Solid-state wide Bandgap (WBG), semiconductor electronics (such as silicon carbide [SiC], gallium nitride [GaN], and diamond) are envisioned to improve the reliability and efficiency of the next-generation grid substantially.

Keywords: Power Electronics (PE), electrical system generation electric grid, switching frequencies, converter devices

Procedia PDF Downloads 442